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Abstract. In mechanical engineering field, early fault features are extremely weak and submerged 
in heavy noise, and the weak feature extraction is quite challenging. In this work, we apply the 
adaptive stochastic resonance in cascaded piecewise-linear system to extract the weak features. 
The adaptive stochastic resonance is realized by the quantum particle swarm algorithm. By 
optimizing system parameters, the efficiency of the feature extraction is improved greatly. As a 
result, the weak features can be easily extracted eventually. The effectiveness and the 
high-performance of the proposed method are verified by the numerical simulation and 
experimental data of rolling element bearings. The bearing fault under different motor loads is 
detected effectively, consequently confirming the robustness of the proposed method. 
Keywords: adaptive stochastic resonance, cascaded piecewise-linear system, quantum particle 
swarm algorithm, bearing fault diagnosis. 

1. Introduction 

Rolling element bearing is one of the most common mechanical components and plays a vital 
role in rotating machineries. They are highly liable to malfunction such as the inner ring, outer 
ring, the rolling elements and the cage since the rolling bearings usually operate under a harsh 
working environment [1, 2]. Therefore, machinery performance may suffer serious deterioration 
and even there are heavy casualties and property losses without the health monitoring and timely 
fault diagnosis of rolling bearings [3]. Owing to the inherent relationship between bearings 
operation and vibration, vibration signals collected from bearings are rich in information about 
bearings performance. Thus, using vibration signals to detect bearing fault has been extensively 
researched during the past decades [4, 5]. However, early fault features are far weak and 
submerged in heavy noise, so it is quite challenging to effectively extract them. Traditionally, in 
order to obtain the fault features, various signal processing techniques, such as wavelet transform 
[6, 7], local mean decomposition [8-10], empirical mode decomposition [11-14], etc., aim at 
eliminating and suppressing the noise because it is always considered an undesirable disturbance 
contaminating the useful signals. Although these traditional denoising methods exhibit an 
excellent effect, the useful signal components may inevitably be weakened or even destroyed 
during this process resulting in not effectively extracting the fault features. 

Different from traditional denoising methods, stochastic resonance (SR) is an effective method 
which can extract the weak features by utilizing noise instead of removing noise. Since SR theory 
was proposed by Benzi et al. [15], it has been extensively applied in signal processing. For SR can 
transfer noise energy to the weak features, weak features are enhanced while noise is decreased. 
As a result, weak features submerged in heavy noise are successfully extracted. In recent years, 
SR has become an advanced research hotspot in the field of weak feature extraction due to its 
advantage of utilizing noise to enhance the weak features. Consequently, there are more and more 
research achievements based on SR in weak feature extraction. Moreover, it is proved that the SR 
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method possesses a good prospect of engineering applications by analyzing the data in real 
industrial engineering situations. For example, Li et al. [16] applied the adaptive monostable SR 
method to process the engineering signal from the worm of a horizontal boring and milling 
machine in a factory, and the results show that the SR method can raise the signal-to-noise ratio 
(SNR) and the worm faults can be diagnosed effectively. Lei et al. [17] proposed a new adaptive 
SR method and used it to analyze a real case of locomotive rolling element bearings with an early 
fault, and the results show the weak features are detected effectively, thus the early faults are 
diagnosed accurately. Qiao et al. [18] applied adaptive unsaturated bistable SR method into fault 
characteristic extraction of a real locomotive rolling element bearing with the flaking fault on the 
outer race, and ultimately the extraction results demonstrated that the SR method is quite good at 
detecting the weak fault characteristics submerged in heavy noise in the industrial environment. 
These current studies indicate that the weak features can be well enhanced and extracted through 
a single SR to some extent. However, the performance of the single SR for the weak feature 
extraction is usually finite. For instance, we can’t discover the fault features after using a single 
SR when the SNR is very low, such as the bearing fault signals in which the fault features are 
submerged in badly heavy background noise. Therefore, the weak features can’t be efficiently 
extracted by a single SR for bearing fault signals. 

