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Abstract. This paper focuses on the fast highly approximate modal analysis and its applications 
in topology optimization design based on the triangle finite element. The proposed modal analysis 
methods are based on the initialized pseudo-random number vectors with the Rayleigh-Ritz 
analysis, which is very simple to implement and can easily be extended for structural dynamic 
topology optimization design. The numerical examples show that the proposed method is very 
effective with small computational cost and high efficiency which can effectively reduce huge 
computational cost without affecting the outcome of the optimization process. Meanwhile, the 
introduction of pseudo-random approximate modal analysis leads to the randomness and 
sub-optimal multiplicity of topology optimization results. Numerical examples show that the 
approximate pseudo-random modal analysis could also enlarge the search ability of the Optimality 
Criterion Method (OCM). 
Keywords: modal analysis, topology optimization design, pseudo-random number vector, 
Rayleigh-Ritz analysis. 

1. Introduction 

In many large and complex structural systems, linear eigenvalue or modal analysis is important 
and appropriate for predicting modal response. However, in order to obtain the dynamic 
characteristic of huge structure, we usually directly calculate the Eigen-problem by QR algorithm 
or subspace iteration method [1]. Therefore, the computational cost may be too time  
consuming [2].  

Since its introduction in the late 80 s, topology optimization has grown into a pervasive and 
versatile tool for designing structures for a wide variety of applications [3-8], which exhibits great 
advantages than the other material distribution design approach when a new design or material 
layout is sought for. Amir [9] pointed out, the solution is iterative and consists of repeated analyses 
followed by redesign steps in structural optimization. The high computational cost involved in 
repeated analyses of large-scale problems is one of the main obstacles in the solution process. The 
main drawback of topology optimization procedures is the added computational cost related to the 
multiple finite element analyses that should be performed within every design cycle. In fact, the 
modal or dynamic analysis is one of the main calculation work in structural topology optimization 
design especially for large-scale structure optimization design problem. Thus, how to greatly 
reduce the computational cost of modal analysis for structural topology optimization design 
becomes an interesting and important problem. 

Presently, the modal or dynamic analysis for large-scale structure optimization design problem 
are rarely studied in the corresponding modal analysis or topology optimization design literature. 
The computational burden may be diminished by techniques that avoid the costly solution of 
multiple linear systems [9], which is just extended into robust topology optimization procedures 
for static analysis by Combined Approximations (CA) approach. So, the effective modal analysis 
techniques into topology optimization procedures is one of the main concern of this article, the 
other is the simplification and flexible multiplicity solutions of topology optimization. The aims 
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are to approximate the eigensolution with a good level of precision and to reduce the global CPU 
time especially for dynamic analysis of large-scale structures and its applications in topology 
optimization design. Thus, the proposed analysis method could be a unified and efficient modal 
analysis method in huge structural analysis or topology optimization design.  

As for the large structural modal analysis problem, the computational effort is significantly 
reduced by the proposed approximate modal analysis approach. The modal analysis procedure is 
easy to implement and could be integrated into an optimization process to improve its 
computational efficiency. Moreover, the introduction of pseudo-random number approximate 
dynamic analysis leads to the randomness and sub-optimal multiplicity of optimization results, 
which could provide several sub-optimal topology configurations for engineering applications. 
Section 2 briefly introduces the Eigen-equations for dynamic analysis problem. Section 3 
describes the proposed modal analysis method with its steps, and simply test it by a modal analysis 
examples. Section 4 gives out the approximate formula to evaluate the possible saving of 
computational cost for the proposed modal analysis method. Section 5 introduces in detail the 
optimization modeling and optimization algorithm for structural topology optimization design 
based on the triangle finite element. Section 6 discusses the efficiency of the proposed method in 
terms of the precision and the CPU time by four numerical examples. Section 7 summarizes our 
conclusions.  

2. Eigen-equation of analytical structure  

2.1. Eigen-problem of structure 

Firstly, the eigen-problem of linear analytical structure is given out in this section. 
In finite element analysis (FEA), the natural vibration of undamped structure with ݉ DOF 

(degrees of freedom) leads to a general algebraic Eigen-problem: નશ = પશ, (1)ߣ

where ન , પ   and શߣ ,  are the stiffness matrix, the mass matrix, the ݅ th eigenvalue and ݅ th 
normalized eigenvector of the linear structure, respectively.  

Here, we didn’t directly solve the Eq. (1), justly utilize the whole assembly stiffness and mass 
matrix ન and પ in modal analysis procedure.  

