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Abstract. The mechanical vibration source signal collected by sensor often includes a variety of 
internal vibration source of contributions such as gears, bearings, shaft and so on. It is often hoped 
to achieve effective separation of the source signal in order to obtain better fault diagnosis result. 
Blind source separation of the failure signal of rolling element bearing is a challenging task due 
to the above reasons, especially in the case of single channel compound fault. A method of blind 
source separation of rolling element bearing’s single channel compound fault based on 
Shift-Invariant Sparse Coding (SISC) is proposed in the paper. The waveform characteristic of 
different fault signal has some difference in the structure even that the same impulse characteristics 
of signals are produced by different parts, and the difference can be captured by the SISC method 
with the following reasons: Firstly, a set of basis functions is trained and obtained by SISC feature 
self-study method (The number of the basis functions is big necessarily). Then the potential 
components are constructed using the corresponding obtained basis functions. At last, the 
clustering operation is carried out using the structural similarity of the potential components, and 
the clustering signals represent the different vibration source signals. Apply the traditional 
vibration signal handling method such as envelope demodulation to the obtained clustering signals 
respectively and better fault diagnosis results are obtained at last. 
Keywords: blind source separation, rolling element bearing, single channel, compound fault, shift 
invariant sparse coding. 

1. Introduction 

The rolling element bearing is the most widely used part in the rotating machinery. It is 
necessary to study the effective fault feature method of rolling element bearing to avoid 
catastrophic accident due to the failure of it. The Fast Fourier Transform (FFT) and envelope 
demodulation (ED) were the two traditional and classic methods to extract the fault features of 
rolling element bearing. However, the above two mentioned methods would not work effectively 
because the fault vibration signal of rolling element bearing is becoming more and more complex 
with the increasing complexity of rotating machinery. In recent decades, though several useful 
techniques such as Spectral kurtosis (SK) [1], Wavelet transform (WT) [2], Minimum entropy 
deconvolution (MED) [3, 4], Cyclostationary analysis [5, 6] and so on have been proposed for 
feature extraction of rolling element bearing, most of them are only effective for the single defect 
of rolling element bearing. Compound fault of rolling element bearing may occur in engineer 
practice, and now there are only very few effective signal processing based methods to diagnose 
the compound fault of rolling element bearing. Furthermore, Most of the of the current works on 
fault diagnosis of compound fault of rolling element bearing are focusing on intelligent algorithms 
such as Hidden Markov model (HMM), Artificial neural network and so on [7-11] which have the 
common shortage of time-consuming, so the fault diagnosis of rotating machinery could not be 
realized timely. So far, several signal processing based methods for fault feature extraction of 
rotating machinery have been proposed. If localized faults exist in both gear tooth and rolling 
bearing simultaneously it is difficult to tell the differences between the two types of defects. As 

https://crossmark.crossref.org/dialog/?doi=10.21595/jve.2016.17817&domain=pdf&date_stamp=2017-05-15


2428. BLIND SOURCE SEPARATION OF ROLLING ELEMENT BEARING’ SINGLE CHANNEL COMPOUND FAULT BASED ON SHIFT INVARIANT SPARSE 
CODING. HONGCHAO WANG, LIWEI LI, XIAOYUN GONG, WENLIAO DU 

1810 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. MAY 2017, VOL. 19, ISSUE 3. ISSN 1392-8716  

such, in paper [12] a new method was proposed to solve the problem by using the meshing 
resonance and spectral kurtosis algorithm together, and the effectiveness of the proposed method 
was validated via both simulated and experimental gearboxes vibration signal with compound 
faults. In paper [13] a hybrid systems named as HGSA-ELM for diagnosis of the compound fault 
of rolling element bearing was proposed, and the experimental results showed that HGSA-ELM 
achieved significant high classification accuracy compared with its original version and methods 
in literatures. A novel method based on the optimal variational mode decomposition and 
1.5-dimension envelope spectrum was proposed for detecting the compound fault of rotating 
machinery [14]. An improved CICA algorithm named constrained independent component 
analysis based on the energy method was proposed in order to realize single channel compound 
fault diagnosis of bearings and improve the diagnosis accuracy [15]. To improve the effectiveness 
of compound fault diagnosis in roller bearings, the paper presented a new method to solve the 
underdetermined problems and to extract fault features based on variational mode 
decomposition [16]. 