In order to settle the problems mentioned above, namely, further improving the weak feature 
extraction performance, some works based on cascaded SR [19-25] have done until now. As a 
result, the weak feature extraction performance of cascaded SR has evident improvement 
compared with that of the single SR. However, the present study on cascaded SR has mostly paid 
attention to the bistable system; only a few literatures on other systems can be found. Wang et al. 
[26] demonstrated that the piecewise-linear SR has better extraction performance for the weak 
periodic signals in heavy noise compared with the classical bistable SR. Thus, in this paper, a 
method based on the cascaded piecewise-linear SR is presented. At the same time, in order to 
sufficiently show the advantages of piecewise-linear SR model in the weak feature extraction, this 
paper will adopt a more efficient algorithm called quantum particle swarm optimization proposed 
by Sun et al. [27] to optimize system parameters. In addition, due to the limitation of the adiabatic 
approximation theory, the input signals are preprocessed by the scale transformation theory 
[28, 29], which is used for processing signals with high frequency. We call the method proposed 
in this paper as adaptive cascaded piecewise-linear SR. Simulation and experimental results show 
our method can effectively realize weak signal detection and early fault diagnosis. 

The present paper is arranged as follows. Section 2 introduces the theory of the piecewise-
linear SR. Then, cascaded SR based on the piecewise-linear model is described. In Section 3, the 
cascaded SR is realized by two different procedures, i.e. keeping every order system parameters 
invariable and optimizing every order system parameters with the best, which are simply 
introduced and compared by numerical simulations. According to the comparison and analysis 
results, a high-performance weak feature extraction method is proposed. In Section 4, the 
proposed method is used to process the bearing fault experimental signals to verify the 
high-performance and robustness of this method in the weak fault feature extraction. Finally, the 
main results of this paper are concluded in Section 5. 

2. Cascaded piecewise-linear SR 

2.1. Theory of the piecewise-linear SR 

For the piecewise-linear model, ܷ(ݔ) represents a potential function as follows: 



2478. IMPROVING THE WEAK FEATURE EXTRACTION BY ADAPTIVE STOCHASTIC RESONANCE IN CASCADED PIECEWISE-LINEAR SYSTEM AND ITS 
APPLICATION IN BEARING FAULT DETECTION. HOUGUANG LIU, SHUAI HAN, JIANHUA YANG, SONGYONG LIU 

2508 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. JUN 2017, VOL. 19, ISSUE 4. ISSN 1392-8716  

(ݔ)ܷ =
ەۖۖ
۔ۖ
−ۓۖ ܿܽ − ܾ ݔ) + ݔ     ,(ܽ < −ܾ,ܾܿ −    ,ݔ ܾ ≤ ݔ < 0,− ܾܿ 0     ,ݔ ≤ ݔ < ܾ,ܿܽ − ܾ ݔ) − ܽ),    ܾ ≤ ,ݔ

 (1)

where ܽ, ܾ and ܿ denote the system parameters and ܽ > ܾ > 0, ܿ > 0. 
The potential described by Eq. (1) has two stable states ݔଵ,ଶ = ±ܾ and one unstable state  ݔ = 0. The height of the potential barrier is ∆ܷ = ܿ. In Fig. 1 we draw the curve of ܷ(ݔ). 

Compared with the bistable model, parameters of the piecewise-linear model are highly less 
correlative and much easier to adjust. For instance, in the piecewise-linear model we can easily 
alter the position of the potential well by only adjusting parameter ܾ, meanwhile keeping the 
height of the potential barrier. Or we can easily alter the height of the potential barrier by only 
adjusting parameter ܿ, meanwhile keeping the position of the potential well. 

Here the Langevin equation of the piecewise-linear model can be written as: 

ݐ݀ݔ݀ = − ݔ݀(ݔ)ܷ݀ + (ݐ)ݏ + (ݐ)݊ =
ەۖۖ
۔ۖ
ۓۖ ܿܽ − ܾ + (ݐ)ݏ + ݔ    ,(ݐ)݊ < ܾ,− ܾܿ + (ݐ)ݏ + (ݐ)݊ ,     − ܾ ≤ ݔ < 0,ܾܿ + (ݐ)ݏ + 0     ,(ݐ)݊ ≤ ݔ < ܾ,− ܿܽ − ܾ + (ݐ)ݏ + ܾ     ,(ݐ)݊ ≤ ,ݔ

 (2)

where ݔ represents the displacement of a Brownian particle, (ݐ)ݏ is the input signal, and ݊(ݐ) 
denotes the noise item with ݊(ݐ) = 〈(′ݐ)݊(ݐ)݊〉 and (ݐ)ߦܦ2√ = ݐ)ߜܦ2 −  is the ܦ in which ,(′ݐ
noise intensity, (ݐ)ߜ represents a Gaussian white noise with zero mean and unit variance and 〈∗〉 stands for statistical mean. 

