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Abstract. The dynamics response and power flow propagation in the L-shaped beam with finite 
dimension were investigated. A L-shaped beam dynamic model was established on the basis of 
Timoshenko beam theory (TBT) and Euler-Bernoulli beam theory (EBT). The analytical solution 
was obtained and the beam flexural and longitudinal motion was described by using the traveling 
wave approach. The effects of shear distortion and rotary inertia on the total power flow and its 
components were examined. Results shown that the structure resonant frequencies are obviously 
affected by the shear distortion and rotary inertia, especially for the medium and high frequency 
ranges. The power flow amplitude is obviously increased on the premise of considering the 
longitudinal vibration. Consequently, the longitudinal vibration should be considered for the 
power flow and its components in the L-shaped beam. 
Keywords: finite L-shaped beam, Timoshenko beam, Euler-Bernoulli beam, power flow, wave 
approach. 

1. Introduction 

Finite L-shaped beams are usually encountered in engineering device and structure, such as 
the ship hull, aircraft fuselages and satellite structures. For example, the deployable truss structure 
and the camera support structure of satellites are a kind of girder structure which usually is 
modeled as a finite L-shaped beam. Vibration energy is introduced by external force excitation, 
such as the reaction flywheel in satellite and the engine rotor of ship, which can induce the whole 
structure vibration. However, the vibration energy propagating through the finite beam structures 
is mostly investigated by the Euler-Bernoulli beam theory (EBT) and the influence of longitudinal 
vibration is seldom discussed. Further, the shear distortion and rotary inertia are excluded in the 
EBT, which would result in misestimating the natural frequencies of L-shaped beam structure. 
Fortunately, the Timoshenko beam theory (TBT) is available to research the vibratory power flow 
propagation in the finite L-shaped beam. 

Many research papers have been published about the vibration propagation and power flow of 
the beam and plate structures. Zhao et al. studied the disturbance propagation and active vibration 
control in complex space truss structures based on advanced Timoshenko theory using traveling 
wave approach. The numerical results indicate that dynamic responses are more accurate using 
the Timoshenko beam model, especially for the medium and high frequency ranges [1]. Mei 
studied the active control of coupled bending and axial vibrations in L-shaped and portal planar 
frame structures using traveling wave approach. Both Euler-Bernoulli and Timoshenko bending 
theory were used to modeling and controlling the flexural vibrations in planar frames. The 
numerical results shown that the rotary inertia and shear distortion should be taken into account 
for the higher frequencies, especially for transverse dimensions are not negligible with respect to 
the wavelength [2]. Lin presented the analytical solution for the vibration response of ribbed plate 
with all boundary clamped by using traveling wave method, and the ribbed plate experimental 
investigation provided verification results to the analytical solution [3]. Kang and Riedel presented 
the coupling effects of three elastic wave modes (flexural, tangential, and radial shear) on the 
dynamics of a planar curved beam. The contributions of the dynamic and high-order elastic 
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coupling terms to the response of a thick curved beam are quite significant. Therefore, the coupling 
terms should not be neglected for an accurate analysis of a thick curved beam with a large 
curvature parameter [4]. 

The disturbance propagation and active vibration control of a finite L-shaped beam was studied 
by using the traveling wave approach based on Euler-Bernoulli theory. The calculation results 
indicate that the dynamics responses calculated by traveling method are more precise than those 
by FEM model [5]. Mei studied the active control of bending vibrations in beams by using the 
hybrid approach based on the advanced Timoshenko theory. He found that the hybrid approach 
has better broadband active vibration control performance than that of modal or wave control 
alone [6]. Sniady studied the dynamical response of a finite Timoshenko beam excited by a 
constant velocity moving force with simply support boundary conditions [7]. Mei analyzed the  
in-plane vibration of H- and T-shaped planar frame structures by using the wave vibration 
approach based on Timoshenko beam theory. He found the effects of rotary inertia and shear 
distortion become important at higher frequencies and the types of external excitations not change 
the structure resonance frequencies [8]. Using a developed analytical method which included the 
rigid and nonrigid connectors of practical interest, Li et al. investigated the vibrations and power 
flow between two-coupled beams with elastically restrained boundary conditions. Results 
revealed that the current method has excellent agreement with the FEA solution and can extend to 
more complex structures or systems composed of beams [9]. 