SISC [17, 18] is a new signal processing method based on sparse representation, and its 
application in fault diagnosis of the compound fault of rotating machinery is very limited. In paper 
[19] a redundant dictionary from a large number of existing signals was trained using SISC and 
the different bearing faults classification combined with intelligent algorithm was realized. From 
a different perspective, the basic idea of this paper is to penetrate into the underlying structure of 
the signal to realize noise cancellation and feature extraction. SISC is used here as the basis 
function learning algorithm to capture different structural characteristics buried in the signal. By 
decomposing the original signal simultaneously into these basis functions, fault related time series 
can be separated through optimal latent component filtering. So, the method proposed in this paper 
can be considered as a feature enhancing technique without requiring any prior knowledge. 

The paper is organized as follows. Section 2 is dedicated to sparse representation and SISC. In 
Section 3, the processes of SISC in fault diagnosis of the rolling element bearing compound fault 
are given. Section 4 is the simulation verifying the effectiveness of the proposed method. In 
Section 5 the experimental analyzed results of rolling element bearing’ three kinds of compound 
fault (inner race and outer race faults, outer race and rolling element faults, inner race and outer 
race and rolling element faults) are presented. Conclusions obtained from the above results are 
given in Section 6.  

2. SISC 

2.1. Sparse representation 

Mallat and Zhang put forward the idea of decomposing signal with the over-complete 
dictionary of atoms on basis of wavelet transform. The over-complete dictionary taking wavelet 
dictionary, Gabor dictionary and so on for example is over-complete which is composed of 
number of atoms. The sparse mode means representing the original signal using atoms as few as 
possible: 

ݔ = ݏܣ =  ܽ()
ୀଵ (1) .()ݏ

In the above equation, ݔ  is the analyzed discrete-time signal, ܣ = {ܽ(ଵ), ܽ(ଶ), … , ܽ()} is a 
redundant dictionary which can span the entire Hilbert space ܴே. If ݊ ≫ ܰ, the ܣ can be defined 
as over-complete dictionary. The coefficients for each atom are represented as ݏ = ,ଵݏ) ,ଶݏ … ,  .(ݏ

For the reason of over-completeness, there are numerous of methods for the solution of  ݏ = ,ଵݏ) ,ଶݏ … ,  ) in Eq. (1). The preference is made towards the one with the minimum ݈ normݏ
among the numbers of methods. The sparse decomposition is determined by: 
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min‖ݏ‖,      ݏ. ݔ    .ݐ = (2) .ݏܣ

The minimization of ݈  norm in Eq. (2) is a NP-hard problem which is difficult to solve. 
Therefore, alternative solutions such as MOF, BOB, MP and BP are proposed based on different 
strategies. MOF chooses the composition with minimum ݈ଶ norm of coefficients. BOB finds the 
orthogonal basis by minimizing the entropy measure of coefficients. MP selects atoms through a 
stepwise greedy approximation algorithm. BP selects the representation with minimum ݈ଵ norm. 
BP has advantages of better sparseness and accuracy compared with other algorithms, but suffers 
the shortages of slower computation speed. The comparison of the main sparse decomposition 
algorithms is shown in Table 1. More generally, sparse coding poses the following optimization 
problem to compute the maximum-a-posteriori (MAP) estimation of both ܣ = {ܽ(ଵ), ܽ(ଶ), … , ܽ()} and ݏ = ,ଵݏ) ,ଶݏ … ,  :(ݏ

min,ௌ     ቯݔ −  ܽ()ݏ()
ୀଵ ቯଶ

ଶ + ߚ ฮݏ()ฮଵ


ୀଵ . (3)

As demonstrated in Eq. (3), it has two issues: 1) sparse coefficients ݏsolving and 2) redundant 
dictionary ܣ design. 