3. The new structural modal analysis method based on pseudo random number vector for 
construction of initial basis vector 

Usually, repeated analysis, or reanalysis, is needed in various problems of structural analysis, 
design and optimization. Reanalysis methods are intended to analyze efficiently structures that are 
modified due to various changes in their properties [10]. However, reanalysis methods are not 
easily extended into topology optimization design because the finite element mesh or DOF of the 
optimized structure is changed within every design cycle. Thus, we proposed a very simple modal 
analysis technique to calculate the approximate eigenvalues of the optimized structure. The 
technique consists of introducing the pseudo random number vectors to construct orthogonal basis 
vectors. Then the solution will converge to the highly approximate lower-order eigenvalues for 
the optimized structure by using Rayleigh-Ritz analysis. Jia [12] pointed out, there are always Ritz 
values that converges to the eigenvalues of the approximate problem. Obviously, the proposed 
modal analysis in topology optimization design become so easy to implement. 

The proposed modal analysis method is divided into two simple steps as follow: 
Step 1: pseudorandom number vector generation for initial orthogonal basis vector. 
In first step, the proposed modal analysis method is to determine zero-order eigenvector by 

pseudorandom number vector generation, the equation is expressed as: 
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શ(݆) = ݅)     ,݀݊ܽݎ = 1,2, … ,  ≪ ݉, ݆ = 1,2, … , ݉), (2)

where શ(݆) is the ݆ element of the ݅th initial eigenvector for analytical structure;  is denoted as 
the number of initial basis vectors, ݉ is denoted as the number of FE (Finite Element) DOF for 
the structure; ݀݊ܽݎ is the pseudorandom number generator, which means every component of the 
original eigenvector શ is a random number obey uniform distribution or normal distribution. By 
using this technique, we can easily construct the initial orthogonal basis vector for the following 
Rayleigh-Ritz analysis. 

Step 2: Rayleigh-Ritz analysis. 
In second step, we use Ritz procedure to evaluate the final and highly approximate eigen-

matrixes (, શ) for the computed structure. 
(1) Execute the inverse iteration as follow: નશ = શ. (3)ۻ

(2) Calculate the projection based on the basis vectors શ from Eq. (3): ન = (શ)ఁનશ, (4a)પ = (શ)ఁપશ. (4b)

(3) Implement the Rayleigh-Ritz analysis: ન = પષ. (5)

(4) The final and highly approximate eigenvalues or eigenvectors are evaluated by:  = ષ, (6a)

and: શ = શ, (6b)

where, શ are only the several lower-order eigenvectors matrix for calculated structure. Usually, 
because we just need the several lower-order eigenvalues and eigenvectors by dynamic analysis 
for general engineering applications. As shown in the Section 3 by from Eq. (1) to Eq. (6), it is 
not an iteration process, and is finished by one computation for one optimization iteration step. 
Also, obviously, the proposed modal analysis procedure is very simple to implement and to be 
integrated into an optimization process to improve its computation efficiency. 

In the following, by considering a transmission tower structure with 508 beam elements, 
shown in Fig. 1.  

As assumed that the relative error of approximate eigenvalue calculated by the proposed modal 
analysis method (PMAM for short) compared to the exact eigenvalue by the OR algorithm is 
smaller than 0.1 or 10 percent, then the approximate eigenvalue is adequately approximate to the 
exact eigenvalue, the results for frequencies comparisons of the transmission tower structure by 
the two approaches are shown in Table 1. 

As shown in Table 1, the average computational time of exact calculation by using the direct 
analysis method is 0.1429 seconds; and the average computational time by the proposed modal 
analysis method is 0.007512 seconds. Thus, the computational cost of modal analysis can be 
reduced by at least 94.74 % while maintaining sufficient accuracy. 

The approximate modal analysis was executed one hundred times calculations for the same 
structure (As similar to the Subspace iteration method [1], we choose several original vectors, and 
then we will obtain the several lower-order eigenvalues by the proposed modal analysis method. 
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Here, the number of the original basis vector is usually equal to six or eight). Although the 
approximate solution is pseudorandom, we found the lower-order approximate eigenvalues 
converged to the accurate eigenvalues in this numerical experiment with great probability  
(nearly 90 percentage), which is shown in Fig. 2. 

Table 1. The comparisons between the approximate frequencies and the exact frequencies 
Frequency (Hz) Exact (calculated 

by QR) 
Approximate (calculated 

by PMAM) Relative error 

1 0.8197 0.8514 0.0387 
2 0.9080 0.9212 0.0145 
3 0.9739 1.0223 0.0497 
4 1.3038 1.3593 0.0426 
5 1.3560 1.4379 0.0604 
6 2.4722 4.6935 0.8985 

The actual computational cost 0.1429 s 0.007512 s  
 

 
Fig. 1. The transmission tower structure 

 

 
Fig. 2. The convergence times for  

different number of accurate eigenvalues 

4. Discussions about the general saving of computational cost for the proposed approximate 
modal analysis method 

Executing by Fortran or Matlab code, the whole running time of the approximate modal 
analysis was measured relatively to the whole running time of standard FE direct solve in modal 
analysis or topology optimization design with various FE mesh sizes. In the approximate analysis 
schemes, the major calculation cost is due to the computation of inverse iteration in Eq. (3). 
Denoting ݊ as the number of degrees of freedom for the analyzed structure, ܾ is the number of the 
needed approximate eigenvalues (Assuming that the value of b is usually less than four); for the 
general real case, the overall cost is roughly 10݊ଷ operations if only the eigenvalues are needed 
by the direct dynamic analysis method for every design cycle, and the computational cost of 
approximate modal analysis is proportional to ܾ×݊ଶ operations [13-16]. Thus, the approximate 
saving of computational cost ܵܣ for the proposed modal analysis method is generally expressed 
as: 

