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Abstract. Dispersive propagation and overlapping wave modes are two main obstacles for guided 
Lamb wave SHM applications. In an effort to overcome such obstacles, a new signal-processing 
technique taking advantage order tracking based on dispersion relation, is developed. In this 
approach, by referencing the wave number-frequency function of specified mode, the operations 
of resampling and interpolating are performed on the frequency-spectral series of raw signal. The 
orders referenced to wave number-frequency are calculated, according to which the individual 
wave-packet is identified and its corresponding propagating distance is estimated. In the order 
domain, the overlapping modes are readily separated by Gabor expansion on the 
frequency-spectral series of raw signal. Numerical and FEM simulations on strongly dispersive 
and multimode overlapping guided waves were carried out to evaluate the performance of the 
proposed approach. The results demonstrated that the proposed approach is effective in dispersion 
analysis, mode differentiation and overlapped wave-packets separation. 
Keywords: lamb wave analysis, multiple modes separation, strong dispersion, mode wave 
extraction. 

1. Introduction 

Guided ultrasonic wave, with stress distributed through the thickness of the material, can 
propagate along the thin and large components of one-dimensional structures with little loss in 
energy. It offers the potential to achieve the required permanent structural integrity monitoring 
[1, 2]. It is difficult to control the excitation and reception of selected guided wave modes. The 
main challenge for processing Lamb wave signals is how to identify and separate multimode 
overlapping wave-packets due to their different dispersion characteristics and different 
propagation velocities [3, 4]. A variety of pragmatic signal processing approaches have been 
developed and contributed to ascertainment of multimode overlapping wave-packets. These 
conventional techniques mostly focused on the improvement of time-frequency or time resolution 
and the suppression of dispersion. In the conventional methods, narrow-bandwidth and single-
modal guided waves with the selected central frequency were generally used as the excitation and 
ignored the dispersion effect. 

The time-frequency representation (TRF) were adopted to separate the damage-reflected and 
boundary-reflected wave-packets and identify their individual wave mode, such as short-time 
Fourier transform (STFT) [5], wavelet transform [6, 7], S transform [8] etc. However, because of 
the continuously evolving shape (increased duration and reduced amplitude) and modes 
overlapping in both the frequency and time domains, many of TFR techniques, limited by their 
time-frequency resolution, either lose effectiveness or lack sufficient accuracy. In order to produce 
a much more distinct time-frequency resolution, the spectrogram reassignments [9, 10] were 
introduced to enhance readability of TF representations for multimode dispersive Lamb wave 
signals. But the reassignment methods lack the noise robustness and their resolutions may be 
degraded with the increase of wave-packet number. 

To improve the time resolution of general Lamb wave signals, a number of deconvolution 
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techniques were applied including Wiener pulse shaping filter, two-sided Wiener filter, weighted 
least squares filter, Mendel’s minimum variance deconvolution algorithm, Oldenburg’s frequency 
domain deconvolution algorithm and L1-norm deconvolution [11, 12]. Since the deconvolution 
methods were very sensitive to noises, they generally could be inapplicable if strong noise were 
present in the sensor signal. Furthermore, even with high time resolution, the method of 
pinpointing wave-packet arrival time maybe loses its effectiveness. That is because Lamb waves 
are inherently dispersive, i.e., different frequency components propagate at different speeds in a 
wave-packet, which cause wave-packets to spread out in space and time when they propagate 
through a structure so as to make the concept of arrival time ill-defined in time domain. To obtain 
well-defined onset-time of echoes, Chirplets based dispersion curve were employed to extract the 
onset-time of that single mode from multimode dispersive wave signal [13, 14]. However, in the 
case of coherent interferences (false reflection) in the waveform, the Chirplet method may produce 
misleading results. To eliminate interference of false reflections, Ajay et al. [15] adopted an 
algorithm based on correlation analysis and matching pursuit method to estimate onset-time of 
echoes. But this method still has a deficiency in that the wave propagation model and baseline 
signal must be known.  

In an effort to overcome the difficulty of wave-packet identification caused by strong 
dispersion, researchers developed some signal-processing techniques to compensate for the 
dispersive nature of Lamb waves in long-range inspections. The time reversal technique and its 
improved methods [16-19] are used to achieve temporal recompression of Lamb waves under 
broadband signal excitation. Warped frequency transform [20] upwarps the dispersive signal, and 
then wraps TF points of the STFT of the signal to obtain a dispersion-matched warpogram. The 
frequency domain polynomial Chirplet transform [21] adopts a rotation operator and as shift 
operator to do dispersion compensation.  

