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Abstract. Assumptions accompanying exponential failure models are often not met in the 
standard sequential probability ratio test (SPRT) of many products. However, for most of the 
mechanical products, Weibull distribution conforms to their life distributions better compared to 
other techniques. The SPRT method for Weibull life distribution is derived in this paper, which 
enables the implementation of reliability compliance tests for gearboxes. Using historical failure 
data and condition monitoring data, a life prediction model based on hidden Markov model 
(HMM) is established to describe the deterioration process of gearboxes, then the predicted 
remaining useful life (RUL) is transformed into failure data that is used in SPRT for further 
analysis, which can significantly save on testing time and reduce costs. Explicit expression for the 
distribution of RUL is derived in terms of the posterior probability that the system is in the 
unhealthy state. The predicted and actual values of the residual life are compared, and the average 
relative error is 3.90 %, which verifies the validity of the proposed residual life prediction 
approach. A comparison with other life prediction and SPRT methods is given to elucidate the 
efficacy of the proposed approach. 
Keywords: sequential probability ratio test, hidden Markov model, remaining useful life, Weibull 
distribution. 

1. Introduction 

With the rapid development of aviation, high-speed trains, shipbuilding and other industries, 
reliability compliance tests need to be done for a large number of equipment with new designs or 
major changes to verify whether the product reliability indexes meet the stipulated requirements 
and reliability test values, which has the potential to provide improvement measures for 
development and reasonable criterion for acceptance. Gears, as the key components of mechanical 
transmission, are widely used in the aviation, energy industry and in heavy machineries such as 
helicopters, wind turbines and heavy trucks. Therefore, the gear reliability compliance test is 
particularly important. 

Currently, reliability compliance testing schemes include the time-terminated test,  
fixed-sample test and sequential probability ratio test (SPRT). In reliability compliance tests, the 
SPRT method can use the test information generated in the process of judgment, so there is no 
need to test for specified deadlines or failure numbers. In general, compared with other sampling 
test methods, such as the time-terminated test and fixed-sample test, shorter average cumulative 
testing time and smaller average failure numbers are required for decision making in SPRT [1, 2]. 
Under the circumstances of scarce on hand data and the unknown prior distribution for the life of 
new products, Li et al. [3] established a reliability growth model using small sample data sets 
based on the SPRT and Bayesian theorem, the results of which indicated that without assuming 
prior distribution for the new products, the reliability was increased using the proposed method. 
Shinichiro et al. [4] applied the SPRT to the nervous system. The SPRT chart is also an effective 
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control chart to detect mean shifts in statistical process control [5, 6]. However, the current 
sequential sampling test method introduced in some standards about SPRT (such as  
GJB 899A-2009, MIL-STD-781D) assumed that the life of products followed exponential 
distribution [7, 8], which is not applicable for most mechanical products with depletion-type life. 
A lognormal distribution was better fit for the fatigue life distribution of certain parts [9]. The 
two-parameter Weibull distribution is more appropriate to describe the life of some key 
components, such as rolling bearings and gears [10-12]. Therefore, the reliability compliance test 
method without the restrictions of the exponential distribution is a research hotspot in recent years. 
To address this situation, Hauck and Keats [13] pointed out that the Weibull distribution can be 
transformed to exponential distribution to derive the sequential compliance test plan for Weibull 
distribution with the accurate estimates of the unknown shape parameters needed. Meanwhile, 
after transformation, the validation indexes are the qualified life ݐ(ܴ) and the limited life ݐଵ(ܴ), 
which need to be determined in advance by the given lifetime reliability. With the assumption that 
the shape parameter was known and the scale parameter was a random variable, Tsai et al. [14] 
established a fixed-sample test plan for Weibull life type products in the condition of limited test 
equipment, the reasonableness of which was also verified by case calculation. Pandit and 
Gudaganavar [15] studied on the SPRT for Gamma distribution and discussed the robustness of 
the plan when the shape parameter changes. The SPRT for lognormal distribution was derived by 
Deng and Yuan [16] with the upper and lower limits of the producer’s risks and the consumer’s 
risks in the truncated sequential test studied. Although many researchers studied SPRT for  
non-exponential distribution and the actual failure time of products in the tests were utilized to 
decide whether to accept or reject the products, we note that few literature considered condition 
monitoring information in the test plans, which are common in practice. Under limited resources, 
Li et al. [17] made the SPRT decisions with the consideration of life prediction data, but the 
specific prediction method for residual life was still not given. Such a drawback for Weibull 
distribution in the existing literature motivates us to improve the SPRT method. Using gears as 
the research object, we establish the SPRT plan for Weibull distribution in accordance with the 
actual gear life. Moreover, the historical failure data and the condition monitoring information of 
current products are used for the accurate life prediction, then judgments can be made under the 
restrictions of test equipment and costs. 

In condition-based maintenance (CBM), vibration monitoring has been used for condition 
monitoring as well as fault detection and prognostics for decades. Recently, many researchers 
have investigated the fault diagnosis of rotating machines. For example, Li et al. [18] proposed a 
demodulation method based on improvement of empirical mode decomposition (EMD) for gear 
fault detection. The theoretical analysis and experimental verification are in agreement, which 
illustrated the effectiveness of the proposed method. In the early fault diagnosis of bearings, the 
symbolic dynamic filtering (SDF) and intrinsic characteristic-scale decomposition (ICD) were 
employed in [19] for fault detection and failure type recognition. A more detailed review on 
vibration signal processing can be found in Igba et al. [20]. In this paper, the signal preprocessing 
and modeling methods of gears based on the time-domain analysis approach are taken into  
account. Time synchronous averaging (TSA) is a time-domain analysis method commonly used 
in signal processing for the gearbox data analysis. An excellent overview of the TSA algorithm 
can be found in Braun [21]. Time series models have been widely studied for decades. For  
example, in Wang and Makis [22], a technique based on the autoregressive model was applied to 
detect the occurrence of cracks in the gear shaft, and the model was fitted to the healthy portion 
of the TSA signals of the gear shaft. Wang and Wong [23] showed that the autoregressive model 
can detect a gear tooth crack much earlier and with a higher level of diagnostic confidence 
compared with the traditional method. 

During the operation of the gear system, the states (healthy or unhealthy) cannot be observed 
directly. In this paper, a partially observable hidden Markov model (HMM) is adopted to model 
the degradation process of the gear system and the stochastic relationship between the vibration 
data and the system states. Hidden Markov models (HMMs) have been extensively applied to 
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various research areas, such as speech recognition [24], milling tool condition monitoring and life 
prediction [25], and system diagnostics and fault detection (see Si et al. [26], Jiang et al. [27], Kim 
et al. [28, 29], Peng et al. [30]). Since full likelihood function for HMM cannot be obtained, the 
unknown parameters of this model are estimated using a statistical method devised from the 
expectation maximization (EM) algorithm. Predicting the remaining useful life (RUL) with the 
established HMM accurately is the key to the implementation of SPRT. Mean residual life (MRL) 
is an important reliability characteristic to obtain the RUL in health management  
(see Si et al. [26]). The posterior probability that the system operates in the unhealthy condition is 
updated using Bayes’ rule at each sampling epoch in the network of continuous time HMM, which 
is used to predict the RUL of a gearbox. Life data based on the condition monitoring information 
is used as failure data for further decisions in SPRT, which can reduce test times and save on costs. 