ܵܣ ≈ ቆ1 − (ܾ×݊ଶ)൫ܾ×(10× ݊ଷ ݊⁄ )൯ቇ ×100 % . (7)

Fairly rough outcome by approximate dynamic analysis will be achieved for the computational 
cost of around 10 % compared to a direct solve, which is based on the simple calculation of Eq. (7). 
The accurate saving of the approximate modal analysis method will be examined in several 
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topology optimization design experiments.  

5. The modeling and optimization algorithm for structural topology optimization design 
based on the optimality criterion method 

5.1. The mathematical model for structural topology optimization design  

By considering the displacement constraint and frequency constraint, the mathematical model 
of topology optimization design problem can be formulated as: 

min (ݔ)ܿ   =  அߩ
ୀଵ .,sݔݒ t.    ܷ   − ܷ ≤ 0,     ݇ = 1,2, … , ൫                  , ݂ − ݂ ൯ ≥ 0,      ݆ = 1,2, … , ݔ           ,݉ ≤ ݔ ≤ ݔ     ,ݔ  ∈ (0.001,1),    ݅ = 1,2, … , ܰ,

 (8)

where ܿ(ݔ) is the objective function (to minimize the structure mass), ߩ and ݒ are the element 
density and volume, respectively; ܷ , ܷ are the actual displacement and the upper bound of the 
constrained displacement for the appointed DOF, respectively; ݂  and ݂  are the actual ݆ th 
frequency and the lower bound of the ݆th constrained frequency for the optimized structure; ݔ is 
the topology design variable, ݔ and ݔ are the lower bound and upper bound of the topology 
design variable ݔ, respectively.  

5.2. The iteration formula for topology design variable based on the displacement sensitivity 
analysis 

By using Eq. (8), we could construct the approximate Lagrange function: 

,ܠ)ᇱܮ (ߤ =  ேݒߩ
ୀଵ ݔ + ߤ (ܷ − ܷ)

ୀଵ , (9)

where ߤ is the Lagrange multiplier.  
By derivation of both sides of Eq. (9) with respect to the design variable ݔ, and making the 

derivatives is equal to zero, we can obtain: ߲ܠ)′ܮ, ݔ߲(ߤ = ݒߩ + ߤ ,    ߲ܷ߲ݔ = 0,     ݅ = 1,2, … , ܰ,     ݇ = 1, 2, … , (10) .

Assuming: 

Φ = − ൭ ݒߩߤ


ୀଵ ൱ ൭ ߲ܷ߲ݔ


ୀଵ ൱ = 1,    (݅ = 1,2, … , ܰ). (11)

We can obtain the iteration formula as follow: ݔ(ାଵ) = ൫ݔΦఎ൯(), (12)

where ߟ is the relaxation factor, and ݉ is denoted as iteration step. Usually, ߲ܷ ⁄ݔ߲  can be 
calculated by virtual load displacement sensitivity analysis method.  
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By considering the single displacement constraint condition, and we take the derivatives of the 
both sides of the FE equilibrium equation with respect to the design variable ݔ. And assuming 
that the right-hand side is independent to the design variable ݔ, we can obtain: 

ન ݔ߲ܷ߲ + ܷ ݔ۹߲߲ = 0. (13)

By multiplying ݔ for both sides of Eq. (13), and summing all the equations, we can obtain: 

 ேݔ
ୀଵ ન ݔ߲ܷ߲ +  ேݔ

ୀଵ ܷ ݔ۹߲߲ = 0. (14)

In general case for 2D, the element stiffness matrix ન could be expressed as the following 
form: ન = (15) ,ܣݔ

where  is only related to the element shape and material. Thus, we can obtain the following 
equations: ߲ન߲ݔ = નݔ ,    ேݔ

ୀଵ
∂ન߲ݔ = નݔ. (16)

By substituting the Eq. (16) into Eq. (14), and we take the displacement component 
corresponding to the constrained displacement for the appointed DOF, we can obtain: 

 ேݔ
ୀଵ

߲ܷ߲ݔ = −ܷ. (17)

By multiplying ݔ for both sides of Eq. (9) and considering the Eq. (17), and summing the ܰ 
equations; meanwhile, when it is the optimal solution, we have ܷ = ܷ, Thus, as for plane elastic 
plate problem, the Lagrange multiplier ߤ can be obtained by the following equation: 

ߤ = (18) .(ܷ)(ܠ)ܿ

Similarly, for the bending thin plate problem, the Lagrange multiplier ߤ can be obtained by 
the following equation: 