Audrain investigated the finite beam with piezoelectric patch control actuator and 
accelerometer probe error sensors for structural intensity. They found that the structure intensity 
control is more effective than the acceleration control, and the intensity control allows the error 
sensors to placed closer to the control source and the disturbance, while preserving a good control 
performance [10]. Kessissoglou presented the power flow propagation in the L-shaped plates and 
the effects of in-plane waves on the power flow are analyzed by the combination of the modal 
method and the traveling wave method. Numerical simulations show that the in-plane waves raise 
total power at the structural resonances and the effect increases as the frequency increases [11]. 
Carvalho and Zindeluk investigated the active control of waves in the Timoshenko beams using 
forces or moment pairs [12]. Patrice et al. analyzed the instantaneous structure intensity active 
control of a beam covered with piezoelectric patch (the control source) and piezoelectric strain 
sensors (PVDF) by using theoretical and experimental approaches. They found that this control 
approach can achieve a high attenuation for controlling the harmonic disturbance [13]. 

In the present investigation, the dynamics response and power flow propagation of a finite  
L-shaped beam under a concentrate external force were studied by EBT and TBT. The traveling 
wave approach is utilized to calculate the dynamics response and power flow of the finite L-shaped 
beam. The power flow is presented in the spectrum form. The power flow results are calculated 
by the EBT and TBT for investigation the influence of shear distortion and rotary inertia. 
Moreover, the influence of the longitudinal vibration on the power flow and the components in 
high frequency range were studied too. 

2. Flexural and longitudinal vibration of Timoshenko coupled beams  

The geometric model of a finite L-shaped beam and the coordinate system are presented in  
Fig. 1. The L-shaped beam is clamped at the boundary edges corresponding to ݔଵ =  0 and  ݔଶ = ଵݔ ௫ଶ. The junction corner of the two beams corresponding toܮ = ଶݔ ௫ଵ andܮ = 0. The two 
beams have the same material, thickness and width for mathematical simplicity. The  
Euler-Bernoulli beam theory and Timoshenko beam theory are used to investigate the influence 
of beam shear distortion and rotary inertia on the power flow in the beam structure.  

The EBT model considers the lateral inertia and elastic forces caused by transverse bending 
deflection, that is, the effects of rotary inertia and shear distortion are neglected. The difference 
between EBT and TBT is that the latter includes the effects of rotary inertia of mass and the shear 
distortion, which is important when the transverse dimensions are not negligible with respect to 
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the wavelength. The governing equation of the bending and slop displacement of Timoshenko 
beam for the external forces can be expressed as follows [2, 6]: 

ߢܣܩ ቈ∂߰(ݔ, ݔ∂(ݐ − ∂ଶݔ)ݓ, ଶݔ∂(ݐ  + ܣߩ ∂ଶݔ)ݓ, ଶݐ∂(ݐ = ,ݔ)݂ ܫܧ(1) ,(ݐ ∂ଶ߰(ݔ, ଶݔ∂(ݐ + ߢܣܩ ቈ∂ݔ)ݓ, ݔ∂(ݐ − ,ݔ)߰ (ݐ − ܫߩ ∂ଶ߰(ݔ, ଶݐ∂(ݐ = 0, (2)

where ݔ is the position along the beam axis, ݐ the time, ݓ the transverse displacement of the center 
line of the beam, ܫ the area moment of inertia of beam cross section, ܣ the beam cross-section 
area, ߩ the material density, ܧ the Young’s modulus, ܩ = ܧ ሾ2(1 + ⁄ሿ(ߤ  the shear modulus, ߤ the 
Poission’s ratio, ߢ  the Timoshenko shear factor, ߰  the slope due to bending, and ݂(ݔ, (ݐ  the 
externally applied force. 

 
Fig. 1. Geometrical description and coordinate system for the L-shaped beam 

By employing the traveling wave approach, the transverse displacement and shear slope of the 
finite beam can be written as [6]: ݔ)ݓ, ߱) = ଵ(߱)݁భ௫ܥ + ଶ(߱)݁మ௫ܥ + ଷ(߱)݁ିభ௫ܥ + ,ݔ)߰ସ(߱)݁ିమ௫, (3)ܥ ߱) = ݆ ܲܥଵ(߱)݁భ௫ + ܰܥଶ(߱)݁మ௫ − ݆ ܲܥଷ(߱)݁ିభ௫ − ܰܥସ(߱)݁ିమ௫, (4)

where: 

ܲ = ݇ଵ ቆ1 − ߱ଶ݇ଵଶ ௦ଶቇ,   ܰܥ = ݇ଶ ቆ1 + ߱ଶ݇ଶଶ ௦ଶቇ, (5)ܥ

݇ଵ = ቐ12 ቈ൬ ௦൰ଶܥ1 + ൬ܥܥ൰ଶ ߱ଶ + ඨ߱ଶܥଶ + 14 ቈ൬ ௦൰ଶܥ1 − ൬ܥܥ൰ଶଶ ߱ସቑଵ/ଶ, (6)

