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Abstract. Synchronization of two exciters with asymmetric structure is more widely used in 
engineering, such as vibrating conveyer, dewatering screen, vibrating screen, however, the 
synchronization state of two exciters with asymmetric structure in the sub-resonant and 
super-resonant states is less considered, and it is a valuable research topic. Firstly, we establish a 
kind of weakly nonlinear vibrating system driven by two exciters with opposite rotation directions 
and asymmetrical structure. Using Lagrange equations, the differential equations of the vibrating 
system are obtained. Secondly, we apply Fourier series expansion to obtain the nonlinear elastic 
force of the nonlinear stiffness. Thirdly, we introduce the modified averaging method of small 
parameters and Hamilton’s principle to get the criterions of synchronization synchronization 
stability of two exciters. The theoretical analysis shows that the phase differences are stabilized in 
the vicinity of Pi phase difference in a super-resonant state when ݈ approaches to ݈, otherwise, 
in the neighborhood of zero phase difference in a sub-resonant state. Then, the above theory is 
verified by experiments. The stable phase difference, amplitudes responses and energy 
consumption are also discussed. This research provides the foundation and guidance for the 
synchronization of two exciters with horizontal asymmetrical structure and engineering design. 
Keywords: nonlinear, synchronization, super-resonant, sub-resonant, vibrating system, 
asymmetric. 

1. Introduction 

In the construction machinery system, most of rotating shafts with heavy-load work under the 
conditions of transverse (radial) or thrust (axial) loads. Especially the exciters used in the material 
vibrating feeder, sifting machine, and many other areas have been put in a set of adjustable 
eccentric blocks on both sides of the rotor shaft to let the eccentric blocks whirl fast and to gain 
excited force. Back in 1953, Dr. Blekhman proposed the self-synchronization theory of vibrating 
machinery with double exciters based on the analytical method of direct motion separation [1]. It 
is used to great effect in mastering the mechanism of synchronization condition and stability 
conditions of synchronous operation [2-4]. This method emphases on the research of mathematical 
models but ignores the actual conditions in engineering. On the basis of the averaging method, 
Zhao uses two groups of perturbation small parameters combing Routh-Hurwitz criterion to gain 
the self-synchronization condition and the stability condition of a series of vibrating systems  
[5-8]. The averaging method and the modified averaging method of small parameters further 
improve the theory of self-synchronization and set up a solid foundation for engineering 
application. Later, Zhang and Li et. al well studied the synchronization of two and three and four 
unbalanced rotors rotating in the same and opposite directions in the super-resonant state [9-14]. 
In recent years, some researchers become interested in the influence of nonlinear factor of 
vibrating system on a solution of synchronization [14-16]  

Vibrating systems are usually classified by 3 types [17-19]: super-resonant (ݖ௦௨ > 3),  
near-resonant (nearby 1, generally, 0.95 ≤ ݖ ≤ 1.05) and sub-resonant (ݖ௦௨ < 1, generally, 
0.85). Where, ݖ௦௨, ݖ and ݖ௦௨ denote the ratio of the operating frequency to natural frequency 
in sub-resonant, near-resonant and super-resonant state, respectively.  
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In engineering, the last two types somewhat alike, the amplitude-frequency response curves of 
vibrating system acquire a magnification factor. While in light of that in a sub-resonant or 
near-resonant state, it reflects mainly at energy-saving because one smaller exciting force needs 
against the same amplitude as super-resonant. Meanwhile, the design of the mechanical structure 
and equipment appurtenances and the immaturity theory of controlled synchronization in 
engineering are the main components of sorts of units, and the using condition is also very harsh.  

The advantages of the vibrating machines operating in a super-resonant state lie in the 
reliability of the mechanical structure design and the relative simplicity of implementing vibratory 
synchronization. As such, it is a question of extraordinary, indeed of primary, importance to 
master the synchronization theory and its motion law of two exciters rotating in the different 
resonant states, especially in a super-resonant state and sub-resonant state. Zhang has established 
a very simplified model (only one degree of freedom) of two exciters rotating in the same direction 
and improved the synchronization theory in a vibrating system in super-resonant and sub-resonant 
state [18]. 