Although the methods above are useful to identify the overlapping wave-packets by taking 
dispersion nature into account, they don’t provide the algorithms to extract the individual mode 
wave-packet for consequent damage evaluation. Whatever is taken to improve the resolution of 
diagnostic waves and whatever is taken to suppress dispersion effect, to separate completely 
overlapping multimode wave-packets is always restricted to a certain extent. For this reason, a 
new approach is developed to process strong dispersive and overlapping multimode wave-packets. 
In this proposed method, by taking the wave number-frequency function of different mode as 
referencing phase, the corresponding mode wave can be identified and reconstructed with Gabor 
expansion. This article is organized as follows. In Section 2, the mathematical model of Lamb 
wave propagation is presented. Section 3 explains the basic theorem of order tracking technique 
in Lamb wave analysis. The detailed algorithm for order tracking technique is shown in Section 
4. The proposed method’s applications in processing multimode overlapping signal and analysing 
dispersion signal are described in Section 5 and Section 6, separately. Section 7 outlines the 
possibilities to apply the presented method to the SHM application and describes briefly ongoing 
studies and the path for future studies.  

2. Mathematical model for Lamb wave propagation  

Because of the dispersion phenomenon in Lamb wave propagation, when Lamb waves travel 
across the structural features like boundaries, stringers, etc., reflections from these features 
produce phase shifts with respect to the original excitation signal. To take into account the 
dispersion effect of elastic waves, the dispersion physics of single mode wave propagation in 1D 
dispersive media can be modelled by Fourier analysis. When the incident wave ℎ(ݐ) is to be 
generated by a transducer and propagates along a waveguide over the distance ݔ, the arrival time 
of each frequency component will delay ݔ/ܿ(= ݔ݇ ⁄݂ߨ2 ), where ܿ is the phase velocity. After ℎ(ݐ) propagating over ݔ distance, the Fourier transform of ℎ(ݐ) (noted as ܪ(݂)) will be shifted in 
the phase by ݁ି()௫. The Fourier transform of received wave-packet which can be phase-shifted 
wave, is given by: 
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ܵ௫(݂) = ܥ න ℎ ൬ݐ − ൰݂ߨ2ݔ݇ ݁ିଶగ௧݀ݐ = ()௫ஶି݁(݂)ܪܥ
ିஶ , (1)

where ݇(݂)  denotes a wave number-frequency function or dispersion relation function. The 
coefficient ܥ is nearly independent to ݂ after the wave propagates along or is reflected by either 
damages or boundaries. In practical applications, there inevitably exists a multi-mode wave in the 
received signal, since the current methods such as double side excitation only can be used to 
strengthen one mode as well as weaken the other mode, but to eliminate completely one mode is 
impossible. Therefore, the resulting sensor signal in frequency domain can be written as a 
superposition of multiple mode wave-packets from multiple propagation paths, i.e.: 

ܵ(݂) =   ()௫ெି݁(݂)ܪܥ
ୀଵ

ே
ୀଵ , (2)

where ܰ is the total number of propagating wave paths. ݔ and ܥ are the propagation distance 
and the transmission coefficient of ݊ th wave path, respectively. ݇(݂) is the wave number-
frequency function of mode ݉. 

Although the dispersion relation is an obstacle in Lamb wave applications, it can also serve as 
a useful tool to discriminate one mode from the other modes. ܵ(݂) in Eq. (2) is presented as the 
linear superposition of components whose phases are the multiples of the wave number-frequency 
function ݇(݂).This relation between ܵ(݂) and ݇(݂) is very useful to identify ݇ (݂)-related 
wave-packets and to track their propagating distances ݔ . If ‘order’ is defined as ݇(݂)ݔ  
normalized by ݇(݂) , more accurate interpretation of received signal can be obtained by 
converting ܵ(݂) into so-called order spectrum. It is obvious that there is one-to-one relationship 
between the ‘order’ and the individual mode wave-packet. The order spectrum provides more 
conveniences for separate multimode overlapping wave-packets. 

3. Principle of order analysis for Lamb wave 

As what is mentioned above, if the order spectrum of some specific mode can be obtained, the 
wave-packets in the specific mode can be identified. It will improve the efficiency of propagating 
distance estimation, and simplify the computation process of pinpointing damage position. 
According to Eq. (1), the frequency domain signal ܵ(݂) can be regarded as a frequency-varying or 
phase-shifting waveform. The dispersion characteristic of sensor received signal depends on the 
dispersion curve function ݇(݂). If ݇(݂) is a linear function of ݂, ܵ(݂) is the Fourier transform of 
non-dispersed wave. If ݇(݂) is a quadratic or higher order function of ݂, ܵ(݂) represents the Fourier 
transform of dispersed wave. In order to describe the relationship between ܵ(݂) and ݇(݂), the 
dispersion signal ܵ(݂)  sampled constant in frequency discrete signal is converted into the 
equiangular signal sampled constant in angle from. From the mathematical point of view, this task 
could be solved by resampling and interpolation theory, which is explained in the example given in 
Fig. 1. The excited signal is assumed to be Gaussian modulated wave-packet presented as: 