݇ଶ = ቐቮ12 ቈ൬ ௦൰ଶܥ1 + ൬ܥܥ൰ଶ ߱ଶ − ඨ߱ଶܥଶ + 14 ቈ൬ ௦൰ଶܥ1 − ൬ܥܥ൰ଶଶ ߱ସቮቑଵ/ଶ, (7)

ܥ = ඨܥ   ,ܣߩܫܧ௦ = ඨܣߩߢܣܩ ܥ   , = ඨ (8) .ܣߩܫߩ

The unknown wave amplitude ܥ(߱) for ݅ = 1,…, 4 can be obtained with the given boundary 
conditions. For the finite rod longitudinal vibration, the quasi-longitudinal wave solution can be 
obtained by the travelling wave approach, which can be written as [5]: 
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,ݔ)ݑ ߱) = ଵ(߱)݁ಽ௫ܤ + ଶ(߱)݁ିಽ௫, (9)ܤ

where ݇ = ߱ඥܣߩ ⁄ܧ√  is the quasi-longitudinal wave number, and ܤଵ(߱)  and ܤଶ(߱)  the 
unknown wave displacement amplitudes, which can be determined by the boundary condition. 
The beam vibration information of the transverse and longitudinal disturbance is represented by 
Eqs. (3), (4) and (9). Once these unknown wave displacement amplitudes are obtained, the beam 
dynamic response can be calculated. The dynamics response of beam structures can be calculated 
by combining the travelling approach and substructure approach. Therefore, the travelling 
approach and substructure approach are employed to calculate the dynamic response of the  
L-shaped beam. 

The external force location can be treated as the continuous condition. The governing 
equations of the flexural and longitudinal displacement in beam 1 can be written as: ݓଵ௶(ݔଵ, ߱) = ଵ(߱)݁భ௫భܥ + ଶ(߱)݁మ௫భܥ + ଷ(߱)݁ିభ௫భܥ + ଵݔ   ,ସ(߱)݁ିమ௫భܥ ≤ ,ଵݔ)௶, (10)߰ଵݔ ߱) = ݆ ܲܥଵ(߱)݁భ௫భ + ܰܥଶ(߱)݁మ௫భ       −݆ ܲܥଷ(߱)݁ିభ௫భ − ܰܥସ(߱)݁ିమ௫భ, (11)ݓଵ௶௶(ݔଵ, ߱) = ହ(߱)݁భ௫భܥ + (߱)݁మ௫భܥ + (߱)݁ିభ௫భܥ + ݔ    ,మ௫భି݁(߱)଼ܥ < ଵݔ ≤ ,ଵݔ)௶௶௫ଵ, (12)߰ଵܮ ߱) = ݆ ܲܥହ(߱)݁భ௫భ + ܰܥ(߱)݁మ௫భ       −݆ ܲܥ(߱)݁ିభ௫భ − ଼ܰܥ(߱)݁ିమ௫భ, (13)ݑଵ(ݔଵ, ߱) = ଵ(߱)݁ಽ௫భܤ + ଶ(߱)݁ିಽ௫భ. (14)ܤ

The governing equations of flexural and longitudinal displacement in beam 2 can be  
written as: ݓଶ(ݔଶ, ߱) = ଽ(߱)݁భ௫మܥ + ଵ(߱)݁మ௫మܥ + ଵଵ(߱)݁ିభ௫మܥ + ,ଶݔ)ଵଶ(߱)݁ିమ௫మ, (15)߰ଶܥ ߱) = ݆ ܲܥଽ(߱)݁భ௫మ + ܰܥଵ(߱)݁మ௫మ       −݆ ܲܥଵଵ(߱)݁ିభ௫మ − ܰܥଵଶ(߱)݁ିమ௫మ, (16)ݑଶ(ݔଶ, ߱) = ଷ(߱)݁ಽ௫మܤ + ସ(߱)݁ିಽ௫మ. (17)ܤ

There sixteen unknown flexural, shear slope and longitudinal wave displacement amplitudes 
corresponding to ܥ(߱) for ݅ = 1,…, 12 and ܤ(߱) for ܽ = 1,…, 4. Sixteen equations could be 
developed from the boundary conditions at the clamped edges, continuity conditions at the 
external point force location and coupling conditions at the corner junction of the two beams of 
the L-shaped beam structure. The six boundary conditions at the clamped edges can be written as: ݓଵ௶(ݔଵ, ߱)|௫భୀ = ,ଶݔ)ଶݓ ߱)|௫మୀೣమ = ,ଵݔ)ଵݑ(18) ,0 ߱)|௫భୀ = ,ଶݔ)ଶݑ ߱)|௫మୀೣమ = 0, (19)߰ଵ௶(ݔଵ, ߱)|௫భୀ = ߰ଶ(ݔଶ, ߱)|௫మୀೣమ = 0. (20)