 
Fig. 1. Curve of the potential function ܷ(ݔ) for the piecewise-linear model 

As already described in the ‘Introduction’ section, SR is a phenomenon where signal weak 
features can be enhanced while noise is decreased. Generally, the three basic ingredients of the 
piecewise-linear SR system are shown in Fig. 2 including a weak input signal (ݐ)ݏ, a source of 
noise ݊(ݐ) and a piecewise-linear system ܷ(ݔ). Here, if these basic ingredients can match well, 
the Brownian particle can cross the potential barrier and enter another potential well from the 
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former potential well. Meanwhile, the Brownian particle can continuously cross the potential 
barrier from one potential well to another one by modulation frequency of the input signal, 
resulting in synchronization between the output and the input signal. This indicates SR 
phenomenon happens. As a consequence, the signal weak features are enhanced and the output 
signal has a higher SNR by contrast with the input signal. Hence the detection of weak features 
submerged in heavy noise is probable.  

 
Fig. 2. Framework of single piecewise-linear system 

2.2. Cascaded piecewise-linear SR 

As Fig. 3 shows, through series connection, the single piecewise-linear system becomes 
cascaded piecewise-linear system. Thus, the Langevin equation of cascaded SR system can be 
expressed as: ݀ݔଵ݀ݐ + ݀ ଵܷ(ݔଵ)݀ݐ = (ݐ)ݏ + ݐ݀ݔ݀,(ݐ)݊ + ݀ ܷ(ݔ)݀ݐ = ݅     ,(ݐ)ିଵݔ = 2,3, . . . , ܲ. (3)

In Eq. (3), (ݐ)ݏ and ݊(ݐ) are the input of cascaded system and ܲ is the number of the single 
system cascaded system contains. In addition, ݔ(ݐ) is the output of the ݅th order cascaded system, 
but also the input of the next order cascaded system. 

 
Fig. 3. Framework of cascaded piecewise-linear system 

In cascaded systems, through this kind of connection, multiple single systems are organically 
linked. In terms of single SR, after the original signal is input into SR system, the output spectrum 
energy is focused on the low-frequency region, and the corresponding high-frequency energy is 
reduced. However, by this form of cascading, the high-frequency energy is continually transferred 
to the low-frequency region to some extent, so a better SR phenomenon presenting. Finally, the 
energy of the characteristic frequency is further strengthened, and the weak features are effectively 
extracted. 

3. Numerical simulation 

Among the methods of extracting signal weak features, SR has been proved effective to some 
extent. To further improve the weak feature extraction performance, an enhanced method called 
cascaded SR has been investigated. So far, a few of achievements about cascaded SR have been 
published in academic journals and conference proceedings. However, the investigation on 
cascaded SR at present is principally concentrated in keeping every order system parameters 
invariable to produce SR. Although the weak feature extraction performance has evident 
improvement via this type of methods, there are still some scopes for more improvement if every 
order system parameters are optimized with the best. In this paper, the two enhancement methods, 
i.e. keeping every order system parameters invariable and optimizing every order system 
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parameters with the best to investigate cascaded piecewise-linear system output, are compared. 
Considering our investigation aims at bearing fault diagnosis, this paper adopts one kind of 

periodical impulse signal to simulate bearing vibration. The simulation fault signal is generated 
by the follow equation [30]: (ݐ)ݏ = ߨsin(2ܣ ݂ݐ) ⋅ exp{−݀ሾݐ − /(ݐ)݉ ௗ݂ ]ଶሽ, (4)

where ܣ is the signal amplitude, ݂ is the carrier frequency, ݀ denotes the attenuation index, ௗ݂ is 
the fault frequency, and ݉(ݐ) = floor [ݐ ௗ݂] controls the impulse periodicity where “floor” is the 
integral function. 