This paper aims at studying the synchronization theory of dual asymmetric exciters rotating in 
opposite directions, which is widely applied in the equipment of engineering, both in 
super-resonant state and sub-resonant state. Meanwhile, we take the nonlinear factor of vibration 
spring stiffness into account. A dynamical model of dual asymmetric exciters in a weakly 
nonlinear vibrating system is established. The criterion of implementing synchronization and the 
corresponding stability criterion are obtained according to Hamilton’s principle. Then, the 
experiments are of uppermost priority of this paper, which are done to investigate the motion law, 
amplitudes responses and energy consumption of the vibrating system in super-resonant and 
sub-resonant state. Finally, some useful conclusions are provided in section 4. 

2. Dynamical model and their resolutions 

2.1. Dynamical model and equations of motion 

The object in the study stems from a kind of sifting machine, which is powered by two 
asymmetric exciters rotating in opposite directions. The dynamical model of the vibrating system 
is shown in Fig. 1.  

 
Fig. 1. Dynamical model of the vibrating system powered by dual asymmetric exciters 

Where, ݕݔ  and ݕ′ݔ′′  are the fixed coordinate system and moving coordinate system 
respectively. ݔ ,ݔሶ ሶݕ ,ݕ , , ߰, ሶ߰  are the displacements and velocities of the body in ݕ ,-ݔ- and ߰-
directions. ′′ represents the mass center of the body, ଵ and ଶ are the rotating centers of the 
exciters 1 and 2 respectively. ߚ (݅ = 1, 2) is the angle between the line from the rotational center 
of exciter ݅ to ′ and ݔ-axis. ݈ is the distance between ′ and ′′. ݈ is the distance between the 
shaft center of exciter ݅ to ′. ݉ is the mass of the vibrating body. ݉ and ݎ are the mass of exciter ݅ and its eccentric radius. ߮ is the angle of exciter ݅ rotating around their own spindle.  
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Here we choose ݍ = ,ݔ] ,ݕ ߰, ߮ଵ, ߮ଶ]்  as the generalized coordinates, the kinetic energy ܶ, 
potential energy ܸ and dissipation energy ܦ are determined. Substituting them into the Lagrange 
equation: ݀݀ݐ ߲(ܶ − ሶݍ߲(ܸ − ߲(ܶ − ݍ߲(ܸ + ሶݍ߲ܦ߲ = ܳ. (1)

And consider the following relations as ref. [19]: 

݈݉sin(ߚ + (ߨ +  ݈݉sinߚ = 0ଶ
ୀଵ ,

݈݉cos(ߚ + (ߨ +  ݈݉cosߚ = 0.ଶ
ୀଵ

 (2)

Then, the five differential equations of the system can be obtained as follows: 

ሷݔܯ + ௫݂ݔሶ + ݇௫ݔ = (−1)ାଵ݉ݎ( ሶ߮ ଶଶ
ୀଵ cos߮ + ሷ߮ sin߮),

ሷݕܯ + ௬݂ݕሶ + ݇௬ݕ + 4݇ݕଷ =  ݉ݎ( ሶ߮ ଶଶ
ୀଵ sin߮ − ሷ߮ cos߮),

ܬ ሷ߰ + ట݂ ሶ߰ + ݇ట߰ = (−1)݉ݎ݈[ ሶ߮ ଶsin(߮ − (ߚ − ሷ߮ cos(߮ − )]ଶߚ
ୀଵ ,

ܬ ሷ߮  + ௗ݂߮ + ݉ݎ ቈ ሷݔ) − ݈ ሷ߰ sinߚ − ݈ ሶ߰ ଶcosߚ)sin߮−(ݕሷ + ݈ ሷ߰ cosߚ − ݈ ሶ߰ ଶsinߚ)cos߮ = ܶ,      ݅ = 1, 2,
 (3)

where, (•ሶ) and (•ሷ) denote ݀ and ݀ଶ ݐ݀/•  is the total mass of the vibrating ܯ .ଶ respectivelyݐ݀/•
system, ܯ = ݉ + ∑ ݉ଶୀଵ . ܶ is the electromagnetic torque of the exciter ݅. ܬ is the moments of 
inertia of the system, ܬ = ܬ + ݈݉ଶ + ∑ ݉ଶୀଵ ݈ଶ, ܬ and ܬ are the calculated moments about the 
mass center ′ and the exciter ݅ about its rotational center, ܬ is the moments of inertia of exciter ݅, ܬ = ܬ + ݉ݎଶ. ݂ and ݇, (݅ = ,ݔ ,ݕ ߰) are the equivalent resistance coefficient of motion and 
spring linear stiffness respectively. 4݇ is the spring nonlinear stiffness in ݕ-direction. The indices 
of ݇௬  and ݇  can be obtained through data processing according to the curve of stiffness 
coefficient of the AB series spring of RostA used in the vibrating system. 