There are four continuity conditions at the external force location, the continuous equations at 
the beam 1 can be written as: ݓଵ௶(ݔଵ, ߱)|௫భୀ௫బ = ,ଵݔ)௶௶ଵݓ ߱)|௫భୀ௫బ,   ߰ଵ௶(ݔଵ, ߱)|௫భୀ = ߰ଵ௶௶(ݔଵ, ߱)|௫భୀ௫బ, (21)∂߰ଵ௶(ݔଵ, ݔ∂(߱ ቤ௫భୀ௫బ = ∂߰ଵ௶௶(ݔଵ, ݔ∂(߱ ቤ௫భୀ௫బ, (22)

ቈ∂ݓଵ௶(ݔ, ݔ∂(߱ − ߰ଵ௶(ݔ, ߱)ቤ௫భୀ௫బ − ቈ∂ݓଵ௶௶(ݔ, ݔ∂(߱ − ߰ଵ௶௶(ݔ, ߱)ቤ௫భୀ௫బ = − (23) .ߢܣܩܨ

Finally, there are six continuity equations at the coupling junction of two beams corresponding 
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to ݔଵ = ௫ଵܮ  and ݔଶ =  0. The coupling equations at the junction place of two beams can be  
written as: ݓଵ௶௶(ݔଵ, ߱)|௫భୀೣభ = ,ଶݔ)ଶݑ ߱)|௫మୀ,   ݓଶ(ݔଶ, ߱)|௫మୀ = ,ଵݔ)ଵݑ− ߱)|௫భୀೣభ, (24)߰ଵ௶௶(ݔଵ, ߱)|௫భୀೣభ = ߰ଶ(ݔଶ, ߱)|௫మୀ,   ܯ௫ଵ௶௶(ݔଵ, ߱)|௫భୀೣభ = ,ଶݔ)௫ଶܯ ߱)|௫మୀ, (25)ܳ௫ଵ௶௶(ݔଵ, ߱)|௫భୀೣభ = ௫ܰ௫ଶ(ݔଶ, ߱)|௫మୀ,   ܳ௫ଶ(ݔଶ, ߱)|௫మୀ = − ௫ܰ௫ଵ(ݔଵ, ߱)|௫భୀೣభ, (26)

where ܯ௫ is the bending moment, ௫ܰ is the longitudinal force, ܳ௫ is the transverse shear force. 
The expression of ܯ௫, ௫ܰ and ܳ௫ can be written as [2, 5, 6]: 

௫ܯ = ܫܧ− ݔ∂߰∂ ,   ௫ܰ = ܣܧ ݔ∂ݑ∂ ,   ܳ௫ = ߢܣܩ− −߰ + ݔ∂ݓ∂ ൨. (27)

Using the sixteen developed equation, a matrix expression can be obtained as ሾߚሿ܆ = ۴, where ሾߚሿ  is a 16×16 matrix. ܆  and ۴  are the wave amplitude coefficients and force matrices, 
respectively, and are given by: ܆ = ሼܥଵ, ⋯ , ,ଵଶܥ ,ଵܤ ,ଶܤ ,ଷܤ ସሽ், (28)۴ܤ = ൜0,0,0,0,0,0,0, ߢܣܩܨ , 0,0,0,0,0,0,0,0ൠ். (29)

Solutions to the unknown wave amplitude coefficients in Eqs. (16) to (17) can be solved by ܆ = ሾߚሿିଵ۴. 

3. Flexural vibration only of Timoshenko coupled beams 

The power flow without considering the longitudinal vibration is calculated to investigate the 
influence of the longitudinal vibration. The longitudinal force and displacement have been taken 
into account at the coupling junction of the two beams, when equating the displacements and 
forces at the junction. The analysis has been reduced to consider only the flexural vibration in the 
beams, as described in Eqs. (10-13), (15) and (16). For the L-shaped beam without longitudinal 
vibration, there are only twelve unknown wave amplitude coefficients ܥ for ݅ = 1,…, 12. At the 
boundary edges, the boundary conditions have reduced to four, as described by Eqs. (18) and (20). 
The continuous conditions at the external point force location in beam 1 are unchanged. However, 
there are only four continuous coupling equations at the junction place of the two beams. The first 
and second equations are the continuity of moment and slope from beam 1 and beam 2, as 
described by Eq. (25). The last two equations are deduced by equating the displacements and 
forces at the corner junction. In this condition, the general expression for the longitudinal waves 
of the two beams can be written as: ݑଵ(ݔଵ, ߱) = ,ଶݔ)ଶݑ   ,ଵ(߱)݁ಽ௫భܪ ߱) = ଶ(߱)݁ିಽ௫మ, (30)ܪ