Traditional SR is only suitable for processing signals with low frequency due to the limitation 
of the adiabatic approximation theory [31-33]. However, the characteristic frequency of the 
simulation bearing fault signal for this paper obviously cannot meet the condition to produce SR 
phenomenon. Thus, the input signal is first preprocessed by the scale transformation theory, which 
is used for processing signals with high frequency. Moreover, in order to make piecewise-linear 
system achieve SR, system parameters need to be adjusted. If various parameters of the system 
are simultaneously optimized to find global optimal solution, the best SR phenomenon may 
happen. Due to its fast convergence speed, fortissimo global optimization ability and high search 
precision, quantum particle swarm algorithm has shown a wonderful performance in signal 
processing. Therefore, in this paper, parameter ܽ and ܿ in Eq. (2) are simultaneously optimized by 
quantum particle swarm algorithm. Above process is called the adaptive SR (ASR). The SNR 
which is defined by Eq. (5) [34] is chosen as the evaluation index for the ASR performance. When 
the output SNR reaches the maximum, the ASR system can produce the optimal output. The 
flowchart of the ASR is shown in Fig. 4: 

۔ۖۖەۖۖ
ܴܰܵۓ = 10logଵ ቆܵ(݂)ܰ(݂)ቇ ,ܵ(݂) = |ܺ(݇)|ଶ,ܰ(݂) = ܯ12 (|ܺ(݇ − ݆)|ଶ + |ܺ(݇ + ݆)|ଶ),ெ

ୀଵ
 (5)

where ݂ is the characteristic frequency and ݇ is, the serial number corresponding to ݂, ܵ(݂) is the 
amplitude at ݂ and ܰ(݂) denotes the average amplitude of the background noise near ݂ in the 
power spectrum, ܺ(݇)  is the amplitude at ݂  in the frequency spectrum, and ܯ  is selected 
according to the date length ܰ and the sampling frequency ௦݂. 

Initially, we keep every order system parameters ( ܽ  and ܿ ) invariable to excite SR 
phenomenon. We firstly optimize the parameters of the first order cascaded piecewise-linear 
system with the best by quantum particle swarm algorithm to excite SR phenomenon, and then 
utilize the optimization results of the first order cascaded system parameters driving the second 
order system to produce SR, etc. In the simulation, ܣ =  1, ݀ =  15000, ݂ =  2062 Hz and  ௗ݂ = 103 Hz. In addition, the sampling frequency ௦݂ and the date length ܰ are respectively set to 
10000 Hz and 10000. Fig. 5(a) shows the time-domain waveform and the frequency spectrum of 
the pure simulation signal. A Gaussian white noise with the intensity ܦ = 0.5 is added to the pure 
simulation signal, and the noisy simulation signal with corresponding frequency spectrum is 
shown in Fig. 5(b). Obviously, the peak of the characteristic frequency is totally submerged in the 
background noise and it is difficult to identify it. Hence, the envelope analysis by the Hilbert 
transform is implemented to extract the frequency of the noisy signal. As shown in Fig. 5(c), it 
indicates that the characteristic frequency can be revealed slightly after the envelop demodulation. 
In order to eliminate the interference of the low frequency components and find the characteristic 
frequency clearly, the envelop signal is processed through high-pass filter where the cutoff 
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frequency is 100 Hz, and the result is shown in Fig. 5(d). Then cascade piecewise-linear SR system 
in which cascaded number ܲ is set to 9 is used to process the simulation signal in Fig. 5(d), and 
the output frequency spectrums are presented in Fig. 6. We can distinctly see the peak of the 
characteristic frequency by the first order cascaded piecewise-linear system in Fig. 6(a). 
Meanwhile, the output SNR of the first order cascaded system is calculated and shown in the top 
right corner in Fig. 6(a). The output SNR of the first order cascaded system has an advance of  
2.76 dB as compared to the input filtered signal. However, starting from the second order system, 
the system will be divergent, and the peak of characteristic frequency cannot be revealed due to 
the energy mechanism of the SR system from high-frequency region to low-frequency region. In 
the end, we fail to extract the characteristic signal. Obviously, we cannot achieve the desired effect 
to further improve the weak feature extraction performance by this procedure. In general, the 
output spectrum distribution is different after every order system, so applying the first order 
cascaded system parameters which are optimized to the next order cascaded system is unavailable 
to make cascaded system produce the optimal output. 