Table 1. Comparison of sparse decomposition algorithms 
Algorithms Sparseness measurement Sparseness of the solution result Calculation speed Accuracy 

CM ݈ Optimal Very slow Very good 
BP ݈ଵ Very good Slow Very good 
MP Sub or local optimal Good Moderate Good 

FOCUSS ݈, 0 <  < 1 Very good Slow Very good 
MOF ݈ଶ Not good Very fast Poor 
IPM Sub or local optimal Good Fast Moderate 
BOB Sub or local optimal Good Fast Moderate 

2.2. SISC model 

Different from the traditional sparse representation model shown in Eq. (1), the model of SISC 
can be represented in Eq. (2): ݔ() =  ܽ() ∗ (,)ݏ + (4) ,()ߝ

where the basis function ܽ() ∈ ܴ, ݆ = 1, … , ݊ can be replicated at each time offset within the 
signal and they can appear at all possible shifts. Any signal ݔ() ∈ ܴ , ݅ = 1, … , ݉  could be 
encoded with a set of basis functions. ߝ() ∈ ܴ in Eq. (3) represents the addictive noise. Each 
basis function ܽ()  being used at all possible time shifts within ݔ()  is represented by the 
convolution operator * succinctly. The main difference between the SISC model and sparse 
representation model is that the basis functions in the former are allowed to be lower dimension 
than the input signal. Furthermore, the coefficients ݏ(,)  is a vector and the size of it is  ݏ(,) ∈ ܴିାଵ. The learning of basis functions and coefficients under the maximum-a-posteriori 
can be solved by the following optimization problem: 

min,ௌ      ቯݔ() −  ܽ() ∗ (,)ݏ
ୀଵ ቯଶ

ଶ
ୀଵ + ߚ ฮݏ(,)ฮଵ, , (5)



2428. BLIND SOURCE SEPARATION OF ROLLING ELEMENT BEARING’ SINGLE CHANNEL COMPOUND FAULT BASED ON SHIFT INVARIANT SPARSE 
CODING. HONGCHAO WANG, LIWEI LI, XIAOYUN GONG, WENLIAO DU 

1812 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. MAY 2017, VOL. 19, ISSUE 3. ISSN 1392-8716  

.ݏ ฮܽ()ฮଶଶ    .ݐ ≤ ܿ,    1 ≤ ݆ ≤ ݊. (6)

The value of ܽ() is prevented from becoming too large by the constrain shown in Eq. (6). The 
objective Eq. (5) is to convex one of ܣ and ܵ, so the solution of basis functionsܣcan be realized 
by fixing the coefficients ܵ, and solving the ܵ by fixing ܣ. 

2.3. SISC algorithm 

The optimization problem shown in Eq. (5) can be attributed to a very large sparse 
representation problem like Eq. (3) with tied parameters by expanding out the convolution. 
However, even moderate problem sizes will be infeasible to solve due to the reformulation would 
ignore the special structure in the Eq. (5). An efficient SISC algorithm will be introduced and used 
in the paper. 

The solution of sparse coefficients ݏ is a ܮଵ  regularized least squares problem if the basis 
function ܣ is fixed, and the problem can be reduced to an unconstrained quadratic optimization 
problem using feature-sign search algorithm [17]. Keeping the sparse coefficients ݏ fixed, and the 
solution of ܣ reduces objective function Eqs. (5)-(6) into a ܮଶ constrained optimization problem: 

min,ௌ      ቯݔ() −  ܽ() ∗ (,)ݏ
ୀଵ ቯଶ

ଶ
ୀଵ , (7)

.ݏ ฮܽ()ฮଶଶ    .ݐ ≤ ܿ,    1 ≤ ݆ ≤ ݊. (8)

Different components of basis functions will be coupled in the objective because each basis 
function can appear in any possible shift and each component of the basis function vector 
contributes to many different terms in the objective function. The solution to the above problem 
can turn to by transforming into the frequency domain because the convolution can be replaced 
by product: 

min  ቯݔො() −  ොܽ()̂ݏ(,)
ୀଵ ቯ

ୀଵ ଶ
ଶ, (9)

