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Abstract. Operational modal analysis (OMA) has been utilized to extract structural dynamic 
characteristics by only using the output responses. In many cases of OMA, the problem of 
harmonic components, which is caused by periodic excitation components to the structure, may 
occur, and may lead to erroneous modal identification. In this paper, an optimized harmonic 
indicator function named the enhanced spectral kurtosis (ESK) is proposed to improve the 
effectiveness of the harmonic components detection. Moreover, a new algorithm based on virtual 
excitation assumption is presented to remove the harmonic components in modal parameters 
estimation. Finally, the quality of the proposed method is compared with that of the conventional 
method using a numerical simulation and a practical experiment. 
Keywords: operational modal analysis, enhanced spectral kurtosis, harmonic detection, harmonic 
removal. 

1. Introduction 

During the last decade, the modal analysis becomes a key technology in structural dynamics 
behavior study [1, 2]. Operational modal analysis (OMA) is a technology for the identification of 
the linear structural modal parameters by using only the output responses [3, 4]. It is used to derive 
an experimental dynamics model from vibration measurements on a structure in operational 
conditions. In many operational cases, it is impossible to measure the excitation force, and the 
structural responses are the only information that can be collected for the system identification 
algorithms. A new method based on the transmissibility function is proposed to process the 
parameters in OMA with unrestricted types load [5, 6], but it needs twice tests with different loads 
and may generate fake resonance peaks. Therefore, in the OMA, the system is generally assumed 
to be excited by a broadband random signal [7, 8]. However, in many applications, the presence 
of periodic excitation in the random loads is unavoidable. The periodic forces generated by 
unbalanced masses of rotating parts or aerodynamic or electric actuators, may cause harmonic 
components in the responses [9]. These harmonic components will cause uncertainty in extraction 
of modal parameters [10], and need to be detected and removed before modal identification. 

A direct approach for processing the harmonic components in outputs is to take them as 
zero-damping modes. In practice, this method would not be effective when the structural modes 
have very low damping, or the harmonic frequencies are very close to the structural modal 
frequencies [11]. A method based on random decrement is proposed for distinguishing the 
harmonic frequencies from the natural frequencies [12, 13]. It argues that the harmonic 
components are un-attenuated. The harmonic components, in other words, are also assumed to be 
zero-damping modes in this method. Another method based on the probability density function 
(PDF) of the output for distinguishing a harmonic response from narrowband stochastic responses 
is widely used [9, 14, 15]. This method, however, is effective when the harmonic frequencies are 
well separated from the structural frequencies, since it would imply that temporal filter must be 
used. Furthermore, it will require tedious calculations and be restricted by bandwidth of the filter. 
A kurtosis-based method was initially proposed in time domain for distinguishing the random and 
period signals [16-18], and processed in a way similar to the PDF method mentioned above. In 
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order to avoid tedious data calculation, the spectral kurtosis (SK) of a signal is defined as the 
kurtosis of its frequency component, and has been applied to harmonic components detection in 
the OMA [19-21]. Another advantage of this method is that the information of each frequency 
component can be indicated promptly in the frequency band of interest. However, the method is 
not perfect, since only one channel signal can be dealt with at a time. It brings a time-consuming 
problem and may lead to a failure of detection. 

In order to improve the quality and efficiency of the harmonic components detection, an 
enhanced spectral kurtosis (ESK) based on the enhanced PSD function is proposed in this paper. 
Unlike the original SK method, the ESK calculation utilizes all multiple-channel signals at each 
resonance frequency of interest. Moreover, due to the application of a PSD enhancement  
technique, the band-pass filter is not required any more. Starting from the enhanced PSD obtained 
from the frequency spatial domain decomposition (FSDD) [22, 23], the ESK algorithm is derived 
in detail. Then, a new method named the virtual excitation technique (VET) is presented for the 
removal of harmonic components even when they are close to the natural frequencies. By using 
multiple input & multiple output (MIMO) model and virtual excitation assumption after detection 
of the harmonic frequencies, the responses which do not contain the harmonic components are 
obtained, and the structural model parameters are identified with these responses by the FSDD 
method. The result from the proposed method is also compared with that from the previous method 
by a numerical simulation. Finally, an application of the proposed method to detect and remove 
the harmonic component of a GARTEUR (Group of Aeronautical Research and Technology in 
EURope) aircraft model is presented to demonstrate its procedures and credibility. 