 
Fig. 4. Flowchart of the ASR based on the quantum particle swarm algorithm. The contraction-expansion 

coefficient ߚ is calculated according to the probability principle about quantum computation 

 
Fig. 5. Time-domain waveforms and frequency spectrums of the simulation signal:  

a) pure signal; b) noisy signal; c) envelope signal; d) filtered signal 
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Fig. 6. Output results of cascaded piecewise-linear SR system based on keeping every  

order cascaded system parameters invariable: a) to i) are the output frequency spectrums  
of the first to ninth order cascaded system, respectively 

Now, we try to optimize the parameters (ܽ and ܿ) of every order cascaded piecewise-linear 
system with the best by quantum particle swarm algorithm, and then explore whether cascaded 
system can produce the optimal output. Consequently, the output frequency spectrums of the first 
to ninth order cascaded system are presented in Fig. 7 where the output SNR of every order 
cascaded system after calculated is shown in the top right corner accordingly. Observing the 
frequency spectrum of every order cascaded system, the peak of the characteristic frequency is 
more and more distinct in the whole spectra with the increase of cascaded order, and ultimately it 
is extremely easy to identify it. Moreover, with the increase of the order in cascaded system, the 
corresponding output SNR gradually increases as well. The output SNR of the first order only has 
an advance of 2.76 dB as compared to the input filtered signal, but this index is stupendously 
increased by 5.68 dB at the ninth order, which implies it is possible to extract the signal weak 
features with far low SNR by this procedure.  

 
Fig. 7. Output results of cascaded piecewise-linear SR system based on optimizing every  

order parameters with the best: a) to i) are the output frequency spectrums  
of the first to ninth order cascaded system, respectively 
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Obviously, using this procedure, we can achieve the desired effect to further improve the weak 
feature extraction performance. On the other hand, in order to specifically describe this increase 
about the output SNR, the curve denoting the relationship between cascaded order and the 
corresponding output SNR is depicted in Fig. 8 where the output SNR will increase rapidly with 
the increase of cascaded order when cascaded order is relatively less, then slowly increase with 
the continued increase of the cascaded order and rarely increase afterwards. This rule can be 
explained in terms of cascaded piecewise-linear system impact on the noise distribution. In  
Eq. (3), Gaussian white noise is input into the first order cascaded system, and then the output is 
the colored noise in the form of Lorentz, which means the high-frequency components of the noise 
is transferred to the low-frequency signal that is strengthened to achieve SR eventually. After the 
next order cascaded system, the colored noise in the form Lorentz continues to transfer its 
high-frequency components to the low-frequency signal, so that the output SNR has growing 
enhancement with the increase of the order in the cascaded system. Until after a higher order in 
the cascaded system, the signal has been very little high-frequency components, thus the 
high-frequency energy is rarely transferred to low-frequency region with the increase of cascaded 
order. In consequence, the output SNR also will no longer advance. 

Through the simulation results for the periodical impulse signal, we find that we fail to extract 
the weak features from heavy noise if every order cascaded system parameters are kept invariable. 
On the contrary, cascaded system where every order system parameters are optimized with the 
best can achieve higher output SNR, thus the weak feature extraction performance is further 
improved. Thereby, a high-performance weak feature extraction method called adaptive cascaded 
piecewise-linear SR (ACPLSR) is proposed for fault diagnosis of rolling bearings, and the 
flowchart of this method is shown in Fig. 9. 

As the results shown above, selecting the excessive cascaded orders is a technical problem. On 
the one hand, it is not easy to achieve when cascaded order is excessive in practical application. 
In addition, through analyzing the results in Fig. 8, the relationship between the output SNR and 
the cascaded order is not proportional, and namely cascaded order is not the larger the better. So, 
it is particularly important to select a suitable value for cascaded order ܲ. According to the rule 
obtained in Fig. 8, we generally set a fixed ܲ, e.g. 4 or 5. 