.ݏ .ݐ ฮܽ(ఫ) ฮଶଶ ≤ ܿ̂ = 1    ,ܭܿ ≤ ݆ ≤ ݊. (10)

In Eq. (9) the discrete Fourier transforms of basis function ܣ = {ܽ(ଵ), ܽ(ଶ), … , ܽ()}, the input 
signal ݔ() and the sparse coefficient ݏ(,) are represented by ܣመ = { ොܽ(ଵ), ොܽ(ଶ), … , ොܽ()}, ݔො() and ̂ݏ(,) respectively as shown in Eq. (9). The Parseval’s theorem is the theoretical guarantee of 
Eqs. (7-8) to Eqs. (9-10), which proves that the discrete Fourier transform scales the ܮଶ norm by 
a constant factor ܭ. So Eqs. (9-10) is equivalent optimization problem with regard to Eqs. (7-8), 
because their objective and constrains both consist of ܮଶ terms. A sum of quadratic terms can be 
obtained by decomposing the lagrangian to solve the problem, and each quadratic term depends 
on a single frequency component ܮ :ݐ൫ܣመ, ൯ߣ = (‖ݔො௧ − ௧ݏ̂ ොܽ௧‖ଶଶ + ොܽ௧∗ ∧ ොܽ௧)௧ − ܿ̂ଵ் (11) .ߣ

With dual variables ߣ ∈ ܴ, unit vector 1 ∈ ܴ, and: 
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ොܽ௧ = ቌ ොܽ௧(ଵ)⋮ොܽ௧()ቍ,     ݔො௧ = ቌݔො௧(ଵ)⋮ݔො௧()ቍ,     ∧= diag(ߣ),      ̂ݏ௧ = ቌ̂ݏ௧(ଵ,ଵ) ௧(ଵ,ଶ)ݏ̂ ௧(ଶ,ଵ)ݏ… ௧(ଶ,ଶ)ݏ̂ …⋮ ⋮ ⋱ቍ. 
Though it is hard to obtain the most optimal result in Eq. (11), it can be expressed as a function 

of only real variables using real and imaginary parts of ܣመ. The obtaining of ܣመ୫୧୬ can be optimizing 
over ܴ݁(ܣመ) and ݉ܫ(ܣመ): ܣመ௧୫୧୬ = ௧ݏ̂∗௧ݏ̂) +∧)ିଵ̂ݏ௧∗ݔො௧. (12)

The detailed optimization processes can be referred to paper [18]. 

3. The flow chart of the proposed method 

As to rolling element bearing fault signal, the feature of damaged races or cage or rolling 
element of bearings always takes on periodic impulse characteristic. In theory, the different 
impulses at different damage location can be represented by just one basis function, so SISC is 
very suitable to analyze the compound fault signal of rolling element bearing. The steps of the 
proposed method are given as following: 

Step1: Divide the one single channel compound observed fault signal ݔ into multi-segments ݔ  (݅ =  1,…, ݉ ) and get the corresponding time-domain feature ܽ()  of the observed signal 
segments ݔ  (݅ = 1,…, ݉) and using SISC self-learning algorithm. There are two reasons to 
segment the signal: 1) Too large training data will cause the SISC dictionary learning algorithm 
very time-consuming. 2) Each segment is donated as ݔ to make sure that at least one fault feature 
is contained in the segment as shown in Fig. 1. 

 
Fig. 1. The segments of the observed signal 

Step 2: Fix the time-domain feature ܽ() obtained in Step 1, and the sparse coefficients ݏ() of 
the observed signal ݔ based on ܽ() are obtained through SISC algorithm presented in Section 2.3. 

Step 3: The potential component ݈() are obtained based on ܽ() and ݏ(), and the normalized 
envelope spectrums of ݈() are calculated. 