 
Fig. 1. Sequential probability ratio test scheme for Weibull distribution 

The SPRT plan based on condition monitoring data for Weibull distribution is systematically 
shown in Fig. 1. To our knowledge, this is the first paper deriving a sequential compliance test 
plan for Weibull distribution and using condition monitoring data for further decisions. We hope 
the proposed sequential compliance test plan and the life prediction model can become the 
standard tool for sequential compliance tests of Weibull distribution, which can accurately carry 
out fault prediction using condition monitoring data. 

The remainder of this paper is organized as follows. In Section 2, we analyze the life 
distribution of gear historical failure data and derive the sequential test plan for gearbox life 
distribution based on the standard SPRT for exponential distribution. In Section 3, the healthy 
portion data of the TSA signals is used to fit a VAR model, and the residuals of the whole data set 
are obtained. In Section 4, a 3-state HMM for residual process and state process is built. EM 
algorithm is used to estimate the unknown model parameters, and then the RUL of the operating 
gearbox is calculated. A comparison with other prediction methods is given. In Section 5, the 
decision for the gearbox life data is made using SPRT for different methods. Conclusions are 
presented in Section 6. 

2. SPRT for gearbox life distribution 

2.1. Gearbox life distribution 

We obtained 18 samples of gearbox life history data for mechanical fault diagnosis from the 
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Applied Research Laboratory at Pennsylvania State University. All the gears worked under the 
same or similar conditions. A goodness-of-fit test was performed for several probability models 
to determine the best fitness of the gearbox life data. Four most possible kinds of probability 
distribution functions were tested, the goodness-of-fit values of which are shown in Fig. 2. It can 
be seen from Fig. 2 that the life distribution of gears does not obey exponential distribution, 
therefore the SPRT for the exponential distribution in the standards is not suitable for the gear 
reliability compliance test. It is shown from the test that the Weibull distribution is the best one 
for the life of gears with a high -value of 0.450. Its shape and scale parameters are shown in  
Fig. 3. Next, we derive the sequential compliance testing scheme for Weibull distribution 
according to the theory of SPRT. 

 
Fig. 2. Goodness-of-fit test for gear life data 

 
Fig. 3. Gear life distribution ݂(ݐ; ,ߟ ݉) = ିଵ݁ି(௧/ఎ)ߟ(ߟ/݉) ݐ , ≥ ߟ ,0 = 158.6, ݉ = 1.846 

2.2. Operating characteristic curve and sampling risk 

The ideal operating characteristic (OC) curve of sampling is shown in Fig. 4 with ߠ as the life 
expectancy of products. Rules are given that: if the life expectancy of the batch of products  ߠ ≥ (ߠ)ܮ , the life of the product is deemed to be qualified, and the acceptance probabilityߠ = 1; 
if not, the life of the product is deemed to be unqualified, and the acceptance probability  (ߠ)ܮ = 0. 

There are two hypotheses existing in the SPRT: ܪ ߠ : = ߠ ଵܪ , ߠ : = ଵߠ ߠ , > ଵߠ . The 
sampling test, which determines the whole batch of products through checking the samples, will 
lead to two types of errors due to the randomness of sampling. A Type I error determines the 
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certified products as uncertified, bringing loss to the producer and rejects ܪ when it is true, the 
probability of which is defined as the producer’s risk (ߙ) . A Type II error determines the 
uncertified products as certified, bringing loss to the consumer and accepts ܪଵ when it is false, the 
probability of which is defined as the consumer’s risk (ߚ). Both the producer and the consumer 
hope to take lower risk, therefore, the upper test mean time between failure (MTBF) (ߠ) and 
lower test MTBF (ߠଵ) are proposed. The acceptance probability (ߠ)ܮ changes with ߠ ; Fig. 5 
displays the actual OC curve of sampling. 

 
Fig. 4. The ideal OC curve of sampling 

 
Fig. 5. The actual OC curve of sampling 

2.3. SPRT for Weibull distribution 

The cumulative distribution function (CDF) (ݐ)ܨ and probability density function (PDF) ݂(ݐ) 
of the two-parameter Weibull distribution are given by: (ݐ)ܨ = 1 − ݁ି(௧/ఎ),    ݉, ,ߟ ݐ > (ݐ)݂(1) ,0 = ,݉    ,ିଵ݁ି(௧/ఎ)ݐିߟ݉ ,ߟ ݐ > 0, (2)

where ݉ is shape parameter and ߟ is scale parameter. 
Assume that the random variable ܺ obeys Weibull distribution, the probability distribution 

function of which is denoted by ݂(ݔ,  refers to the life parameter. Both producer and ߠ where ,(ߠ
consumer take products’ MTBF to verify whether the products meet the reliability requirement  
or not: 

ܨܤܶܯ = න (ݐ)݂ ⋅ ஶݐ
 ݐ݀ = න ஶ(ݐ)ܴ

 ݐ݀ = න expሾ−(ߟ/ݐ)ሿ݀ݐஶ
 = (3) .ߠ

With pre-assigned ߠ and ߠଵ, then for the samples (ݔଵ, ,ଶݔ … ,  ), of which the probabilityݔ
density function of population samples are ݂(ݔ,  and the joint probability density function of ,(ߠ
the random variables (ݔଵ, ,ଶݔ … , ) is given by: ఏܲݔ = ,ଵݔ)݂ ,ଶݔ … , ;ݔ  .(ߠ

If ߠ = , then the joint probability density function is ఏܲబߠ = ,ଵݔ)݂ ,ଶݔ … , ;ݔ (ߠ = 1 −  .ߙ
If ߠ = ଵ, then the joint probability density function is ఏܲభߠ = ,ଵݔ)݂ ,ଶݔ … , ;ݔ (ଵߠ =  .is the consumer’s risk ߚ is the producer’s risk and ߙ where ,ߚ
Then, the probability ratio is ఏܲబ/ ఏܲభ. This is the principle of the sequential probability ratio 

sampling test plan. According to the sequential sampling test rules, two constants, ܣ and ܤ, need 
to be chosen. Wald [1] put forward the SPRT judge boundaries: ܣ = (1 − ܤ ,ߙ/(ߚ = 1)/ߚ −  .(ߙ