ߤ = (19) .(ܷ×3)(ܠ)ܿ

5.3. The iteration formula for the topology design variable based on the frequency sensitivity 
analysis 

Assuming that the arbitrary order eigenvector શ௦ is corresponded to the eigenvalue ߣ௦, then 
the structural eigen-problem corresponding to the free vibration can be expressed as: નશ௦ = ௦પશ௦, (20)ߣ
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where ન  and પ  are the structural stiffness matrix and mass matrix, respectively. They are 
assembled by element stiffness and element mass matrix as follow: 

ન =  ન,ே
ୀଵ    પ =  પே

ୀଵ , (21)

where ન and પ are denoted as the element stiffness matrix and mass matrix, respectively. 
By calculating the differential of the both sides for Eq. (20) with respect to the design variable ݔ, we can have: નશ, − ௦પશ,ߣ = પશܩ + ௦પ, શߣ − ન,શ,ܩ = ݔ߲ ௦ߣ߲ ,  (22)

where subscript , ݅ is denoted as the partial differential with respect to the design variable ݔ.  
By multiplying શ௦ఁ for both sides of Eq. (22), and making the left side is equal to zero, we can 

obtain: 

ܩ = ൣશ௦ఁ൫ન, − ௦પ,൯શ௦൧(શ௦ఁપશ௦)ߣ . (23)

By considering the single frequency constraint problem, the frequency constraint is usually 
described as: 

௦݂ ≥ ݂௦̅, (24)

where ݂௦̅ is the lower bound of the constrained frequency.  
Here, the Lagrange function can be approximately expressed as: ܾܾ = ௦݂ − ݂௦̅,ܮ൫ܠ, ൯ߤ =  ேݒߩ

ୀଵ ݔ − ×ܾܾ. (25)ߤ

By utilizing the Kuhn-Tucker condition with some approximation and simplifications, the 
iteration formula based on frequency sensitivity analysis can also expressed as [10]: 

(ାଵ)ݔ = ቆቆ ݂௦̅ඥ ௦݂ቇ × ቈ∑ ܹܩேୀଵ∑ ଶேୀଵܩ × ൬ ܹ൰ఎቇܩ , (26)ݔ×

where ܹ = ݒߩ  is denoted as element mass parameter, and ߤ  is the Lagrange multiplier, ߟ ∈ (0.001, 0.4), ܽ ∈ (0.6, 1.6). Generally, we set the parameter ߟ and ܽ to be the maximal value 
in the numerical examples. 

5.4. The continuum topology optimization design algorithm based on ICM (Independent, 
Continuous and Mapping) or SIMP method [17, 18 and 19] 

Now, we utilize the hybrid ICM and SIMP method to solve the problem in Eq. (8). There exist 
three filter function in ICM method, which are expressed as: 
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݂(ݔ) = ,    ܽ(ݔ) = 2,݂(ݔ) = (ݔ)ೖ,   ݂(ݔ) = ,    ܽ(ݔ) = ܽ = 5, (27)

where ݂(ݔ), ݂(ݔ) and ݂(ݔ) are the element weight, element stiffness matrix and element 
mass matrix filter functions, respectively. We can find the detailed ICM algorithm flowchart in 
literature [17, 18], which is omitted here. 

5.4.1. Independent sensitivity filter [19] 

Firstly, in order to avoid the general numerical unstable phenomenon in topology optimization 
such as checkerboard and mesh dependence, we use the independent sensitivity filter method to 
obtain clear and smooth topology configuration.  

Assuming the displacement sensitivity variable and frequency sensitivity variable are denoted 
as Φ and ܩ, respectively, we compute the element weight factor ߣ (݅ = 1, 2,…, ܰ) as follow: ݀, = ݎ − ,݅)ݐݏ݅݀ ߣ,(݆ = max൫0, ݀,൯,  (28)

where ݎ is denoted as the filter characteristic radius, ݀݅ݐݏ(݅, ݆) is described as the center distance 
between the ݅ element and ݆ element. Then the displacement sensitivity variable for ݅ element 
after filter is computed as follow: 

Φ௪ = ݔ1 ∑ ேୀଵߣ  Φேݔߣ
ୀଵ . (29)

Similarly, the frequency sensitivity variable for ݅ element after filter is expressed as: 

௪ܩ = ݔ1 ∑ ேୀଵߣ  ேܩݔߣ
ୀଵ . (30)

By substituting Φ and ܩ into the Eq. (12) and Eq. (26), respectively, we could obtain the 
renew topology design variable ݔ. 

In order to ensure the convergence of topology optimization design, we utilize the regulation 
strategy. Assuming the renew topology design variable after filter are expressed as ݔௗ and ݔ, 
then the regulated topology design variable ൫ݔ൯௪ is calculated as follow: 

ݕݕ = (ܠ)݊ܽ݅݀݁݉(ௗܠ)݊ܽ݅݀݁݉   ,     ൫ݔ൯௪ = (31) ,ݕݕ ×ݔ

where ݉݁݀݅ܽ݊( )  is used for calculating the median value of topology optimization design 
variable vector.  