Step 4: Vary the clustering number from 2 to ݊, and apply K-mean clustering algorithm to ݈() 
and the clustering results ߢ are obtained. Then the source signal ݔ are obtained by regrouping ݈() , and the regrouping equation is shown in Eq. (13). Besides, the mean value of Pearson 
correlation coefficient ߩ୫ୣୟ୬ (ߩ୫ୣୟ୬ will be discussed in the following content) is also computed 
to estimate clustering number: ݔ =  ݈()∈ೖ . (13)

Step 5: Find the minimum ߩ୫ୣୟ୬ obtained in Step 4, and the output signal corresponding to ߩ୫ୣୟ୬ is considered as the last estimated source signal. 
The overall flow chart of the above steps is shown in Fig. 2. 

xm3x2x
1x
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Fig. 2. The flow chart of the proposed method 

In the paper, the optimal clustering number is estimated using the Pearson correlation 
coefficient ߩ௫,௬ . The Pearson correlation coefficient ߩ௫,௬  between signal ݔ and signal ݕ can be 
computed using the following equation: 

௫,௬ߩ = ݔ)ൣܧ − ݕ௫)൫ߤ − ௬ߪ௫ߪ௬൯൧ߤ , (14)

where ߤ௫  and ߤ௬  represent the mean values of signal ݔ  and signal ݕ ௫ߪ .  and ߪ௬  are their 
corresponding standard deviations. ߩ௫,௬ is an index measuring the degree of correlation between 
two variables and its value varies from –1 to 1: 1 represents that the two variables are positively 
correlated, and 0 represents that the two variables are unrelated completely. It is evident that –1 
represents the two variables are correlated negatively. For each clustering number varying from 2 
to ݊, the estimated source signal ݔ can be reconstructed using Eq. (13). The Pearson correlation 
coefficient between any two estimated source signals can be calculated using the Eq. (14), and the 
Pearson correlation coefficient mean value ߩ୫ୣୟ୬  can be obtained. The optimal estimated 
clustering number can be obtained when the value of ߩ୫ୣୟ୬  is minimum, and the correlation 
characteristic among the source signals is weakest. 

4. Simulation 

The fault model of rolling bearing whose mathematical equation can be expressed as Eq. (15) 
[5, 20] is used to verify the feasibility of the proposed method. ߬ is the tiny fluctuation around 
mean period ܶ. Set the sampling frequency ௦݂ = 2560 Hz, and the shaft rotation frequency is  ݂ = 10 Hz. The inner race and outer race fault characteristic frequencies are ݂ = 105 Hz and ݂ = 32 Hz respectively. Assuming the random slide between rolling element and race is normally 
distributed whose standard deviation is 0.5 % of the shaft rotation ratio: 

( )jl

( )jl

k

kx

mean

mean

kx
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۔ۖەۖ
(ݐ)ݔۓ = (ݐ)ݏ + (ݐ)݊ =  ݐ)ℎܣ − ݅ܶ − ߬) + ܣ,(ݐ)݊ = ߨcos(2ܣ ݂ݐ + ߶) + (ݐ),ℎܥ = ݁ି௧cos(2ߨ ݂ݐ + ߶ఠ).  (15)

The outer race and inner race fault source signals and their combined signal are shown in  
Fig. 3: ܽ(ݐ) is the outer race fault signal, and ܾ(ݐ) is the inner race fault signal with ܽ(ݐ) +  (ݐ)ܾ
is their combined signal. According to the processes of the proposed method shown in Fig. 2, the 
source combined signal is segmented and the data length of each segment is 1024. The overlap 
ratio is 50 % and the data length of each basis function is 256. The obtained time-domain features ܽ(ଵ)-ܽ(଼) and their corresponding potential components ݈(ଵ)-݈(଼) are shown in Fig. 4. The mean 
value of Pearson correlation coefficients for each clustering number is shown in Fig. 5. It is evident 
that the mean value of Pearson correlation coefficient ߩ୫ୣୟ୬ is minimum when clustering number 
is 2 based on Fig. 5, so the number of source signals is 2. The last re-constructed signal 1 and its 
envelope demodulation spectrum are shown in Fig. 6(a) and (b) respectively, and the reconstructed 
signal 2 and its envelope demodulation spectrum are shown in Fig. 6(c) and (d) respectively from 
which the inner race and outer race fault source signals are separated successfully. 