ℎ(ݐ) = exp ቊ− ଶ2ݐଶߪ ቋ cos(2ߨ ݂ݐ), (3)

where ݂ =  60 kHz, ߪ =  2×105. Assuming that the wave number-frequency function is  ݇(݂) = 3݂)݂ߨ2 + 1) and that the dispersion wave after propagating along x distance presents as ܵ(݂) = ()௫ି݁(݂)ܪܥ ܥ)  = 1, ݇(݂) = 3݂)݂ߨ2 + ݔ ,(1 = 2 and ܪ(݂) is Fourier transform of ℎ(ݐ)). The assumed dispersion curve and the dispersive wave are shown in Fig. 1. 
Because the phase shift of ܵ(݂) has strict linear relationship with ݇(݂), which provides the 
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feasibility of calculating resamplings for ܵ(݂).  Taking ݇(݂)  as the reference phase i.e., 
referencing to the equal interval ordinate value in Fig. 1(a), the assumed dispersed signal in 
Fig. 1(b) is resampled at constant increments of the phase angle. The dispersed signal is 
transformed from sequence ܵ(݂), which is at constant frequency increments (Δ݂) in frequency 
domain into sequence ܵ(ߠ), which is at constant angle increments (Δߠ) in angle-domain. And 
then, the equiangular signal is interpolated. The interpolated signal is presented as the stationary 
wave in Fig. 2(a). The order spectrum (shown in Fig. 2(b)) is obtained by the FFT on the stationary 
wave. The order spectrum in Fig. 2(b) has a single frequency component at 2-order, which is 
independent of the wave number-frequency function ݇(݂). Since order analysis relates ܵ(݂) to 
the reference wave number-frequency function ݇(݂), the order is defined as the phase ݇ݔ(݂) 
normalized by ݇(݂). As long as the order is obtained, the dispersion wave-packet is identified and 
its propagating distance ݔ is determined. 

 
Fig. 1. Scheme of resampling: a) the resamplings determined from the assumed  

dispersion curve function ݇(݂), b) the assumed dispersion wave  
in frequency domain ܵ(݂) sampled using constant increments of angle 

For multimode Lamb wave, there are multiple modes propagating simultaneously in the 
structure, and each is independent with distinctly different dispersion characteristic presented as 
different wave number-frequency function. It can clearly be seen that the order spectrum only 
displays the orders related to the reference ݇(݂), the wave modes that have different dispersion 
properties will be excluded. Namely, for the multimode dispersion signal, just taking the 
number-frequency function of specified mode as the reference phase, the specified mode 
wave-packet can be identified in the obtained order spectrum and its propagating distance can be 
estimated without its flight time. The wave-packets related to other modes would appear as 
uncorrelated noise. That is, the order tracking technique can be used to identify the mode of Lamb 
wave. 

4. Algorithm of order tracking for Lamb wave 

On the basis of the theorem aforementioned, the order tracking algorithm for Lamb wave 
analysis is proposed and can be summarized as the flowchart in Fig. 3. 
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a) 

 
b) 

Fig. 2. The order analysis for the simulated signal: a) the equalized angle  
simulated reflection signal in frequency domain, b) order spectrum of reflection signal 

 
Fig. 3. Flowchart of order tracking algorithm for Lamb wave 

4.1. Determination of resampling points 

It has been clarified that the phase of ܵ(݂)  has the linear relationship with the wave 
number-frequency function ݇(݂). In this case, the order tracking technique is converted to process ܵ(݂) by taking ߶(݂) = ݈݇(݂) (Generally, ݈ is a constant not equal to 1 so as to avoid too high 
orders.) as the referenced phase. Although the precise ݇(݂) can be approximated by high-order 
polynomials, generally cubic polynomial can describe dominant dispersion phenomena fair 
enough. In this case, the referenced phase presents as: ߶(݂) = ݂ܽଷ + ܾ݂ଶ + ݂ܿ + ݀ = ݉Δߠ, (4)

where ܽ, ܾ, ܿ, ݀ are the cubic function fitting parameters for ݇(݂), ݉ = 1, 2,… is the index of 
resampling series, and Δߠ = ୫ୟ୶ݎ݁݀ݎ/ߨ2 ୫ୟ୶ݎ݁݀ݎ)   is the max order range). According to 
Eq. (4), the equiangular sampling frequencies can be determined from ߶(݂) . Because the 
referenced phase ߶(݂)  can be known from ݇(݂)  in advance, it is possible to calculate the 
corresponding frequencies for each constant angular increment, ݉Δߠ, and to solve Eq. (4) for 
given ݂as well. Setting݁ = ݀ − ݉Δߠ, and ݂ = ݕ − ܾ 3ܽ⁄ , then Eq. (4) becomes: ݕଷ + ݕ + ݍ = 0, (5)
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where  = (3ܽܿ − ܾଶ) 3ܽଶ⁄ ݍ , = (2ܾଷ − 9ܾܽܿ + 27ܽଶ݁) 27ܽଷ⁄ . The resolution for ݕ is: 