2.2. Steady state solutions of the differential equations 

Suppose the average angular velocity of the two exciters is ߱  when they operate 
synchronously in steady state. The average angular phase ߮ = ߱ݐ. If we assume their phase 
difference of two exciters is 2ߙ, the phase of exciter 1 and 2 can be described as: ߮ଵ = ߮ + ଶ߮ ,ߙ = ߮ − (4) .ߙ

Then, the average angular velocity and the angel accelerations of exciter 1 and 2 are  ሶ߮ ଵ = − ሶ߮ ଶ ≈ ߱ , ሷ߮ ଵ = ሷ߮ ଶ ≈ 0 respectively. Thus, the angle accelerations ሷ߮ ଵ  and ሷ߮ ଶ  are so 
small that can be neglected in the first three equations in Eq. (3). 

As for the second equation in Eq. (3), the elastic force of spring has hard characteristic as 
mentioned in Ref. [13]. That is, the spring has a weakly nonlinear stiffness. By using the method 
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of equivalent linearization, we can establish an equivalent differential equation as described in  
Eq. (5) to replace the original equation: 

ሷݕܯ + ௬݂ݕሶ + ݂(ݕ, ሶݕ ) =  ݉ݎ( ሶ߮ ଶଶ
ୀଵ sin߮ − ሷ߮ cos߮), (5)

where, ݂ (ݕ, ሶݕ ) = ݇௬ݕ + 4݇ݕଷ . Now, the nonlinear elastic force ݂(ݕ, ሶݕ )  can be expanded 
according to the method of Fourier series equation: 

݂(ݕ, ሶݕ ) = ܽ  + (ܽcos݊߶ + ܾsin݊߶),ஶ
ୀଵ    ݊ = 1, 2, 3, … , ∞. (6)

Generally speaking, the first harmonic force far outweighs the second harmonic force and the 
other high-order harmonic forces and the constant terms. Thus, they can be neglected and the 
approximate value can be obtained as follows:  

݂(ݕ, ሶݕ ) = ܽ  + ܽଵcos߶ + ܾଵsin߶, (7)

where, the coefficients in Eq. (7) can be calculated according to the equation of Fourier series, 
finally, the equivalent stiffness is obtained as:  

݇௬ = ቈ ܣߨ1 න ݂(ܣ, ,ܣ ߶)sin߶݀߶ଶగ
  = ܣߨ1 න ൣ݇௬(ܣsin߶) + ݇(ܣsin߶)ଷ൧ଶగ

 sin߶݀߶= ௬ଶܣ3 ݇௬ + ݇௬. (8)

In actual engineering, the exciters belong to the same series and have similar physical 
construction, i.e., the exciter 1 and 2 have the same eccentric radius ݎଵ = ଶݎ =  The desired .ݎ
exciting force can be obtained by adjusting the active mass of the exciter, suppose  ݉ଶ = ଵ (0݉ߟ < ߟ ≤ 1) . Introduce the following non-dimensional parameters: ߱௫ଶ = ݇௫ ⁄ܯ ,  ߱௬ଶ = ݇௬ ⁄ܯ ,  ߱టଶ = ݇ట ⁄ܬ , ௫ߦ  = ௫݂ 2ඥ݇ܯ௫⁄ ௬ߦ , = ௬݂ 2ඥ݇ܯ௬⁄ టߦ , = ట݂ 2ඥ݇ܬట⁄ ݎ  , = ݉ଵ ⁄ܯ , ݈ = ඥܬ ⁄ܯ ݎ , = ݈ ݈⁄ , then the first three equations in Eq. (3) can be simplified as 
Eq. (9): ݔሷ + ሶݔ௫߱௫ߦ2 + ߱௫ଶ ݔ = ߱ଶ ߮)cos]ݎݎ + (ߙ − ߮)cosߟ − ሷݕ,[(ߙ + ሶݕ௬߱௬ߦ2 + ߱௬ଶ ݕ = ߱ଶ ߮)sin]ݎݎ + (ߙ + ߮)sinߟ − ሷ߰,[(ߙ + ట߱టߦ2 ሶ߰ + ߱టଶ ߰ = ߱ଶ ݈ݎݎ ߮)ଵsinݎ−] + ߙ − (ଵߚ + ߮)ଶsinݎߟ − ߙ − ଶ)]. (9)ߚ