5.4.2. Filter treatment based on sensitivity redistribution [11] 

Secondly, for further eliminating the checkerboard in topology optimization design, we utilize 
the sensitivity redistribution to filter the design variable ݔ.  

(1) Firstly, the nodal design variable is calculated as follow: 
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ௗݔ = (∑ )ெୀଵݔݒ )(∑ ெୀଵݒ ) , (32)

where ݔௗ  is denoted as nodal design variable, which is used as transition variable; ܯ  is 
expressed as the element number that is connected to the ݆ node.  

(2) Secondly, the new topology design variable is expressed as: 

ݔ = 1ܲ  ௗݔ
ୀଵ , (33)

where ܲ is the number of nodes for per element. 

5.4.3. Repair strategy for eliminating the checkerboard phenomenon  

Usually, the resultant topology formed is inconsistent or not desirable [20]. Finally, we utilize 
repair strategy to eliminate the checkerboard phenomenon. The repair strategy is shown in Fig. 3. 

Obviously, this simple repair strategy could effectively be eliminating the checkerboard 
phenomenon or inconsistent section in topologies.  

 
Fig. 3. The repair strategy for eliminating the checkerboard 

5.4.4. Strategy of two-terminal division based on average value  

Finally, in order to speed up the convergence process of topology optimization design, we 
utilize the strategy of two-terminal division based on average value as follow: ݅ݕ = ݅ݔሾ݊݃݅ݏ − ݊݅ݔ,ሿ(ܠ)݊ܽ݁݉ ݓ݁ = ݅ݔ + ,݅ݔ×݅ݕ×݉  (34)

where ݉ ∈ (0.1, 0.3) is denoted as moving step, here we set the value of this parameter to be 0.1 
in examples; ݊݅ݔ  ( )݊ܽ݁݉ ,is the Signum function ( )݊݃݅ݏ ,is the renew topology design variable ݓ݁
is expressed as the mean function.  

5.4.5. Convergence criterion for topology optimization design 

The convergence criterion of topology optimization design is defined as: หܿ(݇+1) − ܿ݇ห|ܿ(݇+1)| ≤ ߝ     ,ߝ = 0.0001, (35)

where ܿ݇ and ܿ(݇+1) are the values of objective function for the ݇ step iteration and ݇ + 1 step 
iteration, respectively.  

Now, the whole modeling and optimization algorithm for structural topology optimization 
design is given out in Section 5. Although the presented optimization algorithm above is slightly 
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hybrid and coarse, but its validity and efficiency are certified in Section 6. In essence, the 
algorithm basis of the proposed optimization method is Optimality Criterion Method (OC method), 
thus the it always converges to the approximate optimal solution after several iterations [21].  

5.4.6. The implementation details or procedure of the optimization algorithm 

The procedure of the optimization algorithm is concluding as follow: 
(a) Initializing the topology design variable, 0݅ݔ = 0.1, (݅ = 1, 2,…, ܰ); 
(b) Given ߟ ,ߝ, ܽ and other parameters, let ݇ = ݇݅ݔ ,1 = ݅) ,0݅ݔ = 1, 2,…, ܰ); 
(c) Executing the FEA, and the approximate modal analysis by Eqs. (2-6); 
(d) Computing the Lagrange multiplier ݇ߤ; 
(e) Executing the displacement sensitivity analysis and sensitivity redistribution, frequency 

sensitivity analysis and sensitivity redistribution; 
(f) Updating the topology design variable and filter treatment by Eqs. (32-34); 
(g) If the convergence criterion is met, stopping the optimization iteration or optimization is 

ended; else let ݇ = ݇ + 0݅ݔ ,1 = ݅) ,1݅ݔ = 1, 2,…, ܰ) return to step (c); 
The whole procedure of the optimization algorithm is also shown in Fig. 4. 

 
Fig. 4. The flowchart of the optimization algorithm 

6. Numerical examples 

To test the proposed approximate modal analysis method, we use four topology optimization 
numerical examples. The optimization algorithm is used by hybrid ICM and SIMP method from 
literature [11, 18, 19], and executed by MATLAB procedure based on literature [19]. The main 
concern of this article is to deal with the low efficiency problem of direct modal analysis in 
topology optimization. For comparisons, the exact modal analysis is used by QR algorithm in 
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commercial software for topology optimization design; the approximate modal analysis is used by 
the proposed method in Section 2. 

Example 1: Considering the base structure as a rectangle bending plate structure, shown in 
Fig. 5, with its material and structural parameters given by: elasticity modulus is ܧ = 2.1×1011 Pa, 
the thickness of plate is ݐ = 0.1 m, mass density is ߩ = 7.80×103 kg/m3, the Poisson’s ratio is 
equal to 0.3, the length and width of plate are 6 m and 6 m, respectively.  