1) If ఏܲబ/ ఏܲభ ≤ ߠ then ,ܤ = ) ”, “acceptߠ ఏܲబ is lager and “accept” with high probability); 
2) If ఏܲబ/ ఏܲభ ≥ ߠ then ,ܣ = ) ”ଵ, “rejectߠ ఏܲబ is larger and “reject” with high probability); 
3) If ܤ < ఏܲబ/ ఏܲభ <  then decisions to “accept” or “reject” cannot be made, so the test ,ܣ

should be continued. 
Judgment criteria for the sequential validation test under the exponential distribution is given 

in GJB 899A-2009 and MIL-STD-781D [7, 8]. By transforming the two-parameter Weibull 
distribution into the exponential distribution, the SPRT scheme for Weibull distribution can be 
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obtained. Substituting ݕ = ߜ ,ݐ = (ݕ)ܨ : into Eq. (1) yieldsߟ = 1 − expሾ−ߜ/ݕሿ. (4)

Then ݕ obeys the exponential distribution, thus the Weibull distribution has been converted to 
the exponential distribution. Correspondingly, if ܰ samples are put into the reliability sequential 
test and ݎ  samples fail until ݐ  with ݐ()  as the failure time of the ݅ th sample, then the joint 
probability density function of the samples (ݐ(ଵ), ,(ଶ)ݐ … ,  :is (()ݐ

,(ଵ)ݐ)݂ ,(ଶ)ݐ … , ;()ݐ (ߠ = ܰ!(ܰ − ݁ିିߠ !(ݎ ೝ்,ே()/ഇ. (5)

The probability that there are ݎ failed items before cumulative test time ݐ is: 

௧ܲ(ݎ) = ൯. (6)!ݎ/൫݁ି௬/ఋ(ߜ/ݕ)

Under the different requirements of MTBF, the probability ratio of ݎ  failed items before 
cumulative test time ݐ is: 

௧ܲଵ(ݎ)/ ௧ܲ(ݎ) = ߜ/expሾ(1(ଵߜ/ߜ) − (ଵߜ/1 ⋅ ሿ, (7)ݕ

where ߜ = ଵߜ ,(ߠ)ߟ =  .(ଵߠ)ଵߟ
Different from Hauck and Keats [13], a predetermined reliability ܴ  must be given when 

converting to ߟ(ߠ) and ߟଵ(ߠଵ) with Eq. (7), while MTBF is the verification index of product, 
so the value of ܴ will affect the formulation of the test plan. 

By substituting ߠ and ߠଵ into the Eq. (3), ߟ(ߠ) and ߟଵ(ߠଵ) can be obtained: 

ߠ = න (ݐ)݂ ⋅ ஶݐ
 ݐ݀ = න expൣ−൫ߟ/ݐ(ߠ)൯൧݀ݐ,ஶ

 ଵߠ(8)  = න (ݐ)݂ ⋅ ஶݐ
 ݐ݀ = න expൣ−൫ߟ/ݐଵ(ߠଵ)൯൧݀ݐ.ஶ

  (9)

The judge boundaries of SPRT is given by: ܤ < ߜ/expሾ(1(ଵߜ/ߜ) − (ଵߜ/1 ⋅ ሿݕ < (10) .ܣ

Taking natural logarithms on both sides of inequality Eq. (10), judge conditions of the SPRT 
plan for Weibull distribution is given by: −ℎଵ + ݏ ⋅ ݎ < ܶ,ே(ݐ) < ℎ + ݏ ⋅ (11) .ݎ

Sequential compliance criterion for Weibull distribution is given by: 

ቐ−ℎଵ + ݏ ⋅ ݎ < ܶ,ே(ݐ) < ℎ + ݏ ⋅ (ݐ)testing   continues,ܶ,ே   ,ݎ ≤ −ℎଵ + ݏ ⋅ (ݐ)reject  decision,ܶ,ே    ,ݎ ≥ ℎ + ݏ ⋅ ,accept   decision   ,ݎ  (12)

where: 

ݏ = ln(ߜ/ߜଵ)1/ߜଵ − ߜ/1 ,     ℎ = −lnߜ/1)ܤଵ − ),     ℎଵߜ/1 = lnߜ/1)ܣଵ −  .(ߜ/1
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ܶ,ே(௧) is the cumulative failure time, in the non-replacement case: 

ܶ,ே(ݐ) =  ݐ + (ܰ − (ݎ
ୀଵ . (13)ݐ

In the replacement case: 

ܶ,ே(ݐ) = . (14)ݐܰ

Taking an example of ߠ = 135 ℎ ଵߠ , =  90 ℎ ߙ , = ߚ =  0.10, ݉ = 1.846, the sequential 
schematic diagram for Weibull distribution is shown in Fig. 6. In the sequential test, once the 
failure occurs, the point ൫ ܶ,ே(௧), ൯ݎ  should be put into Fig. 6 to make a decision. A point ൫ ܶ,ே(௧), ൯ plotted in the “reject” area results in rejecting the hypotheses. A point ൫ݎ ܶ,ே(௧),  ൯ݎ
plotted in the “accept” area results in accepting the hypotheses. Testing continues as long as the 
point ൫ ܶ,ே(௧),  .൯ remains in the “test continuing” areaݎ

 
Fig. 6. Schematic of SPRT for Weibull distribution 

3. Computation of residuals subject to vibration monitoring 

Test data is from the Mechanical Diagnostic Test Bed (MDTB) (Fig. 7) in the Applied 
Research Laboratory of Condition-Based Maintenance Department at Pennsylvania State 
University. MDTB is used for gearbox life reliability verification tests of which the indicators are ߠ = 135ℎ, ߠଵ = 90ℎ and ߙ = ߚ = 0.10. 

 
Fig. 7. Mechanical diagnostic test bed 

Gearboxes used in this test includes a pinion gear and a drive gear. Four gearboxes with the 
same specification were tested, of which the test numbers were respectively #5, #10, #12 and #13. 
#2 and #3 acceleration sensors were installed on the gearbox body, the axial and horizontal 
direction respectively. The structure diagram of the test scheme is shown in Fig. 8. 

The test is divided into two stages: at a constant rotating speed (1750 rpm), gearbox was first 
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run at 100 % output torque for 96 hours (555 in-lbs); then increased to 300 % torque (1665 in-lbs) 
until failure. Gearbox output torque is shown in Fig. 9 while input shaft speed in Fig. 10. Samples 
were taken every 30 minutes and stored in a new file with the sampling frequency of 20 kHz. Each 
sampling time is 10 s. Driving motor speed V01 and gearbox output torque V05 were also 
collected with sampling frequency of 1 kHz and sampling time of 10 s. 

All gearboxes run normally in the first stage, thus vibration signals in the second stage were 
analyzed. Failure was first found in the #12 gearbox, for which 31 files were collected at 300 % 
output torque. Files for #2 and #3 sensors were named as A02 and A03, respectively. The original 
vibration signals are shown in Fig. 11. The results of shutdown fault check presented in Fig. 12 
show that the pinion gear was normal while two broken teeth were found in the drive gear without 
root cracks and midtooth cracks. 