ଵݕ = ට− 2ݍ + √Δయ + ට− 2ݍ − √Δయ , ଶݕ = ଵݎ ට− 2ݍ + √Δయ + ଶݎ ට− 2ݍ − √Δయ ଷݕ, = −ଶ  ටݎ 2ݍ + √Δయ + ଵݎ ට− 2ݍ − √Δయ , (6)

where ݎଵ,ଶ = − ଵଶ ± √ଷଶ ݅, Δ = మସ + యଶ. 
If Δ > 0, the Eq. (5) has only one solution i.e. ݕଵ. 
If Δ = 0, the Eq. (5) has three same solutions i.e. ݕଵ = ଶݕ = ଷݕ = ඥ− ݍ 2⁄య . 
If Δ < 0, the Eq. (5) has three different solutions, i.e.  ݕଵ,ଶ,ଷ = 2 × యߙ√ cos ((߮ + (ߨ2݇ 3⁄ ) , ݇ =  0, 1, 2, where ߙ = ඥ− ଷ 27⁄ , cos߮ = − ݍ ⁄ݎ2 , sin߮ = √−Δ ⁄ݎ . The effective solution in ݕଵ,ଶ,ଷ is the first solution whose value is bigger than the 

last sampling time. So, the resampling frequency corresponding to the given equiangular 
increment can be determined as ݂ = ݕ − ܾ 3ܽ⁄ .  

4.2. Interpolation and determination of propagation distance  

Once the resampling frequencies ݂  for equiangular increment are determined, the 
corresponding frequency amplitudes can be calculated by interpolating ܵ(݂). The accuracy of the 
interpolation method determines the accuracy of the resampling amplitude. There are diverse 
interpolation methods that can be used, such as linear and cubic spline interpolations. In this paper, 
cubic spline interpolation is selected, which is to use a cubic curve to fit the four points (two raw 
frequency points before and two frequency points after the interpolation point). The formulation 
of the interpolation polynomial is given: ܵ(݂) = ܿ + ܿଵ݂ + ܿଶ݂ଶ + ܿଷ݂ଷ. (7)

Firstly, to calculate the coefficients ሼܿ, ܿଵ, ܿଶ, ܿଷሽ which are used to determine the interpolated ܵ(݂)  at any given ݂ , four sets of data points (i.e. pairs of ݂ିଵ,,ାଵ,ାଶ  and ܵିଵ,,ାଵ,ାଶ ) are 
substituted into Eq. (7) to generate four independent equations. These equations are solved to get 
the coefficients ሼܿሽ, which are then used to determine ܵ(݂) (the signal amplitude) at any given ݂ 
(the resample frequency). Once the amplitude at the any frequency is estimated, the equiangular 
interval signal would be obtained. Finally, Fourier transform is performed on the resampled ܵ(݂) 
to get its order spectrum. According to the order tracking theorem in Section 2, the “order” in the 
order spectrum of ܵ(݂) is defined as its phase normalized by the referenced phase ߶(݂). The 
same order is defined as the multiple of ߶(݂), i.e. the propagating distance ݔ =  By .݈/ݎ݁݀ݎ
taking the wave number function of specified mode as the reference phase, the order spectrum 
corresponding to the specified mode is obtained. The propagating distance of individual wave-
packet is one-to-one corresponding to the order in the obtained order spectrum. According to the 
propagating distances, the individual wave-packet from different propagating path can be 
identified.  

4.3. Extraction of order component 

It has been mentioned that the order spectrum only displays the orders related to the reference 
wave number function and that the wave mode having different dispersion properties would be 
excluded. Moreover, the wave-packets in the reference mode can be identified one by one in the 
order spectrum and their propagating distances can be estimated according to the one-to-one 
relationship between the wave-packet propagation distance and its corresponding order. In some 
applications, however, engineers do need some wave-packet waveform of particular order to 
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quantify the damage degree. Although short-term Fourier transform characterizes each individual 
transient and non-stationary harmonic (or order) in its spectrogram distribution, it is invalid to 
reconstruct target order/spectral components embedded in the analyzed signal. The Gabor order 
tracking technique is proposed with extremely good selectivity on the extracted wave-packet. The 
process to recover the wave-packet of specified order can be done with the Gabor transform and 
its inverse-the Gabor expansion. The Gabor expansion coefficients of ܵ(݂) are evaluated through 
the Gabor transform. The Gabor expansion of ܵ(݂) can be expressed as: 

ܵ(݂) =   ܿ, ݃,(݂)ିଵ
ୀ

ூିଵ
ୀ , (8)

where ݅ , ݆ ܫ , ܬ , ∈ ܼ , ܿ,  denote the Gabor expansion coefficient and ݃,(݂)  is the shift and 
modulated form of the Gabor elementary function. ܫ denotes the time sampling number, ܬ denotes 
the frequency sampling number or frequency bins. Gabor expansion coefficients, ܿ,  are 
expressed be using the Gabor transform, i.e.: 