 
Fig. 5. The base structure of the around clamped boundary bending plate structure 

The clamped boundary base structure is discretized into 120×240 triangle plate elements. The 
down-ward external force with 40000 N is applied on the middle point of the structure. The 
termination criteria tolerance of topology optimization design is 0.0001. The maximum allowable 
midpoint deflection was constrained to 0.001 m. The frequency constraint is that the first natural 
frequency of the optimal structure is not less than 18 Hz.  

Fig. 6. shows the optimal topology structure, and the iteration history of the objective function 
mass is shown as Fig. 7. 

 
Fig. 6. The optimal structure topology 

 
Fig. 7. The iteration history of structure mass 

 

 
a) 

 
b) 

Fig. 8. The sub-optimal topology structures by the proposed dynamic analysis method 

The deflection of middle point for the optimal structure is 0.000986 m, the first natural 
frequency of the optimal structure is 18.1026 Hz. Thus, the optimal results satisfy all the 
constraints. For comparison, we have also included plots of the several sub-optimal topology 
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structures with the optimal structure based on the direct dynamic analysis method (DAM), as 
shown in Fig. 8 and Fig. 9. The iteration history of structure mass by the proposed optimization 
method based on the direct modal analysis method is also shown in Fig. 10. 

 
Fig. 9. The optimal topology structure by the direct dynamic analysis method 

 
Fig. 10. The iteration history of structure mass by the proposed optimization method  

based on the direct modal analysis method 

As shown in Fig. 10, there exactly exist the grey zones at the beginning of the optimization 
process, but the grey zones quickly disappear at the subsequent optimization iteration steps. 

In order to verify the mesh-independency of the proposed method, we show some other 
optimization result under different mesh for example 1 in Fig. 11.  

 
Fig. 11. The optimal structure topology under different mesh (mesh 60×120) 

As shown in Fig. 11, the optimal structure topology is similar under different mesh.  
The comparisons between the approximate eigenvalues and the exact eigenvalues are shown 
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in Table 2. 
Obviously, the eigenvalues calculated by the approximate modal analysis are much 

approximate to the eigenvalues calculated by the exact analysis.  
The optimization results comparison by the optimization method based on the approximate 

modal analysis and the optimization method based on the exact analysis are shown in Table 3. 

Table 2. The comparisons between the approximate eigenvalues and the exact eigenvalues 
Eigenvalue Exact (calculated by QR) Approximate (calculated by PMAM) Relative error 

1 1.596E+4 1.555E+4 0.0257 
2 8.41E+4 8.32E+4 0.0107 
3 8.41E+4 8.66E+4 0.0297 
4 2.23E+5 2.22E+5 0.00448 
5 4.11E+5 4.34E+5 0.0560 
6 4.64E+5 5.18E+5 0.116 

Table 3. The optimization results comparison by the two method 
 Frequency 

 ଵ݂ / Hz 
Displacement  ܦ௫ / m 

Mass  ܬ / Kg 
Iterations  ܰ / number 

Exact analysis optimization method 18.24  9.86×10-4 11128 9 
Approximate analysis optimization method 18.26  9.86×10-4 11150 0 

As shown in the Table 3, the optimization results are approximate for the two optimization 
method.  

Here, with the same computational platform and computational environment, the comparisons 
of the computational cost for the standard direct dynamic analysis and the approximate dynamic 
analysis in topology optimization design are as follow: the average time of exact calculation by 
using the direct method is 79.6574 seconds; and the average computational time by the proposed 
dynamic analysis method is 8.0320 seconds. Thus, the computational cost of modal analysis can 
be reduced by at least 89.92 % while maintaining sufficient accuracy. 

Example 2: Considering the base structure as a plane stress structure, shown in Fig. 12, with 
its material and structural parameters given by: elasticity modulus is ܧ = 6.889×1010 Pa, the 
thickness of plate structure is ݐ = 0.009 m, mass density is ߩ = 1.0×104 kg/m3, the Poisson’s ratio 
is equal to 0.3, the length and width of plate are 0.1 m and 0.24 m, respectively.  

 
Fig. 12. The base structure of the left boundary clamped plane stress plate 

The left boundary clamped base structure is discretized into 160×192 triangle plane stress 
elements. The down-ward external force with 15600 N is applied on the middle point of the right-
hand. The termination criteria tolerance of topology optimization design is 0.0001. The maximum 
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allowable midpoint displacement was constrained to be 0.00015 m. The frequency constraint is 
that the first natural frequency of the optimal structure is not less than 3000 Hz.  

Fig. 13 shows the optimal topology structure, and the iteration history of the objective function 
mass is shown as Fig. 14. 