 
Fig. 3. Mixed signal of multi-fault bearing Fig. 4. Time features and latent components 

 
Fig. 5. The mean value of correlation coefficients for each clustering number 

In the above simulation, the noise is not considered, and the white noised is added in the mixed 
signal shown in Fig. 3 (Mixed signal: ܽ(ݐ) +  .and the noised mixed signal is shown in Fig. 7 ((ݐ)ܾ
The same steps shown in Fig. 2 are applied on the signal shown in Fig. 7, the obtained eight basis 
functions are shown in Fig. 8. The mean value of Pearson correlation coefficients for each 
clustering number is shown in Fig. 9. It is evident that the mean value of Pearson correlation 
coefficient ߩ୫ୣୟ୬ is minimum when clustering number is 3 based on Fig. 9, so the number of 
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source signals is 3. 
The last analysis results are shown in Fig. 10 and the three source signals are separated 

successfully. 

 
a) b) 

 
c) 

 
d) 

Fig. 6. Recovered sources of simulated signal 

 
Fig. 7. Mixed signal with noise 

 
Fig. 8. 8 basis functions 

 

 
Fig. 9. The mean value of correlation coefficients 

for each clustering number 

5. Experiment 

In this section, the application of proposed method in fault feature extraction of rolling element 
bearing’ experimental compound fault is carried out. The test rig is shown in Fig. 11. The type of 
test rolling element bearing is NU205 and the relative parameters of the test bearings are given in 
Table 2. Three types of compound fault are implemented: inner race and outer race compound 
fault, outer race and rolling element compound fault, inner race and outer race and rolling element 
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compound fault. Process faults on the inner race, outer race and rolling element of the test bearing 
respectively. The processed faults on inner race, outer race and rolling element of the test bearing 
are shown in Fig. 12(a), (b) and (c) respectively. The two ends of the shaft are supported by rolling 
element bearings, and the right end is detachable which is convenient for replacement of the test 
bearings. The accelerator sensor is added in the vicinity of the test bearings and the peak values 
of the vibration are collected in the experimental process. The outer race is fixed on the bench and 
the inner race rotates synchronously with shaft in the test process. The rotating frequency is ݂ = 13.3 Hz and the sampling frequency is ௦݂ = 8192 Hz. The characteristic frequencies of inner 
race fault, outer race fault and rolling element fault are calculated using Eqs. (16)-(18): 

݂ = 2ܼ ൬1 + ܦ݀ cosߚ൰ ݂, (16)

݂ = 2ܼ ൬1 − ܦ݀ cosߚ൰ ݂, (17)

݂ = ܦ݀ ቈ1 − ൬݀cosܦߚ ൰ଶ ݂. (18)

In Eq. (16)-(18), ܼ is the number of rolling elements. ݀ is rolling element diameter. ܦ is the 
pitch diameter and ߚ is the contact angle. The values of ݂, ݂ and ݂ are 95.38 Hz, 64.61 Hz and 
5.38 Hz respectively through calculation. 

 
a) 

 
b) 

c) 
 

d) 

 
e) f) 
Fig. 10. Recovered sources of simulated signal with noise 

Table 2. The parameters of the test rolling element bearing 

Type Ball 
number 

Ball diameter 
[mm] 

Pitch diameter 
[mm] 

Contact 
angle 

Motor speed 
[rpm] 

NU205 12 7.5 39 0 800 

These three kinds of compound fault signals are to be handled using the same process and 
parameters as in the simulation: The source signals are segmented and the data length of each 
segment is 1024 point, and the overlap ratio is 50 %. The number and data length of the basis 
functions are 8 and 256 point respectively. The 8 time-domain feature of the three kinds of 
compound fault signals are shown in Fig. 13, and the mean value of correlation coefficients ߩ୫ୣୟ୬ 
for each clustering number of the three kinds of compound fault are shown in Fig. 14: it is evident 
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when the clustering numbers are 2 the ߩ୫ୣୟ୬ of the first and second source signals are minimum, 
and the clustering number is 3 the ߩ୫ୣୟ୬ of the third source signal is minimum. These verify that 
the fault sources numbers of the three kinds of compound fault signals are estimated correctly. 