Neglect the influence of damping ratio on the amplitude of the vibrating system, the 
meaningful solutions in ݔ ݕ ,- -, ߰ -direction can be calculated through the principle of 
superposition of linear system, as shown in Eq. (10): ݔ = ߮)௫[cosܣ + ߙ + (௫ߛ − ߮)cosߟ − ߙ + ݕ,[(௫ߛ = ߮)௬ൣsinܤ + ߙ + (௬ߛ + ߮)sinߟ − ߙ + ߰,௬)൧ߛ = ߮)ଵsinݎ−టൣܥ + ߙ − ଵߚ + (టߛ + ߮) ଶsinݎߟ − ߙ − ଶߚ + ట)൧. (10)ߛ

where: 
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௫ܣ = − 1ݎݎ − ௫ߤ ௬ܤ      , = − 1ݎݎ − ௬ߤ టܥ     , = − ൫1ݎݎ − ట൯݈ߤ ߤ     , = ߱ଶ߱ଶ ߛ , = (߱ߦ2 ߱⁄ )1 − (߱ ߱⁄ )ଶ ,     ݅ = ,ݔ ,ݕ ߰. 
3. Criterion of implementing synchronization and its stability criterion 

3.1. Criterion of implementing synchronization 

We can obtain the ݔሶ ሶݕ ,  and ሶ߰  according to differentiating ݕ ,ݔ and ߰ in Eq. (10), respectively. 
The rotational kinetic energy of exciters can be viewed as a constant when the exciters operate 
synchronously in steady state, denoted by ܶ (݅ = 1, 2). Then, the kinetic energy and potential 
energy of the vibrating system can be simplified to: 

ܶ = 12 ሶݔ)݉ ଶ + ሶݕ ଶ) + 12 టܬ ሶ߰ ଶ + ܶ,
ܸ = 12 ݇௫ [ݔ − (−1)݈߰sinߠ]ଶଶ

ୀଵ + 12 ݇௬ [−ݕ + (−1)݈߰cosߠ]ଶ.ଶ
ୀଵ

 (11)

And the Lagrange function can be replaced by ܮ = ܶ − ܸ . In a vibrating period ଵܶ , the 
Hamilton actions can be obtained, as shown in Eq. (12): 

ܫ = න భ்ݐ݀ܮ = න ଶగ߶݀ܮ
 ≈ 2ߨ ߙcos(2ܧ] − (ߴ + (12) ,[ܥ

where: ܧ = ଶ߱ܯߟ2 ܹ,     ܹ = ඥܧଶ + ߴ ,௦ଶܧ = ൜arctan(ܧ௦/ܧ),   ܧ ≥ ߨ,0 + arctan(ܧ௦/ܧ),   ܧ < ௦ܧ ,0 = ଶ(ߠsin)௫ߤൣ−݈ଶߚଶsinݎଵݎ − ݈ଶߤ௬(cosߠ)ଶ + ݈ଶ൧ܥటଶ, ܧ = −(1 − ௫ଶܣ(௫ߤ + ൫1 − ௬ଶܤ௬൯ߤ + ௫ߤଶ݈ଶ(ߠsin)ൣߚଶcosݎଵݎ + (cosߠ)ଶ݈ଶߤ௬ − ݈ଶ൧ܥటଶ, ܥ = ଶߟ) + 1)ൣ(1 − ௫ଶܣ(௫ߤ + ൫1 − −௬ଶ൧ܤ௬൯ߤ ଶߟଶଶݎ) + ௫ߤଶ݈ଶ(ߠsin)ൣ(ଵଶݎ + (cosߠ)ଶ݈ଶߤ௬ − ݈ଶ൧ܥటଶ. 
According to Hamilton’s principle, in one vibrating period, the variation of the Hamilton 

actions ܫ plus the summation of integrals of the virtual work of the generalized force act in the 
vibrating system is zero. That is: 