 
Fig. 13. The optimal structure topology 

 
Fig. 14. The iteration history of structure mass 

The displacement of the middle point for the optimal structure is 0.0001486 m, the first natural 
frequency of the optimal structure is 3185.381 Hz. Thus, the optimal results satisfy all the 
constraints. For comparison, we have also included plots of the several sub-optimal topology 
structures with the optimal structure by the direct dynamic analysis method, as shown in Fig. 15 
and Fig. 16. The iteration history of structure mass by the proposed optimization method based on 
the direct modal analysis method is also shown in Fig. 17.  

 
a) 

 
b) 

Fig. 15. The sub-optimal topology structures by the 
proposed dynamic analysis method 

 
Fig. 16. The optimal topology structure  
by the direct dynamic analysis method 

In order to verify the mesh-independency of the proposed method, we show some other 
optimization results under different mesh for example 2 in Fig. 18. 

As shown in Fig. 18, the optimal structure topology is similar under different mesh. 
The comparisons between the approximate eigenvalues and the exact eigenvalues are shown 

in Table 4.  
Here, with the same computational platform and computational environment, the comparisons 

of the computational cost for the standard direct dynamic analysis and the approximate dynamic 
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analysis in topology optimization design are as follow: the average time of exact calculation by 
using the direct dynamic analysis method is 5.6691 seconds; and the average computational time 
by the proposed dynamic analysis method is 1.0356 seconds. Thus, the computational cost of 
modal analysis can be reduced by at least 81.83 % while maintaining sufficient accuracy. 

 
Fig. 17. The iteration history of structure mass by the proposed optimization method based  

on the direct modal analysis method 

 
Fig. 18. The optimal structure topology under different mesh (mesh 96×80) 

Table 4. The comparisons between the approximate eigenvalues and the exact eigenvalues 
Eigenvalue Exact (calculated by QR) Approximate  

(calculated by PMAM) Relative error 

1 3.59E+8 3.54E+8 0.014 
2 7.93E+8 7.77E+8 0.0202 
3 1.30E+9 1.33E+9 0.0230 
4 1.72E+9 1.79E+9 0.0407 
5 2.46E+9 2.58E+9 0.0487 
6 2.81E+9 3.00E+9 0.0676 

Example 3: Considering the base structure as a plane stress structure, shown in Fig. 19, with 
its material and structural parameters given by: elasticity modulus is ܧ = 6.889×1010 Pa, the 
thickness of plate structure is ݐ = 0.006 m, mass density is ߩ = 1.0×106 kg/m3, the Poisson’s ratio 
is equal to 0.3, the length and width of plate are 0.52 m and 0.26 m, respectively. The left and 
right corner points at the bottom end are fixed. The boundary and load condition are as shown in 
Fig. 19. The base structure is discretized into 208×52 triangle elements. The termination criteria 
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tolerance of topology optimization design is 0.0001. The maximum allowable displacements in 
point 1, 2, and 3 were constrained to be 0.0009 m, 0.001 m and 0.0009 m, respectively. The 
frequency constraint is that the first natural frequency of the optimal structure is not less than 
19 Hz.  

Fig. 20. shows the optimal topology structure, and the iteration history of the objective function 
mass is shown as Fig. 21. 

 
Fig. 19. The base structure of the plane stress plate 

 
Fig. 20. The optimal structure topology 

 
Fig. 21. The iteration history of structure mass 

The displacements of the three points for the optimal structure are 0.000889 m, 0.001 m and 
0.000889 m, respectively. The first natural frequency of the optimal structure is 20.618 Hz. Thus, 
the optimal results satisfy all the constraints. For comparison, we have also included plots of the 
several sub-optimal topology structures with the optimal structure by the direct dynamic analysis 
method, as shown in Fig. 22 and Fig. 23. The iteration history of structure mass by the proposed 
optimization method based on the direct modal analysis method is also shown in Fig. 24.  

 
a) 

 
b) 

Fig. 22. The sub-optimal topology structures by the proposed dynamic analysis method 
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Fig. 23. The optimal topology structure by the direct dynamic analysis method 

 
Fig. 24. The iteration history of structure mass by the proposed optimization method  

based on the direct modal analysis method 

In order to verify the mesh-independency of the proposed method, we show some other 
optimization result under different mesh for example 3 in Fig. 25.  

The comparisons between the approximate eigenvalues and the exact eigenvalues are shown 
in Table 5.  

 
Fig. 25. The optimal structure topology under different mesh (mesh 104×416) 

Here, with the same computational platform and computational environment, the comparisons 
of the computational cost for the standard direct dynamic analysis and the approximate dynamic 
analysis in topology optimization design are as follow: the average time of exact computation by 
using the direct method is 2.8534 seconds; and the average computational time by the proposed 
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modal analysis method is 0.5633 seconds. Thus, the computational cost of dynamic analysis can 
be reduced by at least 80.26 % while maintaining sufficient accuracy.  