where ݑଵ is the reflected longitudinal wave in beam 1 due to the flexural wave in beam 2, ݑଶ is 
the transmitted longitudinal wave in beam 2 due to the flexural wave in beam 1 impinging on the 
corner junction. The displacement and force can be simplified by using the Eqs. (24) and (26), and 
the simplified continuous coupling equations can be written as: 

ߢܣܩ ቈ−߰ଵ௶௶(ݔଵ, ߱) + ,ଵݔ)௶௶ଵݓ∂ ݔ∂(߱  = ,ଵݔ)௶௶ଵݓ݆݇ܣܧ ߢܣܩ−(31) ,(߱ ቈ−߰ଶ(ݔଶ, ߱) + ,ଶݔ)ଶݓ∂ ݔ∂(߱  = ,ଶݔ)ଶݓ݆݇ܣܧ ߱). (32)
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The twelve unknown wave amplitude coefficients can also be solved by using the similar 
matrix expression ሾߚሿ܆ = ۴. For this case, the matrix ሾߚሿ is a 12×12, and the wave amplitude 
coefficients and force matrices are given by: ܆ = ሼܥଵ, ,ଶܥ ⋯ , ଵଶሽ், (33)۴ܥ = ൜0,0,0,0,0,0,0, ߢܣܩܨ , 0,0,0,0, ൠ். (34)

4. Vibratory power flow in the finite L-shaped beam 

The vibratory power flow transmission through beam cross section has three parts. The first 
one is the shear force power flow, the second one is the bending moment power flow and the last 
one is the longitudinal force power flow. The instantaneous power flow (time averaged vibration 
intensity) propagation through the cross section including the longitudinal vibration components 
can be written as: 

௫ܲ = −ൣ൫݆߱ݔ)ݓ, ߱)൯∗ܳ௫(ݔ, ߱) − ,ݔ)௫ܯ∗(݆߰߱) ߱) + ൫݆߱ݔ)ݑ, ߱)൯∗ ௫ܰ(ݔ, ߱)൧. (35)

The time averaged vibratory power flow can be expressed as: 

௫ܲ = −Reൣ൫݆߱ݔ)ݓ, ߱)൯∗ܳ௫(ݔ, ߱) − ,ݔ)௫ܯ∗(݆߰߱) ߱) + ൫݆߱ݔ)ݑ, ߱)൯∗ ௫ܰ(ݔ, ߱)൧. (36)

When the beam longitudinal vibration is neglected in the analysis, the above vibratory power 
flow expression simply reduces to: 

௫ܲ = −ൣ൫݆߱ݔ)ݓ, ߱)൯∗ܳ௫(ݔ, ߱) − ,ݔ)௫ܯ∗(݆߰߱) ߱)൧, (37)௫ܲ = −Reൣ൫݆߱ݔ)ݓ, ߱)൯∗ܳ௫(ݔ, ߱) − ,ݔ)௫ܯ∗(݆߰߱) ߱)൧. (38)

5. Numerical simulation and discussion 

The L-shaped beam shown in Fig. 1 is computed using travelling wave and substructure 
method. The material properties of the L-shaped beam are presented as follows: ߥ = ߩ  ,0.3  = 7800 kg/m3, ܧ = 2.0×1011 Pa. The beam structure damping is introduced in the analysis by 
using the form of complex Young’s modulus 1)ܧ + ߟ where ,(ߟ݆ = 0.001 is the structural loss 
factor. For the L-shaped beam structure, the two beams have the same crossing section. The width 
of the beam is ܾ = 0.02 m, and the height of the beam is ℎ = 0.02 m without specification. The 
lengths of the L-shaped beam are ܮ௫ଵ = 1.2 m and ܮ௫ଶ = 1.0 m respectively. The external point 
force is located at ݔ = 0.6 m of the beam 1, and ܨ = 1 N in calculation. 

In order to confirm the wave method and the effect of element number of FEM (finite element 
method) modal, the dynamics response of beam 2 was calculated by MSC/NASTRAN and wave 
method. The beam 2 of L-shaped beam has been meshed with 40 elements and 160 elements in 
the FEM model. The spectrum curves are plotted in Fig. 2. As shown in Fig. 2, the results of FEM 
and travelling wave was found to have good internal consistency in the low frequency range. 
However, the difference between FEM and wave method arises as the excitation frequency 
increase, and the difference is clear when the frequency increased.  