ܿ, = න ܵ(݂) ݃,∗ (݂)݂݀ஶ
ିஶ , (9)

where ݃,∗ (݂) is the corresponding dual function of ݃,(݂). The Gabor expansion coefficients 
associated with the Gabor transform are flexibly applied to reconstruct the order components of 
interest. The computation employs masking strategies. The order components of interest that are 
covered by designated masks can is singled out and reconstructed from the multi-component 
reflection. The Gabor spectrogram of ܵ(݂) is generated by mapping the Gabor coefficient array 
into a 2D image of Gabor spectrogram distribution. The Gabor spectrogram can characterize the 
energy-intensive components of ܵ(݂) in certain frequencies that are relevant to the referenced ݈݇(݂) . A mask operation is performed on the initial Gabor coefficient array ܿ,  using the 
referenced ݈݇(݂) and its related order. Then, a mask array ݓ, is generated with limited binary 
values, preserving ܿ,  when ݓ, =  1 and removing ܿ,  when ݓ, = 0 . In this case, we can 
achieve a frequency domain wave-packet whose Gabor coefficients are exactly inside area defined 
by the mask function ݓ,. The Gabor coefficients are corrected by ݓ,, and then a modified Gabor 
coefficient array ܿ̃, is generated, shown as: 

ܿ̃, = ൜ܿ,,    ݓ, = ,ݓ       ,1,0 = 0. (10)

The frequency domain wave-packet corresponding to the order component of interest is 
reconstructed from the modified coefficient array ܿ̃,: 

ܵ௫௧(݂) =   ܿ̃, ݃,(݂)ିଵ
ୀ

ூିଵ
ୀ . (11)

5. Application in processing multimode overlapping wave 

In this section, the performance of the proposed approach in processing multimode 
overlapping wave is investigated with a numerical simulation. The software Disperse 
(Non-destructive Testing Laboratory, Dept. of Mechanical Engineering, Imperial College, 
London, UK) [22] is used to generated the wave number-frequency function for Lamb waves in a 
1-mm thick aluminium plate and these are shown in Fig. 4. The Gaussian modulated wave-packet 
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in Eq. (3) with centre frequency ݂ = 150 kHz, time width parameter ߪ = 2×105 is assumed to be 
the incident wave, which is shown in Fig. 5(a). Its frequency spectrum is shown in Fig. 5(b), where 
its bandwidth range extends about ሾ ୫݂୧୬, ୫݂ୟ୶ሿ = [80 kHz, 220 kHz]. 

 
Fig. 4. The dispersion curve of wave number-frequency 

 
a) 

 
b) 

Fig. 5. The incident signal: a) the incident signal in time domain,  
b) the incident signal in frequency domain 

According to the dispersion curve in Fig. 3, there exist two modes of the fundamental 
symmetric and anti-symmetric modes (S0 and A0) in frequency band [80 kHz, 220 kHz]. The 
group velocity of A0 at centre frequency 150 kHz is 2.069 m/ms, and that of S0 is 2.701 m/ms. 
The frequency range of received wave can be changed because of its dispersion nature. So, the 
cubic polynomials are used to fit the dispersion curves of A0 and S0 mode in [50 kHz, 250 kHz]. 
The number wave functions calculated are as follows: ݇(݂) = 1.028݂ଷ − 1.1438݂ଶ + 0.7763݂ + 0.0359, ݇ௌ(݂) = 0.0031݂ଷ − 0.0002݂ଶ + 0.1839݂ − 2 × 10ି, (12)

where ݇(݂) is the wave number-frequency function of mode A0, and ݇(݂) is that of mode S0. 
The wave number functions of both S0 and A0 modes can be estimated with theoretical calculation 
combined with experiment verification in practical application. Based on Eq. (12), an artificial 
signal is generated by Eq. (13) with the propagating distance of A0 mode wave-packet  ݔଵ = 300 mm, that of S0 mode wave-packet ݔଶ = 400 mm. And the reflection coefficients ܥ are 
set as “1”. The numerical overlapped and multi-mode signal (ݐ)ݏ can be described by this model: 
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(ݐ)ݏ = (ݐ)ݏ + (ݐ)ݏ = න ಲ()௫భ݁ଶగ௧݂݀ାஶି݁(݂)ܪ
ିஶ + න ೞ()௫మ݁ଶగ௧݂݀ାஶି݁(݂)ܪ

ିஶ . (13)