 
Fig. 8. Structure diagram of the test scheme 

 
Fig. 9. Gearbox output torque V05 

 
Fig. 10. Driving motor input speed V01 

 

 
Fig. 11. Original data for #12 under 300 % output torque 

 
Fig. 12. Two broken teeth on drive gear in #12 

3.1. Time synchronous averaging (TSA) algorithm 

The TSA algorithm is widely applied in fault diagnosis of gears. The TSA signal of vibration 
monitoring data is given by: 

20 40 60 80 100 120 140
Data File Number

1749.5

1750

1750.5

1751

1751.5
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்ܸ ௌ(݇) = ܯ1  ܸ(݇ + ெିଵ(ܭ݅
ୀ ,     ݇ = 1,2, … , (15) ,ܭ

where ܭ is the number of sampling points in a single operating period and ܯ is the rotation period 
number included in each sampling data file. 

In a complete revolution, the TSA signal of a gear of interest meshing signal in the healthy 
state is given by: 

(ݐ)ݔ =  ሾ1ܣ + ܽ(ݐ)ሿcos൫2ߨ ݂ݐ + ߚ + ൯,ே(ݐ)ߠ
ୀ  (16)

where ݊ = 0,1, … , ܰ is the meshing harmonic number; ܣ is the amplitude at the ݊th harmonic 
frequency ݂  ( ݂ = ݊ × ܰ × ݂ , where ܰ  is the number of teeth and ݂  is the shaft rotation 
frequency); ܽ(ݐ) is the amplitude modulation function, ߚ is the initial phase, and ߠ(ݐ) is the 
phase modulation function at the ݊th harmonic. 

When a localized fault occurs, the impact-induced resonant vibration (ݐ)ݖ in one revolution of 
the monitored gear is [23]: (ݐ)ݖ = ߨcos(2(ݐ)݀ ௦݂ݐ + ௦), (17)ߚ

where ݀(ݐ) is the envelope function, ௦݂ is the resonance frequency and ߚ௦ is the corresponding 
initial phase. Hence, the measured signal (ݐ)ݕ can be written as the following form: 

(ݐ)ݕ =  ሾ1ܣ + ܽ(ݐ)ሿcos ቀ2ߨ ݂ݐ + ߚ + ቁே(ݐ)෨ߠ
ୀ + ߨcos(2(ݐ)݀ ݂ݐ + ), (18)ߚ

where ܽ(ݐ) is the modified amplitude modulation functions at the ݊th harmonic, and ߠ෨(ݐ) is the 
modified phase modulation functions at the ݊th harmonic. 

Take for example the #12 gearbox, in which the first failure occurs. File 5, file 18 and file 31 
of the data file A02 and A03 at 300 % output torque were selected for TSA signal analysis, which 
are shown in Fig. 13 and Fig. 14.  

 
Fig. 13. A02 data analysis: a) original data of file 5, b) TSA signal of file 5; c) original data of file 18,  

d) TSA signal of file 18; e) original data of file 31, f) TSA signal of file 31 
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3.2. Vector autoregression (VAR) model 

In this paper, the healthy portion of the TSA signals was used to fit a VAR model. With the 
established model and estimated model parameters, the residuals of the model can be further 
calculated. Two-dimensional data can be expressed as ൛ܼଵ , ܼଶ , … , ܼ௧ ൟ, ݅ = 1, 2. Suppose that the 
healthy portion of the data obeys a stationary VAR process: 

ܼ − ߜ =  Φ(ܼି − )ߜ
ୀଵ + ݊    ,ߝ ∈ ܼ, (19)

where ߝ  are independent identically distributed (i.i.d) and follow ଶܰ(0, Σ); Φ ∈ ℝଶ×ଶ  is the 
autocorrelation matrices; ߜ ∈ ℝଶ  is the mean value; Σ ∈ ℝଶ×ଶ is the covariance;  ∈ ℕ is the 
model order. Let ߜ = ߜ − ∑ Φߜୀଵ , Eq. (19) can be transformed as follows: 

ܼ = ߜ +  Φܼି
ୀଵ + ݊    ,ߝ ∈ ܼ. (20)

The Akaike Information Criterion (AIC) criterion is used in this paper to determine the model 
order , more details can be found in Reinsel [31]. 

 
Fig. 14. A03 data analysis: a) original data of file 5, b) TSA signal of file 5; c) original data of file 18,  

d) TSA signal of file 18; e) original data of file 31, f) TSA signal of file 31 

3.3. Calculation of residuals 

The estimated VAR model parameter ߛො = ൫̂, ,መߜ Φଵ, Φ ଶ, … , Φ ൯ can be utilized to calculate 
the residual ܻ of the TSA signals. The residual ܻ can be computed as follows: 

ܻ = ܼ − ቌߜመ +  Φ ܼିො
ୀଵ ቍ. (21)

Taking #12 gearbox as an example, in which failure first occurred. Fig. 15 exhibits the 
residuals from A02 and A03 data files at 300 % output torque. We selected the root mean square 
(RMS) of characteristic parameters to process the residuals, which was commonly used in 
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vibration signal processing, to reflect the states of gears, as shown in Fig. 16. 
From Fig. 16, the residual RMS values in files 1 to 16 from A02 and A03 sensors are more 

stable, and we assume this part of the data is the healthy portion. Those in files 17 to 31 increased 
significantly, therefore we assume this part of the data is the unhealthy portion. Normality and 
independence tests were carried out for these two parts of data, of which the results are shown in 
Table 1. 

 
Fig. 15. Residuals for data files 1-31 

 
Fig. 16. RMS Residuals for data files 1-31 

Table 1. -value of the normality and independence tests 
RMS of residuals Healthy portion (files 1-16) Unhealthy portion (files 17-31) 

Normality (Henze-Zirkler) 0.1404 0.3801 
Independence (Portmanteau) 0.2231 0.1034 

From Table 1, both the RMS values of the residuals for A02 and A03 passed the normality and 
independence tests, indicating that RMS residuals are independent and obey the multivariate 
normal distribution, which is consistent with the observation values of the HMM in Section 4 
follow the multivariate normal distribution. 

4. Remaining useful life prediction method based on HMM 

4.1. Hidden Markov model (HMM) 

Kim et al. [32] showed that a 3-state Markov was sufficient to describe the degradation process. 
Assume that the gear system can be described by a 3-state HMM (state space is ܵ = ሼ0,1,2ሽ): state 
0 (healthy or good state), state 1 (unhealthy or warning state) and state 2 (failure state). State 0 
and state 1 are unobservable. Only state 2 is observable. The system state transition is illustrated 
in Fig. 17, in which the transition probability matrix is ܲ = ൣ ܲ൧ (݅, ݆ ∈ ܵ), where ܲ denotes the 
probability that the state transitions from state ݅ to state ݆. 