2. Theory background  

2.1. Detailed ESK description 

Let ܾ(݊) be a discrete random signal, and ܤ(߱) its Discrete Fourier Transform (DFT), the 
original SK can be defined [19] as: 

(߱)ܭܵ = ସሽ|(߱)ܤ|ሼܧ − 2ሾܧሼ|ܤ(߱)|ଶሽሿଶሾܧሼ|ܤ(߱)|ଶሽሿଶ , (1)

where ܧሼ∙ሽ  denotes the operator of expectation and | ∙ |  represents the modulus operator. In 
practice, the discrete sequence ܾ(݊) is divided into ܯ un-overlapped blocks to obtain an unbiased 
estimator of the SK by using the ݇-statistics: 

(߱)ܭܵ = ܯܯ − 1 (ܯ + 1) ∑ หܤ(߱)หସெୀଵ(∑ (߱)|ଶெୀଵܤ| )ଶ − 2൩, (2)

where the variables ܤ(߱) is a DFT of the ݅th block. According to the statistical characteristic 
[19], the SK of a random process equals to zero. By contrast, the SK of a harmonic process always 
equals to –1 at the harmonic frequency. Supposing ܾ(݊) be mixed with a harmonic signal, the SK 
can be comprehensively described as: ܭܵܧ(߱) = ൜0,       ߱ ≠ ߱,−1,    ߱ = ߱, (3)

where, ߱ is the harmonic frequency. Consequently, the harmonic components will be detected 
by computing the value of SK at each spectral line.  

Assume that there are ݊ channels of output responses: 
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(݊)ܡ = (݊)ଵݕൣ (݊)ଶݕ ⋯ బ(݊)൧், (4)ݕ

where superscript ܶ denotes the transposition. By applying the modal theory, the output responses 
in the physical space can be transformed into a modal subspace: ܙ = (5) ,ܡுܝ

where ݑ is the mode shape matrix, ܙ and ܡ are the measured responses in modal and physical 
coordinates, respectively. The superscript ܪ denotes the Hermitian transposition. Therefore, the ݇th single degree of freedom (SDOF) response can be derived as: ݍ = (6) .ܡுܝ

Then, the ݇th SDOF response PSD can be computed as: ܩ(߱) = (߱)ுۿ(߱)ۿ = ܝு(߱)܇(߱)܇ுܝ = . (7)ܝ(߱)ு۵௬௬ܝ

It is noticed that Eq. (8) has the same form with the enhanced PSD proposed in the FSDD 
technique for the OMA [22]. By inserting Eq. (7) into Eq. (2), the ESK for the ݇th resonance peak 
can be defined as: 

ܭܵܧ = ܯܯ − 1 ቈ(ܯ + 1) ∑ ܩ (݆߱)ଶெୀଵ(∑ ܩ (݆߱)ଶெୀଵ )ଶ − 2. (8)

According to the Eq. (6), the statistics characters of the ݇th SDOF response can be thought as 
stationary. Therefore, the ESK of a mixed-signal can also be derived as: ܭܵܧ(߱) = ൜0,       ߱ ≠ ߱,−1,    ߱ = ߱. (9)

To sum up, the original SK calculation can only deal with one of multiple-channel signals at a 
time, and to ensure that the detection of harmonic components is not skipped, the SK of each ݕ 
(݆ = 1, 2,…, ݊) should be calculated by using Eq. (2). The calculation becomes complicated if ݊ is a large number, which is common in the OMA. By contrast, the ESK is as an optimized 
method for multiple-channel signal processing. 

Supposing that the ݇th of ESK is close to zero, the ݇th modal parameter can be extracted by 
using the enhanced PSD directly. The component, however, should be removed first in the case 
where its value of ESK is close to –1, particularly when it is close to a structural mode. 