ܫߜ + න (ܨݍߜ)݀(߱ݐ)ଶ
ୀଵ

ଶగ
 = 0, (13)

where, ܨ  is the generalized force, ݍ  is the generalized coordinates. If we choose ߮  as the 
generalized coordinates, substitute Eq. (12) into Eq. (13) yields: 

sin(2ߙ − (ߴ = Δ ܶ − Δ ௗ݂ܪ = ܦ1 ߙ2   , = arcsin ܦ1 + (14) ,ߴ

where, Δ ܶ = ܶଵ − ܶଶ , Δ ௗ݂ = ௗ݂ଵ − ௗ݂ଶ ܪ , = ܧ 2⁄ ܦ ,  is the index of synchronization. As 
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shown in Eq. (14), the two exciters must have a constant phase difference for the purpose of 
implementing the self-synchronous operation. At the same time, the absolute value sin(2ߙ −  (ߴ
must be less than or equal to 1. It means that the absolute value ܪ must be greater than or equal 
to the absolute value of the differences of Δ ܶ to Δ ௗ݂, or else, the phase difference 2ߙ in Eq. (14) 
does not have a solution, i.e., it is impossible to achieve a synchronization. 

If one of the power supply of the exciters is turned off, suppose the exciter 2, in that case, ܶଶ = 0. Substitute ܶଶ = 0 into Eq. (14), and replace ܦ by ܦଵ, if |ܦଵ| ≥ 1, it means that the 
non-powered exciter 2 is able to obtain certain energy by the vibration to compensate the work 
lost to overcome the frictional resistance moments. 

3.2. Stability criterion of the synchronization operation 

According to the theory of stability, we can deduce the stability criterion of the synchronization 
operation when the second-order derivative of the Hamilton actions ܫ with respect to 2ߙ is greater 
than zero, i.e.: ݀ଶ(ߙ2)݀ܫଶ > 0. (15)

Differentiate the Hamilton actions ܫ in Eq. (12) with respect to 2ߙ yields the stability criterion: ܹcos(2ߙ − (ߴ < 0. (16)

From the Eq. (12), it can be found ܹ > 0 , thus, if and only if (2ߙ − (ߴ ∈ ቀగଶ , ଷగଶ ቁ , the 
synchronization is stable. As shown in Eq. (16), the phase difference 2ߙ is related to the value of ߴ. The stable value of phase difference 2ߙ is in the following range: 

ߙ2 = 2ߨ + ~ߴ 2ߨ3 + (17) .ߴ

Simultaneously, from Eq. (14), 2ߙ − ܦ is equal to 0° or 180° when ߴ ≫ 1, that is, the stable 
value of 2ߙ −  will be bound to 180° when the vibrating system operates synchronously in ߴ
steady state. It means that the relationship between the phase difference 2ߙ and ߴ is: 2ߙ ≈ ߨ + (18) .ߴ

3.3. Two types motion law in a sub-resonant state and super-resonant state 

Generally, an asynchronous vibrating machine in engineering has a close value of spring 
stiffness and damping, i.e., ݇௫ ≈ ݇௬ ≈ ݇ట , and ߱௫ ≈ ߱௬ ≈ ߱ట . In that case, we can further 
simplify ܧ in Eq. (12) as follows: 

ܧ = (1ߚଶcosݎଵݎଶݎଶݎ − )ଶߤ ቆ ݈߱ ݈߱ ቇଶ − 1൩ ,     ݅ = ,ݔ ,ݕ ߰. (19)

The following is a detail study and analysis of the phase difference and the motion path of the 
vibrating system operating in super-resonant state and sub-resonant state according to Eq. (12), 
Eq. (18) and Eq. (19).  

3.3.1. Super-resonant 

In that case, we have ߱ > ߱, i.e., ߤ < 1 (݅ = ,ݔ ,ݕ ߰). According to Eq. (19), ܧ will be 
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smaller than zero when ݈ ݈⁄ < ୱ୳୮ୣ୰ݖ ≈ 3. It means that ߴ = ߨ + arctan ቀாೞாቁ ∈ ቀ− గଶ , గଶቁ  in 
Eq. (12). Also, as mentioned in Eq. (18), 2ߙ ≈ ߨ +  we get the conclusion that the stable value ,ߴ
of phase difference 2ߙ ∈ ቀ− గଶ , గଶቁ when the vibrating system operates in super-resonant. The 
phase difference 2ߙ will be stabilized in the vicinity of ߨ phase difference.  