 
Fig. 17. Schematic for system state transition of 3-state HMM 

Suppose that the system starts in the healthy state, the instantaneous transition rate matrix is 
given by: 
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ܳ = ൛ݍൟ = ൭−(ߣଵ + (ଶߣ ଵߣ ଶ0ߣ ଵଶߣ− ଵଶ0ߣ 0 0 ൱, (22)

where ߣଵ, ߣଶ, ߣଵଶ ∈ (0, +∞) are unknown parameters. 
Let ߦ = infሼݐ ≥ 0: ܺ௧ = 2ሽ represent the system failure time. Observation ܻ = ( ܻ: ݊ ∈ ℕ) is 

independent given the system state. ݕ, ,ଶݕ … , ୩ݕ ∈ ℝଶ represents the bivariate observations. 
Thus, ݕ under the condition of state ݔ follows a bivariate normal distribution of ଶܰ(ߤ௫, Σ௫), ݔ = 0, 1, and the probability density function is given by: 

௬݂ೖ|(ݕ|ݔ) = 1ඥ(2ߨ)ௗdet(Σ௫) exp ቆ− 12 ݕ) − ௫)ᇱΣ௫ିߤ ଵ(ݕ − ௫)ቇ, (23)ߤ

where ߤ, ߤଵ ∈ ℝଶ and Σ, Σଵ ∈ ℝଶ×ଶ are unknown observation parameters. 
As the test proceeds, three gearboxes failed in total while the #10 gearbox still worked without 

failure. The failure times which they shut down for gearboxes #12, #13 and #5 are 111.5 h,  
114.5 h and 131 h respectively. With this failure time data, decisions to accept or reject still cannot 
be made (see Section 5 for analysis results). In fact,  three groups of failure data and one group of 
suspension data provides  sufficient information to built a HMM for residual life prediction. Let ܨଵ,…,ܨே denote the failure data sets, where ܰ = 3 (for #12, #13 and #5 gearboxes). Failure data ܨ  is expressed by ܻ = ൫ݕଵ , ଶݕ , … , ்ݕ ൯  and the respective failure time is ߦ = ݐ , where  ܶΔ < ݐ ≤ ( ܶ + 1)Δ. Let ܵெ denote the collected suspension data sets, where ܯ = 1 (for #10 
gearbox). Similarly, suspension data ܵ is expressed by ܻ = ቀݕଵ, ,ଶݕ … , ೕ்ݕ ቁ and the failure time ߦ > ܶΔ . ܱ = ሼܨଵ, … , ,ேܨ ଵܵ, … , ܵெሽ  represent the observation data and ܮ = (Λ, Ψ|ܱ)  is the 
corresponding likelihood function, where Λ = ,ଵߣ) ,ଶߣ (ଵଶߣ  and Ψ = ,ߤ) ,ଵߤ Σ, Σଵ)  are the 
unknown parameters to be estimated.  

The EM algorithm is used to estimate the unknown parameters. The EM algorithm works as 
follows: 

E-step: Compute the pseudo likelihood function: ܳ൫Λ, Ψ|Λ, Ψ ൯ = ஃ,ஏܧ (lnܮ(Λ, Ψ| തܱ)|ܱ), (24)

where Λ and Ψ  are the initial values;
 

തܱ represents the complete data set, in which each failure 
history ܨ and suspension history ܵ of the observable data set ܱ have been augmented with the 
unobservable sample path information of the state process. 

M-step: Choose Λ∗, Ψ∗such that: (Λ∗, Ψ∗) ∈ argmaxஃ,ஏ  ܳ൫Λ, Ψ|Λ, Ψ ൯. (25)

Updated parameters Λ∗, Ψ∗ in each step are then used as new initial values to the E-step, 
leading the iteration in E-step and M-step until the Euclidean norm satisfies  ห(Λ∗, Ψ∗) − ൫Λ, Ψ ൯ห <  The detailed explicit formulae can be found in Kim and Makis [32]. The .ߝ
expectation is updated in each step, for the maximization of which there exists a unique stationary 
point. The updated explicit formulae for Λ∗ = ∗ଵߣ) , ∗ଶߣ , ∗ଵଶߣ ) in each step are: 

∗ଵߣ = − ൭ ∑ ܾଵேୀଵ + ∑ +ොଵெୀଵߛ ∑ ොଶெୀଵߛ ⋅ ൫∑ ܾଵேୀଵ + ∑ ොଵெୀଵߛ ൯ ⋅ ൫∑ ܾଵேୀଵ + ∑ ܾଶேୀଵ + ∑ ොଵெୀଵߛ ൯ିଵ൱∑ ොܽଵேୀଵ + ∑ ොଵெୀଵߙ , (26)
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∗ଶߣ = ∗ଵߣ ⋅  ܾଶே
ୀଵ ⋅ ቌ ܾଵே

ୀଵ +  ොଵெߛ
ୀଵ ቍିଵ, (27)

∗ଵଶߣ = −  ܾଵଶே
ୀଵ ⋅ ቌ ොܽଵଶே

ୀଵ +  ොଵଶெߙ
ୀଵ ቍିଵ. (28)

The updated explicit formulae for Ψ∗ = ,∗ߤ) ,∗ଵߤ Σ∗, Σଵ∗) in each step are: 

∗ߤ = ∑ ݊ଵ ⋅ ܿ̂ேୀଵ + ∑ ݊ଵ ⋅ መߚ ெୀଵ∑ ൻܿ̂, ݀ଵ ൿேୀଵ + ∑ ൻߚመ , ݀ଵൿெୀଵ ,   Σ∗ = ∑ ݊ଷ ⋅ ܿ̂ேୀଵ + ∑ ݊ଷ ⋅ መߚ ெୀଵ∑ ൻܿ̂, ݀ଵ ൿேୀଵ + ∑ ൻߚመ , ݀ଵൿெୀଵ , (29)

∗ଵߤ = ∑ ݊ଶ ⋅ ܿ̂ேୀଵ + ∑ ݊ଶ ⋅ መߚ ெୀଵ∑ ൻܿ̂, ݀ଶ ൿேୀଵ + ∑ ൻߚመ , ݀ଶൿெୀଵ ,   Σଵ∗ = ∑ ݊ସ ⋅ ܿ̂ேୀଵ + ∑ ݊ସ ⋅ መߚ ெୀଵ∑ ൻܿ̂, ݀ଶ ൿேୀଵ + ∑ ൻߚመ , ݀ଶൿெୀଵ . (30)

Initial values are assigned to Λ and Ψ  and the EM algorithm is used to solve the parameters to 
be estimated, the convergence criterion of which is ห(Λ∗, Ψ∗) − ൫Λ, Ψ ൯ห < 1݁ − 6. The estimated 
results are shown in Table 2.  