 
Fig. 11. The test rig  

 
a) Inner race fault 

 
b) Rolling element fault 

 
c) Outer race fault 

Fig. 12. The processed faults on rolling bearing’ inner race, rolling element and outer race 

 
a) 

 
b) 

 
c) 

Fig. 13. The 8 basis functions of the three kinds of compound fault 

The time-domain waveforms of the three kinds of compound fault are shown in Fig. 15(a), 
Fig. 16(a) and Fig. 17(a) respectively, and their corresponding envelope demodulation spectrums 
are given in Fig. 15(d), Fig. 16(d) and Fig. 17(e). In Fig. 15(d), the spectral lines are relative 
chaotic and the inner race and outer race fault characteristic frequencies with their harmonic 
frequencies are interleaving together, so it is hard to identify the fault sources. In Fig. 16(d), the 
outer race fault characteristic frequency with its harmonic frequencies are extracted perfectly 
using the envelope demodulation method. However, the rolling element fault feature could not be 
obtained from Fig. 16(d). In Fig. 17(e), Its spectral lines structure is more complex than the 
spectral lines structure shown in Fig. 15(d) and Fig. 16(d). Though the inner race fault 
characteristic basic frequency could be extracted roughly, it is evident the spectral lines are chaotic 
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and useful fault features of the outer race fault and rolling element fault could not be obtained 
based on Fig. 17(e). These analysis results verify that the traditional envelope demodulation 
spectrum signal processing method is not fit for handling the vibration signal of rolling element 
baring’ compound fault. 

a) 
 

b) 
 

c) 
Fig. 14. The mean value of correlation coefficients for each clustering number  

of the three kinds of compound fault 

The last separation results of the signal shown in Fig. 15(a) are shown in Fig. 15(b) and 
Fig. 15(c) based on the proposed method, and their corresponding envelope demodulation 
spectrums are given in Fig. 15(e) and Fig. 15(f) from which the outer race and inner race fault 
characteristic frequencies with their harmonic frequencies are extracted successfully and 
expressed clearly. 

 
a) 

 
b) 

 
c) 

 
d) 

 
e) 

 
f) 

Fig. 15. The first kind of compound fault with its analysis results 

The last separation results of the signal shown in Fig. 16(a) are shown in Fig. 16(b) and 
Fig. 16(c) based on the proposed method, and their corresponding envelope demodulation 
spectrums are given in Fig. 16(e) and Fig. 16(f) from which the outer race and inner race fault 
characteristic frequencies with their harmonic frequencies are extracted successfully and 
expressed clearly. 
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a) 

 
b) 

 
c) d) 

 
e) 

 
f) 

Fig. 16. The second kind of compound fault with its analysis results 

 
a) 

 
b) 

 
c) 

 
d) 

 
e) 

 
f) 

 
g) 

 
h) 

Fig. 17. The third kind of compound fault with its analysis results 

The last separation results of the signal shown in Fig. 17(a) are shown in Fig. 17(b), Fig. 17(c) 
and Fig. 17(d) based on the proposed method, and their corresponding envelope demodulation 
spectrums are given in Fig. 17(f), Fig. 17(g) and Fig. 17(h) from which the outer race and inner 
race fault characteristic frequencies with their harmonic frequencies are also extracted 
successfully and expressed clearly. These analysis results verify that the proposed method in the 
paper is fit for blind source separation the compound fault signals arising in rolling element 
bearing. 
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6. Conclusions 

How to use shift invariant sparse coding idea to solve the problem of compound fault signal 
analysis is studied. Combining the characteristics of rolling element bearing fault signal, a method 
for blind source separation of single channel compound fault is proposed based on shift invariant 
sparse coding and adaptive clustering. The source number is estimated by minimize the structural 
correlation among source signals. Through simulation, the process and the effect of the method 
are introduced. The experimental analysis results further show that the proposed method can 
separate different source signals caused by different type of fault effectively. 
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