Alternatively, ܧ  will be greater than zero when ݈ ݈⁄ > 3. We get 2ߙ ∈ ቀగଶ , ଷగଶ ቁ when the 
vibrating system operates in super-resonant. In this condition, the moment of couple is obtained 
from the exciting forces of the two asymmetric exciters, which is intimately associated with the 
motion path at the mass center of the body. The vibrating direction of the center of mass of the 
body is from the center of mass ′ to the center between the rotational center of Exciter 1 and 
Exciter 2. Meanwhile, because the middle point of the center line between the two exciters deflects 
from the center of mass of the body, a swing vibration appears which results in oval motions at 
the edges of the body. The motion path more generally at an arbitrary point ݁ of the body is listed 
in Eq. (20): ൜ݔ = ݔ − ݈߰,ݕ = ݕ + ݈߰. (20)

3.3.2. Sub-resonant 

When the vibrating system operates in this state we have ߱ < ߱, i.e., ߤ > 1 (݅ = ,ݔ ,ݕ ܧ .(߰  will be greater than zero in Eq. (18) when ݈ ݈⁄ > ௦௨ݖ ≈ 0.85.  We have  ߴ = arctan ቀாೞாቁ ∈ ቀ− గଶ , గଶቁ and 2ߙ ∈ ቀగଶ , ଷగଶ ቁ, i.e., the phase difference 2ߙ will be stabilized in 
the vicinity of zero phase difference. 

Alternatively, ܧ  will be smaller than zero when ݈ ݈⁄ < 0.85. We get 2ߙ ∈ ቀ− గଶ , గଶቁ when 
the vibrating system operates in super-resonant. When the phase difference approaches to zero, 
the exciting forces of the two asymmetric exciters have the same direction, which will induce a 
large amplitude of the vibration in ݕ-direction and generate higher efficiency. 

As a consequence of the above, we can find that the phase differences will be stabilized in the 
vicinity of Pi phase difference in a super-resonant state, otherwise, in the neighborhood of zero 
phase difference in a sub-resonant state when 0.85݈ < ݈ < 3݈.  

4. Experimental study 

An experimental system was constructed in our Lab to validate the correctness of our 
theoretical analysis. Where, the synchronization machine powered by dual asymmetric exciters, ݈  approaches to ݈ . As shown in Fig. 2, the experimental system includes a mechanical 
composition, an electrical control cabinet and signal-collecting devices. Among this system, the 
mechanical composition of the vibrating system has two exciters (Fig. 2(a) and (b)), vibrating 
frame (Fig. 2(c)), four AB27 springs of RostA (Fig. 2(f)); the signal-collecting system includes 
two revolution speed transducers (Fig. 2(d)), three triaxial accelerometers (Fig. 2(e)), LMS 
SCADAS Mobile data acquisition system (Fig. 2(i)), and HIOKI PW 3335 power meter (Fig. 2(h)). 
The related mechanical parameters of the vibrating system are listed in Table 1.  

To investigate whether the state of vibratory synchronization of the vibrating system can be 
achieved in a super-resonant state or sub-resonant state, we turn off the power supply of the 
Exciter 1 when ݐ = 20 s, if possible. When the power supply frequency is mounted gradually, 
many experimental data are obtained in the sub-resonant and super-resonant states. The 
experimental results in steady state are listed in Table 2, especially, the detailed results in the 
super-resonant state and sub-resonant states are shown in Fig. 3 and Fig. 4, Fig. 5 and Fig. 6, 
respectively. 
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Table 1. The parameters of the vibrating system 
Item Value 

Moment of inertia of vibrating body 72.7 ܬ kg·m2 
Total mass of vibrating system 237.2 ܯ kg 

Stiffness coefficient in ݔ-direction ݇௫ 105 N/m 
Linear stiffness coefficient in ݕ-direction ݇௬ 10704 N/m 

Nonlinear stiffness coefficient in ݕ-direction ݇ (N/m) 7.448 N/m 
Mass of each exciter ݉ (kg) multiplies its eccentric radius ݎ (m) 0.170 kg·m 

Rated power ேܲ 0.37 kW 
Rated voltage 380 v 

Rated speed of the motors ݊ே 1420 r/min 
Distance between the shaft center of exciter ݅ to and ′ ݈ଵ and ݈ଶ (m) 0.355 m, 0.687 m