Table 2. Model parameters estimation with EM algorithm 
Parameters Initial values First iteration Second iteration Last iteration ߣመଵ 0.5 0.0159 0.0148 0.1515 ߣመଶ 0.2 0.0000 0.0000 0.0000 ߣመଵଶ 0.5 0.1042 0.2004 0.1493 ̂ߤ ቀ2020ቁ ቀ15.3040.94ቁ ቀ25.8347.29ቁ ቀ30.9247.15ቁ ̂ߤଵ ቀ3030ቁ ቀ48.0153.75ቁ ቀ51.1953.96ቁ ቀ50.0763.31ቁ Σ ቀ5 1010 20ቁ ቀ9.45 9.989.98 23.95ቁ ቀ7.86 10.2010.20 23.05ቁ ቀ7.45 10.5010.50 23.95ቁ Σଵ ቀ20 3030 50ቁ ቀ24.32 31.7631.76 69.69ቁ ቀ27.79 35.0335.03 72.81ቁ ቀ28.29 35.3635.36 78.63ቁ ܳ × 10ଷ – –2.02 –1.94 –1.87 

4.2. Remaining useful life prediction 

In partially observable Markov decision process (POMDP) theory, ∏  is defined as the 
posterior probability that the system is in the warning state at time ݇Δ given the observations ݕ, ,ଶݕ … , ݕ ∈ ℝଶ up to time ݇Δ [33]: ∏ = Pr(ܺ = ߦ|1 > ݇Δ, ,ݕ ,ଶݕ … , ). (31)ݕ

According to Bayes’ theorem, at each sampling epoch, the posterior probability ∏ can be 
updated by: 

∏ = ݂ೖೖ( ܻ|1)( ܲଵ(Δ)(1 − ∏ିଵ) + ଵܲଵ(Δ)∏ିଵ)݂ೖೖ( ܻ|0) ܲ(Δ)(1 − ∏ିଵ) + ݂ೖೖ( ܻ|1)( ܲଵ(Δ)(1 − ∏ିଵ) + ଵܲଵ(Δ)∏ିଵ), (32)

where the initial value ∏ = 0. The transition probability matrix ܲ(ݐ) = ܲ(ܺ௧ = ݆|ܺ = ݅), in 
Eq. (34) can be obtained by solving Kolmogorov backward differential equations, which is  
given by: 
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ܲ(ݐ) = ۇۉ
݁ି(ఒబభାఒబమ)௧ ଵ൫݁ିఒభమ௧ߣ − ݁ି(ఒబభାఒబమ)௧൯ߣଵ + ଶߣ − ଵଶߣ 1 − ݁ି(ఒబభାఒబమ)௧ − ଵ൫݁ିఒభమ௧ߣ − ݁ି(ఒబభାఒబమ)௧൯ߣଵ + ଶߣ − ଵଶ0ߣ ݁ିఒభమ௧ 1 − ݁ିఒభమ௧0 0 1 (33) .ۊی

Details can be found in Appendix A. 
So, the conditional reliability function of the RUL at sampling point kΔ is: ܴ(ݐ|∏) = Pr(ߦ > ݇Δ + ߦ|ݐ > ݇Δ, ଵܻ, … , ܻ, ∏)   = Pr(ܺା௧ ≠ ߦ|2 > ݇Δ, ଵܻ, … , ܻ, ∏)   = (1 − ∏) ቆ݁ି(ఒబభାఒబమ)௧ + ଵ൫݁ିఒభమ௧ߣ − ݁ି(ఒబభାఒబమ)௧൯ߣଵ + ଶߣ − ଵଶߣ ቇ + ∏ ⋅ ݁ିఒభమ௧. (34)

Thus, the PDF of the RUL is: 

(∏|ݐ)݂ = ݐ݀(∏|ݐ)ܨ݀ = ݀൫1 − ݐ൯݀(∏|ݐ)ܴ
      = ൭ ଵߣ) + ଶ)ଶ݁ି(ఒబభାఒబమ)௧ߣ − ଵߣଵଶଶ݁ିఒభమ௧−൫ߣ + ଵଶߣ + ∏(ߣଶ − ଵଶ)൯ߣ ቀ(ߣଵ + ଶ)݁ି(ఒబభାఒబమ)௧ߣ − ଵߣଵଶ݁ିఒభమ௧ቁ൱ߣ + ଶߣ − ଵଶߣ . (35)

The MRL is given by: ߤ୩ = ߦ)ܧ − ݇Δ|ߦ > ݇Δ, ଵܻ, . . . , ܻ, ∏)
   = (1 − ∏) ൮ ଵߣ1 + ଶߣ + ଵߣ ൬ ଵଶߣ1 − ଵߣ1 + ଵߣଶ൰ߣ + ଶߣ − ଵଶߣ ൲ + ∏ ⋅ ଵଶߣ1 . (36)

By the time ݐ = 131 h, 70 data files were collected for #10 gearbox. The original data in A02 
and A03 are shown in Fig. 18. In accordance with the data processing method in Section 3, the 
residuals of RMS values are given in Fig. 19. 

 
Fig. 18. Original data of test run #10 

 
Fig. 19. RMS residuals for test run #10 

With the estimated model parameters and the observation residuals of sampling files of #10 
gearbox, the conditional reliability functions can be updated using the Eq. (36) and the observation 
values obtained in each sampling. The conditional reliability functions corresponding to files 65 
to 70 are shown in Fig. 20. The probability density functions from files 65 to 70 are shown in  
Fig. 21, where “*” represents the actual residual life. The corresponding mean residual lives are 
shown in Fig. 22. The predicted RUL is 18.28 hours at file 60. It changes a little up to file 65, 
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meaning that the gearbox operates under a relatively good state. The MRL decreases to 
14.13 hours after file 68, which indicates that the gearbox runs in the warning state. It can be found 
that the actual RUL from file 68 is 14.45 hours, and from file 70 is 13.45 hours, which are very 
close to the predicted RUL values. Thus, the proposed life prediction approach is applicable to 
predict the RUL for the gearboxes. 

 
Fig. 20. Conditional reliability function 

 
Fig. 21. Probability density function 

 
Fig. 22. Remaining useful life prediction for #10 gearbox 

4.3. Comparison with other prediction methods 

In this subsection, the RUL prediction based on HMM is compared with other commonly used 
prediction methods: (i) stochastic filtering model (SFM) and (ii) Wiener process [26]. 