Besides, the FEM results are convergent to the wave method result when the element number 
of the FEM model increase. This is because of the uncertainty and the truncation error of the 
high-order modes in the FEM model. That is, the FEM is not as precise as the wave method for 
the media and higher frequency rang even though the FEM model employs more elements. The 
FEM is numerical method and the result is very sensitive to the element number, and the resonant 
frequencies are different with different element number even in the low frequency range. 
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Consequently, the structure must be meshed refinement in the high frequency range, which will 
result in excessive degrees of freedom and decrease the computational feasibility [11]. Differently, 
the travelling wave method is analytical solution and the results stability not changes as the 
frequency increase. Further, the wave method is suitable for calculating the whole frequency range 
response and there is no modal restriction. Therefore, the wave method is more suitable for the 
beam dynamics response analysis especially in the medium and high frequency range. 

The transverse displacement response in the beam 1 of L-shaped beam was calculated by TBT 
and EBT and the response location at ݔଵ = 0.6 m, as presented in Fig. 4. The flexural displacement 
of single beam at location ݔ = 0.6 m is shown in Fig. 4. The boundary conditions and dimension 
of the single beam are the same as the beam 1 of the L-shaped beam in Fig. 3. The displacement 
spectrum plots reveal that the results calculated by TBT and EBT are obvious different. The 
natural frequencies by TBT and EBT are coincidence with each other well in the lower frequency 
range.  

 
Fig. 2. Displacement response comparison at ݔଶ = 0.5 m of the beam 2 between FEM and wave method 

 
Fig. 3. Displacement response comparison  

of L-shaped beam calculated by TBT and EBT 

 
Fig. 4. Displacement response comparison  

of a single beam calculated by TBT and EBT 

However, the resonant frequencies are different as the excitation frequency increase. The 
natural frequencies obtained by TBT are obvious lower than those by EBT in high frequency rang. 
The phenomenon reason is that the beam shear distortion is not taken into account in the EBT, 
therefore the beam shear rigidity becomes infinite in the Euler-Bernoulli beam theory. Thus, the 
natural frequencies of Euler-Bernoulli beam are misestimated by the EBT. The influence of shear 
rigidity on the natural frequency of a beam can be neglected in the lower frequency rang. The 
shear rigidity of Timoshenko beam model is lower than that of Euler-Bernoulli beam model for 
the shear distortion and rotary inertia are taken into account in the TBT. Finally, the resonant 
frequencies calculated by TBT are lower than those by EBT, especially in higher frequency rang. 
The results indicate that the dynamic response should be calculated by TBT for TBT is more 
accurate than EBT. 
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From the displacement spectrum curves plotted in Fig. 3, the resonant peak number is 
obviously more different between TBT and EBT than that shown in Fig. 4. The reason is that the 
L-shaped beam structure includes the coupled beam 2, which will increase the structure natural 
frequencies number and enlarge the effect of shear distortion and rotary inertia. Therefore, the 
coupled effect of the beams in the L-shaped beam should be taken into account in the study of the 
dynamic response of each beam. 

The power flow results in beam 1 calculated by TBT and EBT with different height are plotted 
in Figs. 5 to 7 (the response location at ݔ = 0.9 m). From the results presented in Fig. 5, we can 
see that the spectrum curve of power flow calculated by TBT is consistent with that by EBT from 
the initial frequency range. However, the natural frequencies by TBT and EBT become different 
as the excitation frequency increase and the difference becomes more obvious in the medium and 
higher frequency range. As shown in Fig. 6, the difference of power flow by TBT and EBT are 
smaller and the resonant peak numbers are much denser than those in Fig. 5. The power flow 
spectrum results in Fig. 7 reveal that the natural frequencies by TBT and EBT are closer in the 
medium and higher frequency rang as the beam height decrease, and the resonant peaks are much 
denser compare to Figs. 5 and 6. This is because the beam cross section height is smaller than 
those in Figs. 5 and 6. The power flow results indicate that the shear distortion and rotary inertia 
will introduce obvious influence on the natural frequencies of L-shaped beam especially in the 
medium and higher frequency rang. The influence of shear distortion and rotary inertia will 
become more obvious as the beam cross section height increasing. 