 
Fig. 8. Relationship between the order and the corresponding output SNR in the cascaded piecewise – 

linear system based on optimizing every order parameters with the best 

4. Experimental verification 

To verify the high-performance and robustness of the proposed method in practical  
application, sets of experimental dates from the bearing vibration signals are analyzed using the 
ACPLSR method. The experimental data are from the bearing data center website of the Case 
Western Reserve University (CWRU) [35], and the associated test rig is shown in Fig. 10. The 
experimental system includes a 2 hp motor, a torque transducer/encoder, dynamometer and 
control electronics. 
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Fig. 9. Flowchart of the proposed method for fault diagnosis of rolling bearings 

 
Fig. 10. Rolling bearing fault simulation test rig from CWRU 

The bearing vibration signals are collected using accelerometers which are mounted on the 
motor housing with magnetic bases in 12 o’clock position under different motor speeds, and the 
sampling frequency is 12000 Hz. In this paper, the date used to analyze come from the drive-end 
bearing outer ring fault with fault diameter of 0.007 inches. The drive end bearing is deep groove 
ball bearing of the type 6205-2RS JEM SKF, and the parameters is listed in Table 1. The 
characteristic frequency of the bearing outer ring fault can be calculated by the following equation: 

݂ = ߬2ൈ60 ൬1 − ݀cosܦߙ ൰ (6) ,ݖ

where ߬ is the motor speed, ݖ is the ball number, ߙ is the contact angle, and ݀ and ܦ are the ball 
and pitch diameters, respectively. Thus, the defect frequencies of outer ring are calculated and 
listed in Table 2 under different motor speeds. 

Fig. 11(a) shows the time-domain waveform and the frequency spectrum of the original signal 
from the bearing outer ring fault with the motor speed 1797 rpm. We can find the obvious periodic 

Start

A weak vibration signal gathered from a rolling bearing

Add Gaussian white noise to above weak signal

Obtain the envelope of the noisy signal by the Hilbert transform

Obtain the filtered signal through high-pass filter

Input the filtered signal into the first order ACPLSR system

Input the output signal x1(t) into the second order ACPLSR system

...

x1(t)

x2(t)

xP-1(t)

Input the output signal xn-1(t) into the Pth order ACPLSR system

Calculate the output frequency spectrum of the ACPLSR system

Detect the weak features from the output frequency spectrum

Diagnose the faults of the rolling bearings

End
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impulses in the time-domain waveform, and the defect frequency can hardly be seen in the 
frequency spectrum due to the heavy noise interference. Thus, we use the proposed method shown 
in Fig. 9 to detect weak fault features. Firstly, a Gaussian white noise with intensity ܦ = 0.2 is 
added to the original signal, and the noisy signal with corresponding frequency spectrum is shown 
in Fig. 11(b). Then, the noisy signal is preprocessed by the Hilbert transform and high-pass filter 
where the cutoff frequency is 105 Hz. As a result, the envelope signal and filtered signal of the 
bearing outer fault are shown in Fig. 11(c) and Fig. 11(d), respectively. In the frequency spectrum, 
whether the envelope signal or filtered signal, the defect frequency 108 Hz can be perceived 
slightly. However, the peak of the defect frequency is weak and there is still heavy noise. 
Moreover, the SNR of the filtered signal is calculated, and its value is 13.74 dB shown in the top 
right corner of Fig. 11(d). 

Table 1. Parameters of the bearing 
Inside 

diameter 
Outside 
diameter 

Ball 
diameter Thickness Pitch 

diameter 
Contact 
angle 

Ball 
number 

25.001 mm 51.999 mm 7.940 mm 15.001 mm 39.040 mm 0° 9 

Table 2. Defect frequencies of outer ring under different motor speeds 
Motor speed (rpm) 1797 1750 1724 

Detect frequency (Hz) 107.36 104.56 103.00 

 
Fig. 11. Time-domain waveforms and frequency spectrums of the bearing outer ring fault signal with the 

motor speed 1797 rpm: a) original signal; b) noisy signal; c) envelope signal; d) filtered signal 