The sampling frequency and sampling period for the synthetic signal (ݐ)ݏ is 1 MHz and 400 us 
respectively. The simulation result is shown in Fig. 6(a). The two wave packets are not resolvable 
in the original time trace. The frequency spectrum of (ݐ)ݏ is shown in Fig. 6(b), where too many 
supernumerary frequencies make the identification of mode wave more difficult in frequency 
domain. Because of the dispersion and multi-mode overlapping, the shape of (ݐ)ݏ frequency 
spectrum has been changed greatly, compared with that of incident signal in Fig. 5(b). It is almost 
impossible to identify which one is mode A0/S0 wave-packet, because they are completely 
overlapping in time and frequency domain. Without prior knowledge, it’s more impossible to 
calculate the propagation distance of each wave packet due to multiple and interference of 
overlapping time arrivals. 

 
a) 

 
b) 

Fig. 6. The numerical simulated signal: a) the numerical simulated signal,  
b) the frequency spectrum of numerical simulated signal 

The order tracking method is performed on the signal in Fig. 6(b) to identify and separate the 
overlapped multi-mode wave packets according to the steps in Fig. 3. In order to identify the A0 
mode wave-packet, the wave number function ߠ(݂) = 20݇(݂) is evaluated to be a referenced 
phase. The role of multiplying factor 20 is to make the order of A0 mode not too high. Considering 
the length of analysed signal, the maximum propagating distance of A0 mode is about 827.6 mm. 
The maximum order of A0 mode is about 42. Its corresponding resampling interval is  Δߠ = 0.1496. It should be noted that at a smaller interval Δߠ, the more accurate amplitude of 
resampled wave occurs, and a more accurate order spectrum is obtained, however, that a smaller 
resampling interval requires more computer resources for storing a larger quantity of raw data. 
After resampling and interpolation, the order power spectrum obtained is shown in Fig. 7, where 
there is a clear peak in the order spectrum at 15th order. 
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Fig. 7. Order spectrum of the numerical simulated signal 

The 15th order in Fig. 7 means that the frequency domain phase of A0 mode wave is 15 times 
of ߠ(݂). Thus, the propagation distance of A0 mode wave is 20×15 mm, which completely equals 
the A0 mode propagation distance pre-set in the simulation. In the same way, if the wave number 
function of S0 mode is taken as the referenced phase, its propagation distance can be estimated 
from its corresponding order spectrum. Therefore, the individual mode can be identified since at 
one time the order spectrum only displays one kind of mode wave correlated to the selected wave 
number function. 

It is noteworthy that the stronger the dispersion is, the more it can show the superiority of the 
proposed approach. As we all know, most conventional methods identify the wave-packets 
according to their arrival times, so the more severe dispersion phenomenon always bring more 
negative effects for the identification. However, the proposed approach just takes advantage of the 
dispersion nature to calculate the propagation distance, which would result in higher accurateness 
in structure damage location than the conventional methods. In the real-situation, when the 
theoretical wave number-frequency function is more closely matched to its real value, the 
performance of the proposed approach becomes more superior, as the wave number-frequency 
function is more representative of the phase change trend derived from dispersive signal. 

Another significant advantage of the proposed method is to extract specified wave packet for 
further quantitative damage assessment. For the damage detection in SHM, the amplitude or shape 
of wave-packet reflected by damage has the close relation to damage severity. Such as for the 
delamination of composite structure, the energy of reflected wave-packet is as a function of the 
normalized length of the delaminated. If the wave packet reflected by damage can be extracted 
completely, it is much beneficial to quantitatively evaluate damage. Fig. 8 depicts the result of the 
Gabor expansion-based order tracking, where computed Gabor expansion coefficients of 15th 
order is characterised in the Gabor spectrogram. The colour in the Gabor spectrogram indicated 
the magnitude of the Gabor coefficients.  

 
Fig. 8. Gabor coefficient spectrogram of the numerical simulated signal 
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The order component in Fig. 8 represents the reflection related to the reference phase ݈݇(݂), 
i.e. the mode A0 wave packet. We limit ݓ, to binary values (either one or zero) which behaves 
as a mask, preserving ܿ, when ݓ, = 1 and removing ܿ, when ݓ, = 0. The inverse Gabor 
transform is performed using only Gabor coefficients which are exactly inside area defined by the 
mask function ݓ,. While the modified Gabor coefficients are obtained, the Gabor expansion 
equation is applied to reconstruct the waveforms of 15th order. The convolution result of the 
reconstructed order component and incident signal yields the time history of A0 mode wave-
packet. Fig. 9 shows that the reconstructed signal superimposed with the original A0 mode wave 
packet. 

The match between the reconstructed and original wave packet is very good except the 
amplitude attenuation and the tail of the wave packet. To quantify this similarity, a quantity called 
damage index (DI) is defined and calculated as: 

ݕݐ݅ݎ݈ܽ݅݉݅ܵ = 1 − ඨ ሾݏ(ݐ) − ᇱݏ ∑ሿଶ(ݐ) ᇱݏ ଶ(ݐ) , (14)

where ݏᇱ  and ݏ(ݐ) denote the reconstructed A0 mode wave and the original A0 mode packet. 
This method compares the amplitude of two sets of data. The calculated similarity is 85.78 %, 
which denotes the strong similarity of the two wave-packets. It is noteworthy that longer 
propagation distance will improve the resolution in Gabor spectrogram and provide better mode 
wave-packet separation, because the difference between the dispersion characteristics of two 
modes gets more apparent. The reconstructed wave-packet is much closer to the original wave 
packet, especially if propagation distance is large enough. 