 
Fig. 5. Comparison power flow in the beam 1 of the 

L-shaped beam calculated by TBT and EBT 
(cross-section: 0.03 m×0.03 m, dB ref: 10-12 W) 

 
Fig. 6. Comparison power flow in the beam 1 of the 

L-shaped beam calculated by TBT and EBT  
(cross-section: 0.03 m×0.01 m, dB ref: 10-12 W) 

 

 
Fig. 7. Comparison power flow  

in the beam 1 of the L-shaped beam  
calculated by TBT and EBT (cross-section:  

0.03 m×0.005 m, dB ref: 10-12 W) 

 
Fig. 8. Comparison longitudinal force power flow  

in the beam 1 of the L-shaped beam calculated  
by TBT and EBT  

(cross-section: 0.03 m×0.03 m, dB ref: 10-12 W) 
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The longitudinal force power flow, transverse force power flow and moment power flow 
spectrum curves by TBT and EBT are presented in Figs. 8 to 10 (the response location at  ݔ = 0.9 m). The power flow spectrum curves shown in Figs. 8-10 give out that the transverse 
force power flow, moment power flow and the longitudinal force power flow are also obviously 
affected by the shear distortion and rotary inertia, and the influence law is the same as that depicted 
in  
Fig. 5. The results in Figs. 8-10 indicate that the shear distortion and rotary inertia will introduce 
obvious influence on the power flow components for the medium and higher frequency range, and 
the higher the frequency is the more obvious the influence is. 

 
Fig. 9. Comparison transverse force power flow  
in the beam 1 of the L-shaped beam calculated  

by TBT and EBT (crossing section:  
0.03 m×0.03 m, dB ref: 10-12 W) 

 
Fig. 10. Comparison moment power flow  

in the beam 1 of the L-shaped beam calculated  
by TBT and EBT (crossing section:  
0.03 m×0.03 m, dB ref: 10-12 W) 

 

 
Fig. 11. Comparison power flow in the beam 1  

of the L-shaped beam with and without longitudinal 
vibration calculated by TBT (crossing section:  

0.03 m×0.03 m, dB ref: 10-12 W) 

 
Fig. 12. Comparison power flow in a single  

beam with and without longitudinal vibration 
calculated by TBT (crossing section:  

0.03 m×0.03 m, dB ref: 10-12 W) 

In order to investigate the effect of beam longitudinal vibration on the vibratory power flow in 
the beam structure, the vibratory power flow with and without the longitudinal vibration in the 
beam 2 of L-shaped beam and a single beam are plotted in Figs. 11 and 12. The single beam 
dimension and material property are the same with the L-shaped beam. From the results shown in 
Fig. 11, we can see that the vibratory power flow is obviously affected by the longitudinal 
vibration. At the resonant peaks and the nearby region, the power flow is increased remarkably 
under the consideration of the longitudinal vibration. The beam longitudinal wave length is close 
to the flexural wave length as the excitation frequency increasing, which result in the longitudinal 
wave ingredient of vibratory power flow becomes obviously in the in the high frequency range. 
The flexural wave impinging the corner junction will induce longitudinal wave in the connected 
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beam and the longitudinal wave can transform into flexural wave as it travels through the corner 
junction. In high frequency range, the phenomenon becomes more obviously for the 
approximative wave length of longitudinal and flexural wave. 

It can be seen form Fig. 12 that the vibratory power flow curves are uniform regardless of the 
longitudinal vibration include or not. This is due to the flexural and longitudinal vibrations are 
independent with each other in the single beam. Therefore, the coupling and transformation 
between flexural and longitudinal vibration only appear in the beam connection point. The results 
indicate that the beam longitudinal vibration should be taken into account when calculating the 
beam connection structure vibratory power flow for obtaining more accurate analytical results. 
The influence of longitudinal vibration can be neglected on the condition there is no connection 
point in the beam structure. 

 
Fig. 13. Power flow in the beam 1  

and the contribution from the longitudinal  
and bending vibration calculated by TBT  

(cross-section: 0.03 m×0.03 m, dB ref: 10-12 W) 

 
Fig. 14. Comparison of the total power  

flow, bending vibration power flow and longitudinal 
power flow at the resonant frequencies by TBT 
(cross-section: 0.03 m×0.03 m, dB ref: 10-12 W) 

 

 
Fig. 15. Comparison of the transverse force  
power flow in the beam 1 with and without 
longitudinal vibration calculated by TBT  

(cross-section: 0.03 m×0.03 m, dB ref: 10-12 W) 

 
Fig. 16. Comparison of the moment power flow  

in the beam 1 with and without longitudinal  
vibration calculated by TBT (crossing section:  

0.03 m×0.03 m, dB ref: 10-12 W) 