Angle between the line from the rotational center of exciter ݅ to ′ and ݔ −axis ߚଵ and ߚଶ 163.24°, 171.44° 

Table 2. The experimental results in steady state 

Power supply 
frequency 

Phase difference 
(degree) 

Synchronization velocity of 
exciters (rpm) 

Total power consumption 
of system (W) ݐ < 20 s ݐ > 20 s ݐ < 20 s ݐ > 20 s ݐ < 20 s ݐ > 20 s 

210 rpm –13.1° - 211.2 – 210.1 – 
400 rpm 196.5° 178.7° 402.5 393.1 112.8 81.9 
600 rpm 210.7° 182.8° 598.5 590.3 126.3 93.3 
800 rpm 220.6° 202.5° 801.6 791.8 144.9 113.1 

1000 rpm 220.7° 212.3° 1000.5 988.6 162.9 135.0 
1200 rpm 224.5° 215.8° 1198.3 1185.3 181.2 158.7 
1400 rpm 221.3° 210.9° 1391.5 1373.7 240.1 229.2 

 
Fig. 2. The experimental system 

Table 2 and Fig. 3-6 show that this vibrating system can achieve a synchronization state when 
the system operates in a sub-resonant state and super-resonant state. Meanwhile, the vibratory 
synchronization state cannot be obtained in a sub-resonant state because the non-powered exciter 
isn’t able to capture adequate energy from the vibration of system to compensate the work lost to 
overcome the frictional resistance moments. In other states, the power supply of Exciter 1 is shut 
off when ݐ = 20 s, both the phase difference and the rotational velocity of two exciters have a 
decrease, the system automatically can adjust the phase difference to achieve a new steady state 
of vibratory synchronization. At the same time, from Fig. 3(b) and Table 2 we note that the 
vibrating system obtains a more stable operating state and lower energy consumption state  
(more than 15 %) because the mutual interference between the two exciters is reduced along with 
cutting off the power supply of one exciter. 

As shown in Fig. 3(b) and Fig. 5(b), the phase differences are stabilized in the vicinity of Pi 
phase difference (221.3°, 210.9°) in the super-resonant state, and in the neighborhood of zero 
phase difference (–13.1°) in the sub-resonant state.  
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Fig. 3. a) The experimental results of dual asymmetric exciters operating in the super-resonant state, b) the 

rotational velocity of two exciters, c) the phase difference 2ߙ between Exciter 1 and Exciter 2, d)-f) the 
total power supply of the vibrating system, g)-h) the acceleration on the left (middle, right) side of the 
vibrating frame. The motion path on the left (middle, right) side of the vibrating frame in steady state 

 
Fig. 4. Phases of two exciters with frequency supply 1400 r/min in steady state  

after the power supply of Exciter 1 is shut off 

Fig. 4 is the phases of two exciters with frequency supply 1400 r/min in steady state after the 
power supply of Exciter 1 is shut off. Using the vertical as datum line, the phase difference is 
stabilized in the vicinity of Pi phase difference (209.3°-210.5°), this result is in accordance with 
the values listed in Table 2. Fig. 6 is the phases of two exciters with frequency supply 210 r/min 
in steady state. The phase differences are stabilized in the vicinity of zero phase difference  
(–11.3°-15.2°). Compared with the values listed in Table 2, there is a little deviation from the 
manual labeling the angles, but the correctness of theoretical study will be unaffected by it. Many 
other results are listed in Table 2 also essentially in agreement with the theoretical analysis results 
in section 3.  

The difference of motion characteristic of the system in super-resonant and sub-resonant states 
denotes us two obviously steady operating states for a synchronous machine. For example, the 

0 10 20 30
0

500

1000

1500
R

ot
at

io
na

l v
el

oc
ity

 (r
pm

)

Time (s)

 Exciter 1   Exciter 2

(a)

0 10 20 30
0

60
120
180
240
300
360

25.0 25.5 26.0

0

30

60

Ph
as

e 
di

ffe
re

nc
e 

(d
eg

re
e)

Time (s)

(b)

 Exciter 1    Exciter 2

Pu
ls

e

Time (s)

0 10 20 30 40
0

200

400

600 (c)