 
Fig. 9. Comparison between the reconstructed wave and the original A0 mode wave  

6. Application in processing strong dispersive signal  

Because the proposed method is based on the dispersion nature of Lamb wave, the incident 
signal would not be constrained on the narrowband frequency to avoid dispersion effects. In order 
to verify the proposed algorithm’s potential capabilities in processing strong dispersive signal, the 
FEM experiment is conducted with an aluminium beam measuring L2000×W20×TH1 mm. The 
Lamb wave is generated at left beam end and collected at the distance 50 mm away from the 
exciting position. The damage measuring L2×W8×TH1 mm is introduced at distance 800 mm 
away from the left end. The beam is finely meshed using eight-note 3D brick elements with eight 
layers of elements in the beam thickness. The dynamic simulation is conducted using 
ABAQUES/EXPLICIT. The propagation paths of the Lamb wave are schematically depicted in 
Fig. 10. 

To demonstrate this advantage, in the FEM simulation a broadband frequency signal is chosen 
as the incident signal, which is a Gaussian pulse function in Eq. (3) with attenuation coefficient  ߪ = 2×105 at central frequency of 60 kHz. The group velocity of S0 at centre frequency 60 kHz 
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is 5.437 m/ms. The Lamb wave signal captured is shown in Fig. 11(a), where the serious 
dispersion corrupts the signal and the reflections are smeared together. It is difficult to identify 
how many reflected wave-packets in the time waveform, not to mention to identify which mode 
each wave-packet belongs to. The frequency transform spectrum of received signal is shown in 
Fig. 11(b), from which it is clear the frequency domain signal is frequency-varying non-stationary 
signal. Since the time waveform of received signal is known, its frequency spectrum covers the 
frequency range [0-175 kHz].  

 
Fig. 10. Schematic illustration of propagation paths of Lamb waves in the damaged beam 

 
a) 

 
b) 

Fig. 11. The received signal: a) the received signal in time domain,  
b) the received signal in frequency domain 

Therefore, the dispersion curve in Fig. 3 between the range [0-175 kHz] is chosen as the 
reference phase. Two modes S0 and A0 mode should be considered in this frequency range. But 
the A0 mode usually presents higher attenuation during propagation because of the dominant 
out-of-plane movement of particles in the mode shape, which leaks partial energy to surrounding 
medium. Furthermore, A0 mode provides weaker reflections from the damage and boundary and 
insensitivity to damage in the structural thickness. Therefore, in this FEM simulation only the S0 
mode needs to be considered. Performing the proposed method on the received signal, the 
reference phase ߶(݂) = ݈݇  ௌ (݂) (݈ = 250 mm is used to avoid the high order, ݇  ௌ (݂) is wave 
number –frequency function of S0 mode in range [0-175 kHz]). The frequency domain signal is 



2344. A NOVEL METHOD TO ANALYSIS STRONG DISPERSIVE OVERLAPPING LAMB-WAVE SIGNATURES.  
HUI LI, XIAOFENG LIU, LIN BO 

 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. FEB 2017, VOL. 19, ISSUE 1. ISSN 1392-8716 653 

resampled and interpolated, and then its order spectrum obtained is shown in Fig. 12. 
Fig. 12 provides three order peaks fairly separated and identifiable. The orders in Fig. 12 are 

identified as 0.206th, 0.6193th, 15.77th orders corresponding to the propagating distance 
250×0.206 = 51.5 mm, 1548 mm, 3942.5 mm. Considering the geometry of the beam, the 
reflections sequentially are direct arrived wave-packet, the reflection from damage and that from 
the right end. It is obvious that the propagation distances estimated agree well with the theoretic 
values. Therefore, even in the case of strong dispersion the damage position can be identified 
precisely. 

 
Fig. 12. The order spectrum of received signal 

 
a) 

 
b) 

 
c) 

 
d) 

Fig. 13. TRFs of received signal: a) STFT, b) WVD, c) Chirplet decomposition, d) S transform 

In order to verify the effectiveness of the proposed method, Fig. 13 provides the TFRs of the 
received signal. From the STFT and WVD spectrogram (Fig. 13(a) and (b)), it is difficult to 
identify the reflected wavepackets from the boundary and the damage owing to the limited 
time-frequency resolution and the cross-terms. Because of the strong dispersion of guided wave, 
the wavepackes are overlapped together and cannot been separated from each other. In Fig. 13(c), 
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the over decomposition of Chirplet transform causes the serious distortion of wavepackets. In the 
S transform of Fig. 13(d), it is easy to recognize the wavepackets, but the time centers of 
wavepackets deviate away from the actual propagation time. In Table 1, the estimated distances 
with the proposed method are tabulated and compared with those obtained with other conventional 
methods. It is verified that the propagating distances estimated with the proposed method agree 
with the theoretical values. But the estimated values with the conventional methods completely 
cannot present the practical propagation distances.  