For obtaining more meticulous observation into the increase in the L-shaped beam power flow 
when the longitudinal vibration is included, the contribution of the longitudinal vibration to the 
total power flow, transverse force power flow and moment power flow are presented in Figs. 13 
to 16. Fig. 13 shown the total power flow and the bending and longitudinal vibration power flow 
components in the high frequency range (response location at ݔ = 0.5 m in beam 2). The results 
in Fig. 13 depict that the longitudinal vibration modes can increase the total power flow at several 
resonant frequencies. The Fig. 14 indicates that the total power at 7993 Hz and 9153 Hz are 
obviously increased under consideration the longitudinal vibration. The influence of longitudinal 
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vibration on the total power flow at the other resonant frequencies can be neglected. The main 
body of the total power flow is the bending vibration component. Figs. 15 and 16 presented the 
comparison results of transverse force and moment power flow when the longitudinal vibration is 
included or not. The spectrum curves give out that not only the resonant peak amplitude of total 
power flow obviously increased, but also the transverse force and moment components on the 
condition the longitudinal vibration is included. This is due to the longitudinal mode offers an 
addition path for the flexural vibration energy, and the flexural and longitudinal vibration 
transform into each other when transmission through the beam corner junction. 

6. Experiment arrangement and results discussion 

For verifying the dynamic responses and power flow calculated by TBT are more accurate 
than those by EBT, the cantilever beam vibration experiment is designed for measuring the 
acceleration response and comparing the testing results with those obtained by TBT and EBT. The 
experiment rig used in this paper investigation is shown in Fig. 17. The length of the cantilever 
beam after being clamped on the steel base are measured as ܮ௫ = 0.42 m and the cross-section 
dimensions are ℎ = 0.0075 m and ݓ = 0.028 m. The cantilever beam is made of aluminum, the 
material properties of the beam are assumed to be: ܧ = 42×109 Pa, ߩ = 2700 kg/m3 and ߤ = 0.3 
in the theory calculation. The instruments used in the experiment include: Lab shop testing system 
(B&K); a twelve-channel data acquisition equipment (DAE B&K type 3560-D); two 
accelerometers (B&K type 4507); an Impact Hammer (B&K type 8206-002). 

 
Fig. 17. Illustration of the test-rig in the experiment 

 
Fig. 18. Theory and measured acceleration response 

of cantilever beam, ݔଵ = 0.105 m 

 
Fig. 19. Theory and measured acceleration response 

of cantilever beam, ݔଶ = 0.315 m 

In this experiment investigation, the impact hammer was applied at ݔ =  0.21 m. The 
measured acceleration results of the cantilever beam together with those calculated from the 
analytical results are plotted in Figs. 18 and 19. The theory acceleration curves presented in  
Figs. 18 and 19 are calculated by TBT and EBT respectively, and the response locations are  
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ଵݔ =0.105 m and ݔଶ = 0.315 m. The acceleration spectrum plots in Figs. 18 and 19 reveals that a 
good agreement has been found between the theory and measured results in the initial testing 
frequency range. However, the difference has been observed as the frequency increasing. The 
discrepancy between measured and TBT results is mainly due to the material property of the 
cantilever beam and the precision accuracy of testing environment in the experiment. The 
dynamics response also shown that the difference between measured and EBT results become 
more obvious than that between experiment and TBT as the frequency increasing. For the 
influence of shear distortion and rotary inertia is obviously increased as the frequency increasing. 
The comparison results between experiment and theory indicate that the TBT calculation results 
can properly estimate the beam structure dynamics response. The shear distortion and rotary 
inertia should be taken into account for accurately calculating the structure vibration energy 
propagation, especially for the medium and high frequency ranges. Therefore, the TBT should be 
used when analyzing the power propagation through the beam structures. 

7. Conclusions 

The finite L-shaped beam structure dynamics model is established on the basis of Timoshenko 
beam theory (TBT). The traveling wave approach is used to calculate the dynamic responses and 
vibratory power flow propagation of the finite L-shaped beam. The influence of beam shear 
distortion and rotary inertia on vibratory power flow is investigated by using TBT and EBT. The 
contributions of longitudinal vibration to the total power flow and the components are also 
investigated. Some conclusions inferred from the results of numerical simulation:  

1) The L-shaped beam flexural displacement response and power flow calculated by TBT are 
more accurate than the results by EBT. This is because the influence of the shear distortion and 
rotary inertia is taken into account in TBT. The natural frequencies calculated by TBT are lower 
than that by EBT, and the difference of natural frequencies becomes larger as the frequency 
increase. 

2) The vibratory power flow amplitude with longitudinal vibration higher than that without 
longitudinal vibration around the resonant frequencies. Note that the bending vibration dominates 
the vibratory power flow component. And the longitudinal vibration not only affects the total 
power flow but also affect the components of power flow. 
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