In SFM, the unobservable states and the variables related to observable states are used to 
establish a state space model to describe the degradation process of the system. Suppose that the 
condition monitoring data ݕ in the good and warning states follow the two-parameter Weibull 
distribution, which is denoted by ݂(ݕ; ,ߙ  is the shape ߚ is the scale parameter and ߙ where ,(ߚ
parameter. Therefore, the relationship between ݕ and RUL has the following form: 

(ݎ|ݕ) = ൜(ݕ) = ;ݕ)݂ ,ߙ (ᇱݎ|ᇱݕ),in   the   good  state   ,(ߚ = ;ᇱݕ)݂ ,′ߙ in  the  warning state. (37)   ,(′ߚ

Further, the stochastic relationship between the current condition monitoring data ܻ ᇱ obtained 
when the gear system starts in the warning state and RUL ݎᇱ is given by: 

ᇱหݎ൫ ܻᇱ൯ = ିଵᇱݎ൫ᇱ൯ݎᇱหݕ൫ ห ܻିଵᇱ ൯ ିଵᇱݎ൫ᇱ൯ݎᇱหݕ൫ ห ܻିଵᇱ ൯݀ݎᇱஶ = ∏ ᇱݎ൫ᇱ൯ݎ|ᇱݕ൫ + ᇱݐ − ᇱݐ ൯ୀଵ ∏ ᇱݎ൫ᇱ൯ݎᇱหݕ൫ + ᇱݐ − ᇱݐ ൯݀ݎᇱୀଵஶ  , (38)

where ݐᇱ  is the first time when failure occurs. 
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The unknown model parameters in SFM can be estimated using maximum likelihood 
estimation (MLE). Thus, the RUL can be further obtained. 

Next, the Wiener process is employed to model the deterioration of the gearboxes. Let ܺ(ݐ) 
be the degradation measure at time ݐ. In general, the Wiener process can be represented as the 
following form: ܺ(ݐ) = ݐߣ + (39) ,(ݐ)ܤߪ

where (ݐ)ܤ is the standard Brownian motion, 0)ܰ~(ݐ)ܤ, ߣ ,(ݐ > 0 is the drift parameter, ߪ > 0 
is the diffusion coefficient.  

Denoted by ݓ is the failure threshold, thus the life of the gear system ܶ is defined by the first 
time that the degradation measure is above the failure threshold, which is given by: ܶ = infሼ(ݐ)ܺ :ݐ ≥ (0)ܺ|ݓ < ሽ. (40)ݓ

From Eq. (40), the PDF of the RUL can be computed as follows: 

்݂ (ݐ) = ଷݐߨ2√ߪݓ exp ቆ− ݓ) − ݐଶߪଶ2(ݐߣ ቇ. (41)

Therefore, the expectation of RUL is given by: ܧሾܴܷܮሿ = ݓ) − (42) .ߣ/(ݔ

The data from files 60 to 70 are selected for MRL prediction. At each sampling epoch, the life 
prediction is performed when the new observations are available, and then the predicted values 
using SFM and the Wiener process are compared with that using HMM. Meanwhile, the relative 
errors (RE) between actual remaining lives (ARL) and the prediction results using different 
models are calculated, which is given by: ܴܧ = ܮܴܣ − ܮܴܣܮܴܯ × 100 %. (43)

The prediction results are shown in Table 3. Table 3 evidences that with the increased number 
of collected data, the RE of the prediction results using HMM are smaller than those using SFM 
and Wiener process, which are closer to the ARL. The average RE using HMM is 3.90 %, while 
using SFM is 13.60 % and the Wiener process is 7.47 %. Thus, the life prediction method proposed 
in this paper yields better results than other methods. 

Table 3. Comparison of RUL prediction and RE using different models 

File No. ARL RUL RE 
HMM SFM Wiener process HMM SFM Wiener process 

60 18.45 18.28 20.34 19.50 0. 92 10.24 5.69 
61 17.95 18.20 20.32 19.62 1.36 12.85 9.05 
62 17.45 18.09 20.18 19.21 3.47 14.80 9.54 
63 16.95 18.30 20.12 19.02 7.32 17.18 11.22 
64 16.45 18.21 20.42 18.89 9.54 21.52 13.22 
65 15.95 17.82 19.63 18.5 10.14 19.95 13.82 
66 15.45 16.30 19.32 16.47 4.61 20.98 5.53 
67 14.95 14.87 16.32 15.24 0.43 7.43 1.57 
68 14.45 14.13 15.71 15.02 1.73 6.83 3.09 
69 13.95 14.05 14.45 13.86 0.54 8.13 4.93 
70 13.45 13.96 12.23 12.29 2.87 9.65 4.55 
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5. SPRT of the gearboxes 

5.1. SPRT for Weibull distribution 

When the gearbox shut down due to failure, the failure time was substituted into the sequential 
decision diagram and a decision was made. If the failure time point plotted in the “accept” or 
“reject” area, stop the test and make the decision to “accept” or “reject” the hypotheses; if the 
point plotted in the “test continuing” area, then no decision will be made and the test needs to be 
continued until the next failure for further analysis. Fig. 23 exhibits the SPRT decision diagram 
for Weibull distribution using MRL predictions based on HMM and true life value. 

 
Fig. 23. The test judgment figure using Weibull SPRT 

As illustrated in Fig. 23, the life data of the first three gearboxes with failures were put into 
the SPRT decision diagram for Weibull distribution, finding that three points all plotted in the 
“test continuing” area, while the life data point of the fourth gearbox plotted in the “accept” area, 
leading to the “accept” decision. The residual life predicted from the 70th file of the #10 gearbox 
is 13.96 h, which is very similar to the ARL of 13.45 h. Using the actual failure time of the #10 
gearbox, the decision to “accept” is obtained. Thus, the proposed model can be applied to the 
prediction of the residual life of the gearbox degeneration system.  

5.2. Comparison with other compliance methods 

We will now compare the proposed SPRT with other reliability sequential compliance  
methods. It is known that GJB 899A-2009 [7] and MIL-STD-781D [8] provide the standard SPRT 
for exponential life distribution. Thus, we first consider the exponential SPRT. The four true 
failure times of the gearboxes and three prediction values of the fourth gearbox were substituted 
into the exponential SPRT, the results are presented in Fig. 24. As illustrated in Fig. 24, the life 
data of the first three gearboxes with failure was put into the SPRT decision diagram for 
exponential distribution. It was found that the first three points all plotted in the “test continuing” 
area. While the true value and the prediction values that obtained using HMM, SFM and Wiener 
process all plotted in the “test continuing” area. Neither a decision to “accept” nor “reject” the 
hypotheses can be made for all four gearboxes using the SPRT for exponential distribution. 

We then consider the SPRT decision diagram for Weibull distribution using true values and 
prediction values. Fig. 25 shows the first three points all plotted in the “test continuing” area, 
which is similar to the results obtained using exponential SPRT. The fourth life prediction values 
obtained using SFM and Wiener process all plotted in the “test continuing” area. However, both 
the prediction value using HMM and the true value plotted in the “accept” area, indicating that 
the decision to “accept” the hypotheses can be made.  