To
ta

l p
ow

er
 (W

)

Time (s)

0 10 20 30
-6
-3
0
3
6 (d)   x  y

Ac
ce

le
ra

tio
n 

(g
)

Time (s)
0 5 10 15 20 25 30

-6
-3
0
3
6 (e)   x  y

Ac
ce

le
ra

tio
n 

(g
)

Time (s)
0 5 10 15 20 25 30

-6
-3
0
3
6 (f)   x  y

Ac
ce

le
ra

tio
n 

(g
)

Time (s)

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

y 
(m

m
)

x (mm)

(g)

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

y 
(m

m
)

x (mm)

(h)

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

y 
(m

m
)

x (mm)

(i)



2575. DOUBLE SYNCHRONIZATION STATES OF TWO EXCITERS WITH HORIZONTAL ASYMMETRIC STRUCTURE IN A VIBRATING SYSTEM.  
LINGXUAN LI, XIAOZHE CHEN 

3892 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. AUG 2017, VOL. 19, ISSUE 5. ISSN 1392-8716  

vibrating angle of the mass center of our experimental system is 168.1° and the motion paths of 
the vibrating frame in steady state can be described by an oval as Fig. 3(g) and Fig. 3(i) when the 
system operates in a super-resonant state. The motion path at an arbitrary point e of the body can 
be described as Eq. (20). The amplitude of the vibration in ݕ-direction appropriates to 30 mm 
when the system operates in a sub-resonant state. To sum up, in engineering, the synchronization 
machines should be designed in a super-resonant state for the purpose of obtaining low energy 
consumption and more stable amplitude of responses and a higher exciting frequency, otherwise, 
the working points of the vibrating machines should be selected in a sub-resonant state in order to 
obtain the larger amplitude of responses. 

   

   

   
Fig. 5. a) The experimental results of dual asymmetric exciters operating in the sub-resonant state, b) the 

rotational velocity of two exciters, c) the phase difference 2ߙ between exciter 1 and exciter 2, d)-f) the total 
power supply of the vibrating system, g)-h) the acceleration on the left (middle, right) side of the vibrating 

frame. The motion path on the left (middle, right) side of the vibrating frame in steady state 

 
Fig. 6. Phases of two exciters with frequency supply 210 r/min in steady state 

The Fast Fourier Transform (FFT) is applied to analyze the responses in ݕ-direction. As shown 
in Fig. 7, there is a finite number of harmonic-frequency components. It is worthwhile to note that 
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there are non-fundamental frequency components which are integral multiples of the rotation 
frequency. At the same time, we note that the value of these components isn’t equal to the natural 
frequency. The phenomena can be attributed to the existence of the nonlinear factor in the 
vibrating system. As for the weakly nonlinear stiffness of the spring, we find that the weakly 
nonlinear factor plays an unimportant role. Relatively speaking, the nonlinear stiffness has a 
slightly greater influence on sub-resonant states than super-resonant states. But in general, there 
is a little error if we expand the nonlinear elastic forces by Fourier series expansion and ignore 
high-order harmonic forces and the constant terms. The equivalent stiffness obtained by the 
method of equivalent linearization can meet the required precision in engineering. 

  
Fig. 7. Amplitude-frequency characteristics in ݕ-direction, a) 1400 rpm, b) 210 rpm 

5. Conclusions 

Through the theoretical investigation and experimental study given in the former sections, 
some useful conclusions should be stressed. 

For a nonlinear vibrating synchronization system mentioned in this paper, the weakly 
nonlinear elastic forces can be expanded by Fourier series expansion and ignored high-order 
harmonic forces and the constant terms. The results of this method can meet the required precision 
in engineering.  

When ݈  approaches to ݈ , the phase differences of two asymmetric exciters rotating in 
opposite directions are stabilized in the vicinity of Pi phase difference in the super-resonant state, 
otherwise, in the neighborhood of zero phase difference in the sub-resonant state. The vibratory 
synchronization state cannot be obtained in a sub-resonant state; however, the vibratory 
synchronization state can be obtained easily in a super-resonant state. In engineering, the working 
points of this kind of vibrating machines should be designed in a sub-resonant state when we need 
larger amplitude of responses. This kind of vibratory synchronization machine can be designed in 
a super-resonant state for the purpose of obtaining low energy consumption and more stable 
amplitude of responses. 
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