Subsequently, the preprocessed signal is input to the ACPLSR system where cascaded order ܲ is set to 4 according to the analysis results in Section 3. Consequently, the output frequency 
spectrums of the first to fourth order cascaded system are presented in Fig. 12 where the output 
SNR of every order cascaded system is calculated and shown in the top right corner. Observing 
the output frequency spectrum, the peak of the defect frequency is more and more distinct in the 
whole spectra with the increase of the order in ACPLSR system, and ultimately it is extremely 
easy to identify it. The reason for above results is that the output SNR is gradually enhanced with 
the increase of cascaded order. Observing the value of the output SNR in the first to fourth order 
ACPLSR system, the output SNR of the first order only has an advance of 2.58 dB as compared 
to the input filtered signal, but this index is further increased by 5.46 dB at the fourth order. We 
all know, to a certain extent, the higher the output SNR is, the better the weak feature extraction 
performance is. Thus, compared with the single SR system, this type of ACPLSR system has a far 
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great significance for the improvement of the weak feature extraction performance. In the end, it 
can be included that the weak fault features are extracted effectively and the fault is effectively 
detected by the proposed method. 

 
Fig. 12. Frequency spectrums after analyzed by the proposed method for the bearing outer ring fault signal 

with the motor speed 1797 rpm: a) and d) are the output frequency spectrums  
of the first to fourth order ACPLSR system, respectively 

 
Fig. 13. Time-domain waveforms and frequency spectrums of the bearing outer ring fault signal with the 

motor speed 1750 rpm: a) original signal; b) noisy signal; c) envelope signal; d) filtered signal 

To verify the robustness of the ACPLSR method proposed in this paper, the data from the 
bearing outer ring fault signals with the motor speed 1750 rpm and 1724 rpm are analyzed using 
this method. Fig. 13 and Fig. 15 separately show the bearing outer ring signals. The analysis results 
based on the proposed method are shown in Fig. 14 and Fig. 16 separately. In Fig. 14, the output 
SNR of the first order only has an advance of 2.54 dB as compared to the input filtered signal, but 
this index is increased by 4.17 dB at the fourth order. In Fig. 16, the output SNR of the first order 
only has an advance of 2.86 dB as compared to the input filtered signal, but this index is increased 
by 7.16 dB at the fourth order. Obviously, compared with the single system, this ACPLSR method 
can further advance the output SNR or the weak feature extraction performance. Thus, it can be 
concluded that the proposed ACPLSR method can extract the weak fault features effectively under 
different motor loads, namely, that the robustness based on the proposed ACPLSR method is 
verified. 
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Fig. 14. Frequency spectrums after analyzed by the proposed method for the bearing outer ring fault signal 

with the motor speed 1750 rpm: a) and d) are the output frequency spectrums  
of the first to fourth order ACPLSR system, respectively 

 
Fig. 15. Time-domain waveforms and frequency spectrums of the bearing outer ring fault signal with the 

motor speed 1724 rpm: a) original signal; b) noisy signal; c) envelope signal; d) filtered signal 

 
Fig. 16. Frequency spectrums after analyzed by the proposed method for the bearing outer ring fault signal 

with the motor speed 1724 rpm: a) and d) are the output frequency spectrums  
of the first to fourth order ACPLSR system, respectively 
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5. Conclusions 

To realize the health monitoring and timely fault diagnosis of rolling element bearings, 
effective extraction of the weak fault features from heavy noise is urgently needed. In this paper, 
an effective adaptive cascaded SR method is proposed for the weak feature extraction in the 
bearing fault diagnosis. The SR model that the proposed method is based on is piecewise-linear 
system which has higher performance or output SNR than traditional bistable system. Moreover, 
the system parameter ܽ and ܿ in every single system are simultaneously optimized with the best 
by quantum particle swarm algorithm, leading to that cascaded system achieves the optimal  
output. 

The proposed method is used to analyze the simulation impulse signal and the bearing 
experimental data. The analysis results indicate the system output SNR is greatly enhanced by this 
method, namely, that the weak feature extraction performance can be further improved in rolling 
element bearing fault diagnosis. 
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