It can be seen from Fig. 24 and Fig. 25 that adopting different life prediction methods and 
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SPRT methods will lead to quite different decisions. In the SPRT for exponential distribution, 
using the life prediction values and the true values, one can hardly determine whether to accept or 
reject the hypotheses before all the samples fail. To make further analysis, new samples must be 
provided for testing. Furthermore, there is no reason to use the SPRT for exponential distribution 
because the life of the gearboxes in fact obeys Weibull distribution. Better results can be achieved 
when adopting the SPRT for Weibull distribution using HMM for RUL prediction. We can accept 
the hypotheses according to the fourth prediction data which is consistent with the results using 
the ARL value. While based on the life prediction values that used SFM and the Wiener process, 
neither decision to accept or reject the hypotheses can be made, and the test must continue for 
further decision making. The comparison shows the efficacy of the prediction method based on 
HMM and the proposed SPRT for Weibull distribution. 

 
Fig. 24. The test judgment figure  

using exponential SPRT 

 
Fig. 25. The test judgment figure  

using Weibull SPRT 

Xin Li contributed to the data analysis and manuscript preparation. Jing Cai approved the final 
version. Hongfu Zuo contributed to the conception of the study. Xi Chen performed the derivation 
of the reliability sequential method. Huijie Mao helped perform the comparison. Yutong Xu 
helped perform the analysis with constructive discussions. 

6. Conclusions 

A novel SPRT method for a partially observable deterioration gear system was proposed in 
this paper. Specific to the reality that the life of gearboxes obeys the Weibull distribution rather 
than the exponential distribution, the SPRT method for Weibull distribution was derived, making 
up for the existing standards, in which the SPRT method only applied to exponential distribution. 
In order to save test time and reduce the cost, a life prediction model was established using history 
failure data and existing monitoring data for the life prediction of the operational products. The 
predicted values were transformed to life failure data used in the SPRT method for Weibull 
distribution for further decisions. The degradation process of gearboxes was described by a 3-state 
continuous time HMM. Using the healthy data portion of the TSA signals to build a VAR model, 
the residuals of the failure data and suspension data were obtained, which were used to estimate 
the parameters in the HMM with the EM algorithm. The distribution of the RUL and the MRL 
were calculated and updated with the posterior probability that the system is in the warning state. 
Meanwhile, the explicit expressions of RUL and MRL were given. We compared the predicted 
values using HMM with the actual values, which were found to be in agreement with the true 
values, verifying the validity of the residual life modeling. The life prediction model proposed in 
this paper was also compared with the methods based on the SFM and Wiener process. The results 
showed that the HMM was much closer to the actual deterioration process with the smallest RE. 
The comparison between SPRT for Weibull distribution and the standard SPRT for exponential 
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distribution using different life prediction models further illustrated the limitations of the standard 
SPRT method, and fake assumptions of the life distributions may lead to undesirable results. 

In this paper, we have derived the SPRT method for Weibull distribution and employed the 
continuous time HMM for life prediction. For future studies, a more general hidden semi-Markov 
model can be considered, in which the sojourn time for each state obeys the general Erlang 
distribution, which could be a suitable topic for future research. 
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Appendix 

Using Kolmogorov’s backward differential equations, for all states ݅, ݆, and times ݐ ≥ 0: 

ܲᇱ (ݐ) = ଵߣ)− + (ଶߣ ܲ(ݐ), ܲଵᇱ (ݐ) = ଵߣ ଵܲଵ(ݐ) − ଵߣ) + (ଶߣ ܲଵ(ݐ), ܲଶᇱ (ݐ) = ଵߣ ଵܲଶ(ݐ) + ଶߣ ଶܲଶ(ݐ) − ଵߣ) + (ଶߣ ܲଶ(ݐ), ଵܲଵᇱ (ݐ) = ଵଶߣ− ଵܲଵ(ݐ), ଵܲଶᇱ (ݐ) = ଵଶ൫ߣ ଶܲଶ(ݐ) − ଵܲଶ(ݐ)൯. 
Taking Laplace transformation of the above equations yields: ݏ ෨ܲ(ݏ) − 1 = ଵߣ)− + (ଶߣ ෨ܲ(ݏ), ݏ ෨ܲଵ(ݏ) = ଵߣ ෨ܲଵଵ(ݏ) − ଵߣ) + (ଶߣ ෨ܲଵ(ݏ), ݏ ෨ܲଶ(ݏ) = ଵߣ ෨ܲଵଶ(ݏ) + ݏ/ଶߣ − ଵߣ) + (ଶߣ ෨ܲଶ(ݏ), ݏ ෨ܲଵଵ(ݏ) − 1 = ଵଶߣ− ෨ܲଵଵ(ݏ), ݏ ෨ܲଵଶ(ݏ) = ݏଵଶߣ − ଵߣ) + (ଶߣ ෨ܲଵଶ(ݏ), 

where the Laplace transformation of ܲ(ݐ) is defined by ෨ܲ(ݏ) =  ܲ(ݐ)݁ି௦௧݀ݐஶ , and ݏ is a 
complex number frequency parameter. 
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Solving for ෨ܲ(ݏ) we obtain: ෨ܲ(ݏ) = ݏ + ݏ)ଵଶߣ + ݏ)(ܽ + ܾ),     ෨ܲଵ(ݏ) = ݏ)ଵߣ + ݏ)(ܽ + ܾ),    ෨ܲଵଵ(ݏ) = ݏ + ଵߣ + ݏ)ଵଶߣ + ݏ)(ܽ + ܾ), 
where: 

ܽ = ଵߣ + ଶߣ + ଵଶߣ − ܿଵଶ2 ,     ܾ = ଵߣ + ଶߣ + ଵଶߣ + ܿଵଶ2 , ܿ = ଵߣ) + ଶ)ଶߣ + ଵଶଶߣ − ଵߣ)ଵଶߣ2 +  .(ଶߣ
Taking the inverse Laplace transformation of ෨ܲ(ݏ), ෨ܲଵ(ݏ) and ෨ܲଵଵ(ݏ): 

ܲ(ݐ) = ݁ି௧ + ଵଶߣ − ܾܽ − ܽ (݁ି௧ − ݁ି௧) = ݁ି(ఒబభାఒబమ)௧, 
ܲଵ(ݐ) = ଵܾߣ − ܽ (݁ି௧ − ݁ି௧) = ଵ൫݁ିఒభమ௧ߣ − ݁ି(ఒబభାఒబమ)௧൯ߣଵ + ଶߣ − ଵଶߣ , 
ଵܲଵ(ݐ) = ݁ି௧ + ଵߣ + ଶߣ − ܾܽ − ܽ (݁ି௧ − ݁ି௧) = ݁ିఒభమ௧. 

Since ∑ ܲ(ݐ)ଶୀ = 1 , ݅ =  0, 1, 2, so the probability transition matrix ܲ(௧)  is given by 
Eq. (35). 
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