Table 5. The comparisons between the approximate eigenvalues and the exact eigenvalues 
Eigenvalue Exact (calculated by QR) Approximate  

(calculated by PMAM) Relative error 

1 1.71E+4 1.68E+4 0.0175 
2 1.82E+5 1.82E+5 0.0022 
3 6.97E+5 6.97E+5 0.00086 
4 9.15E+5 8.94E+5 0.0230 
5 1.22E+6 1.20E+6 0.0201 
6 1.62E+6 1.60E+6 0.0143 

Example 4: Considering the base structure as a L-shape plane stress structure, shown in  
Fig. 26, with its material and structural parameters given by: elasticity modulus is  ܧ =  6.889×1010 Pa, the thickness of plate structure is ݐ =  0.009 m, mass density is  ߩ =1.0×04 kg/m3, the Poisson’s ratio is equal to 0.3, the length and width of plate are shown in 
Fig. 26.  

 
Fig. 26. The base structure of the plane stress plate 

The upper boundary clamped base structure is discretized into 12800 triangle elements. The 
distribution external force with –120 N is applied on the right-hand, as shown in Fig. 26. The 
termination criteria tolerance of topology optimization design is 0.0001. The maximum allowable 
midpoint displacement was constrained to be 0.0002 m. The frequency constraint is that the first 
natural frequency of the optimal structure is not less than 450 Hz.  

Fig. 27. shows the optimal topology structure, and the iteration history of the objective function 
mass is shown as Fig. 28. 

 
Fig. 27. The optimal structure topology 

 
Fig. 28. The iteration history of structure mass 
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The displacements of the midpoint for the optimal structure are 0.0001998 m. The first natural 
frequency of the optimal structure is 468.48 Hz. Thus, the optimal results satisfy all the constraints. 
For comparison, we have also included plots of the several sub-optimal topology structures with 
the optimal structure by the direct dynamic analysis method, as shown in Fig. 29 and Fig. 30.  

 
a) 

 
b) 

Fig. 29. The sub-optimal topology structure by the proposed dynamic analysis method 

 
Fig. 30. The optimal topology structures by the direct dynamic analysis method 

The iteration history of structure mass by the proposed optimization method based on the direct 
modal analysis method is also shown in Fig. 31. 

We also compared the optimization results based on the triangle elements with the 
optimization results based on the rectangular elements, which is shown in Fig. 32. 

 
Fig. 31. The iteration history of structure mass by the proposed optimization method  

based on the direct modal analysis method 
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Fig. 32. The optimal structure topology based  

on the rectangular finite elements 

 
Fig. 33. The optimal structure topology based  

on the sparse pseudorandom initialization 

Obviously, the optimal structure topology is similar to each other for the rectangular elements 
and the triangle elements. 

In order to verify the mesh-independency of the proposed method, we show some other 
optimization result under different mesh for example 4 in Fig. 34.  

 
Fig. 34. The optimal structure topology under different mesh (mesh 150×300) 

Here, with the same computational platform and computational environment, the comparisons 
of the computational cost for the standard direct dynamic analysis and the approximate dynamic 
analysis in topology optimization design are as follow: the average time of exact computation by 
using the direct method is 9.0649 seconds; and the average computational time by the proposed 
modal analysis method is 2.6202 seconds. Thus, the computational cost of dynamic analysis can 
be reduced by at least 71.09 % while maintaining sufficient accuracy.  

The Table 6, shows the actual savings of computational cost for the four numerical examples 
by the proposed dynamic analysis (DA) method.  

Table 6. The actual savings of computational cost for the four numerical examples  
by the proposed dynamic analysis method 

 The computational cost by 
standard DA (s) 

The computational cost by 
approximate DA (s) 

The saving of computational 
cost (percentages) 

Example 1 79.6574 8.0320 89.92 % 
Example 2 5.6691 1.0356 81.83 % 
Example 3 2.8534 0.5633 80.26 % 
Example 4 9.0649 2.6202 71.09 % 

Clearly, the benefit of applying approximate modal analysis techniques increases with the 
increase of FE mesh sizes within a single optimization cycle. Examining the optimized layouts, 
the goals of topology optimization design are satisfied despite the minor difference in performance 
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between the optimal design by the proposed dynamic analysis procedure and the optimal structure 
by the standard dynamic analysis procedure. A thorough examination of the prospects of such an 
approximate dynamic analysis approach is left for future work, but some promising results are 
given in the above. 

7. Conclusions 

The paper focuses on the structural modal analysis for topology optimization design based on 
the triangle finite element. An efficient modal analysis approach to topology optimization design 
was presented. The high computational effort of solving dynamic equation is decreased by 
utilizing approximate modal analysis procedures. According to numerical experiments, the 
computational cost of dynamic analysis can be reduced by at least 70 % while maintaining 
sufficient accuracy. The extent of the actual savings depends on the properties of the problem in 
hand as well as on the efficiency of the computer code. Based on the results of the current study 
as well as on the conclusions of previous investigations, we believe that the key for deriving 
dynamic analysis procedures that yield sufficient accuracy for minimal computational cost lies in 
linking dynamic analysis and optimization. This means that ultimately, the required accuracy of 
dynamic analysis will be defined rigorously within the optimization routine according to the 
progress of optimization [8]. 
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