Table 1. Comparisons of estimated distances between the proposed method and conventional ones 
Method  Directed wavepacket 

(mm) 
Damage wavepacket 

(mm) 
Boundary wavepacket 

(mm) 
Theoretical distance 50 1550 3950 
Amplitude Enevlope 54.5 1844.3 4281.2 

S transform 282.6 1944.9 4338.8 
Chirplet decomposition 326.2 2120.5 4512.8 

Proposed method 51.5 1548 3942.5 

If mode conversion happens in the reflection, the frequency domain phase would be in an 
intricate shape and its shift related to dispersion curve would need to be recalculated according to 
the distance propagating as A0 mode and the distance propagating as S0. It is assumed that the 
mode S0 wave is converted into A0 mode after propagating over distance ݔଵ when it interacts with 
damage, and then it continues to propagate over distance ݔଶ . Consequently, the resulting 
wave-packet reflected by damage ܵ௫(ݐ)  can be regarded as a time-varying product of 
shape-shifted waveform, i.e.: ܵ௫(݂) = ೄ()௫భି݁(݂)ܪ்ܥ ⋅ ,ோ݁ିಲ()௫మܥ (15)

where ்ܥ and ܥோ represent the transmission and reflection coefficient respectively under the same 
assumption that the amplitude change of wave propagation is of insignificant. From Eq. (15), it 
can be seen that both S0 and A0 mode dispersion function are not suitable to be the reference 
phase as the linear relationship between the shift phase of ܵ௫(݂) and any of wave-number function 
dose not exist. In this case, it seems that the proposed method lost its effectiveness. One solution 
is to use some priori knowledge about propagating distances ݔଵ or ݔଶ. Supposing ݔଶ is the linear 
function of ݔଵ, which is expressed as ݔଶ = ଵݔߙ + (݂)the referenced phase: ܵ௫ ,ߚ = ఉಲ()ି݁(݂)ܪோܥ்ܥ ⋅ ݁ିሾೄ()ାఈಲ()௫భሿ. (16)

According to Eq. (17), it is clear that the propagation ݔଵ  can be calculated by taking  ߶(݂) = ݇௦(݂) +   .(݂) as reference phase with the proposed method݇ߙ
It should be noted that the noises in the order spectrum (shown in Fig. 12) is caused by the 

operation of resampling and interpolation. In practical application, there are some factors that 
influence the effectiveness of the proposed method including the dispersion strength and the 
accurateness of dispersion curve, the resampling rate and interpolation algorithm, as well as the 
mode conversion in propagation and the frequency band of incident signal. The calculation of 
wave number-frequency function is a key point for the application of the proposed algorithm, 
because the reference phase must be derived from it. In the practical application, the wave 
number�frequency function obtained by the theoretical calculation can be different to that of actual 
structure tested. Therefore, the wave number function from theoretical calculation generally needs 
to be corrected by experimental measurements. 

7. Conclusions 

The dispersive and multimode nature of Lamb wave causes some difficulties in the 
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interpretation of signals produced by damage structures. When a Lamb wave interacts with 
two closely-spaced discontinuities, the echo signal will be useless for processing. To resolve 
this problem, a specific signal processing scheme is proposed based on order tracking related 
to dispersion curve. In the proposed scheme, the unavoidable dispersion characteristic of 
Lamb waves was employed, but not evaded. The numerical and FEM simulation results 
demonstrate that the proposed method works with several merits for damage identification in 
SHM are summarized: (1) Dispersion presents no real obstacle to the high resolution of 
damage pinpointing in structures. The technique can provide better propagating distance of 
incident wave, without time of arrival and mode velocity. (2) Constraints on the choice of 
frequency range, where the dispersion effects are small, are relaxed. Using different 
frequency ranges may enhance the damage of various types. (3) The reflection wave packet 
from damage can be extracted for further analysis of damage degree. 

One the other hand, it needs to be noted that the proposed scheme is limited by some 
drawbacks in practical applications. For instance, the performance strongly relies on the 
preciseness of dispersion curve and dispersion strength. But for the narrow-band incident 
signal, the phenomenon in its propagation is not very strong, even its dispersion is weak 
enough to be neglected. And its detection accurateness is influenced by resampling frequency 
and interpolation. In the ongoing studies, the proposed algorithm is being validated 
experimentally. Future work will be carried out with the aim of overcoming its drawbacks 
mentioned above. The refinement of the technique will bring much beneficial for precise 
location of damage and quantitative describe of damage severity. 
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