2.2. VET algorithm 

The unknown mixed signal ݔ can be considered as the linear superposition of a random signal 
and a harmonic signal: ݔ(݊) = (݊)ݔ + ௦(݊), (10)ݔ

where ݔ is a random signal and ݔ௦ is a harmonic signal. In the frequency domain, the random 
signal ܆(߱) can be assumed as the product of a virtual white noise ܆(߱) (constant spectrum) 
and a function of coefficient ܥଵ(߱). Similarly, the harmonic signal ܆௦(߱) can be assumed as the 
product of a virtual harmonic signal ܆(߱) and a constant coefficient ܿଶ. The DFT of the mixed 
signal ݔ can be expressed with the virtual excitations as: 
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(߱)܆ = (߱)܆ + (߱)௦܆ = (߱)܆(߱)ଵܥ + ܿଶܺ(߱). (11)

Indeed, the spectrum of the random input is not always flat in practice, but can be generally 
considered as constant spectrum in a narrow band [23]. The MIMO model can be written at each 
frequency in the narrow band as: limఠ→ఠೖ (߱)܇ = (߱)܆(߱)۶ = ۶(߱) ቀܿଵ̅܆(߱) + ܿଶ܆(߱)ቁ       = ሾܿଵ̅۶(߱) ܿଶ۶(߱)ሿ ܆(߱)܆(߱)൨, (12)

where ۶  is the frequency response function (FRF) matrix of the system, and is a constant 
coefficient. Using the Least Squares algorithm, the proportional virtual responses of this system 
can be obtained as: 

ሾܿଵഥ ۶(߱) ܿଶ۶(߱)ሿ = (߱)܇ ܆(߱)܆(߱)൨ା, (13)

where the superscript + denotes pseudo inversion, and ߱ ⟶ ߱ Therefore, the response by the 
virtual excitations can be obtained as: ܇෩(߱) = ܿଵഥ ۶(߱). (14)

It is obvious that the ܇෩(߱) does not contain the harmonic modes any more, which means the 
harmonic components are removed successfully. 

In order to improve the understandability of the method, a flow chart is given as follows: 

 
Fig. 1. Flow chart of identification based on ESK and VET 

3. Numerical case 

A two-storey building structure with six DOFs (regarding two floors as two lumped masses, 
each lumped mass has two translational DOFs and a rotational DOF), shown in Fig. 2, is used to 
validate the proposed algorithm. The simulation technique based on the FRF modes is employed 
to generate six responses with five uncorrelated random noise signals and a mixed signal with a 
periodic frequency at 33.4 Hz in the ܺ-direction. The simulated time domain responses have a 
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length of 204, 800 points, with a sample frequency of 256 Hz. The PSD matrix of responses will 
be computed by the Welch method, using Hanning windowing and resolution of 0.2 Hz. Then, the 
mode indicator function (MIF) curves can be computed by singular value decomposition (SVD) 
in 0-100 Hz, as shown in Fig. 3. The original SK method is used to detect a harmonic component 
and the results are shown in Fig. 4. 

 
Fig. 2. Two-storey building model Fig. 3. Mode indicator curves of two-storey building 

 

 
a) 

 
b) 

 
c) 

 
d) 

 
e) 

 
f) 

 
g) 

 
h) 

Fig. 4. SK curves of responses (two-storey building) 

In Fig. 3, the first (solid) curve, second (dash) curve and third (dotted) curve consist of the 1st, 
2nd and 3rd singular value at each spectral line, respectively. Six structural modes and a harmonic 
component (at the frequency of 33.4 Hz) are apparently indicted by the mode indicator curves. 
Moreover, the harmonic component is very close, actually only three spectral lines are far, to the 
3rd natural frequency. Fig. 4 shows that the harmonic is not always indicated by SK of response 
at each DOF, since the harmonic component(s) may not, in general, be strongly contained in all 
measured responses. Therefore, the SK of all responses should be calculated for a good harmonic 
detection. Moreover, although the harmonic is indicated in several SK curves, like Fig. 4(e) and 
Fig. 4(f), the SK values at the harmonic frequency are not exact –1 as expected. Since the 
frequency band is too narrow to separate harmonic frequency from nearby structural frequency by 
band-pass filtering, the computational accuracy is influenced. 

The ݇th (݇ = 1, 2,…, 7) ESK curve is computed by Eq. (6) and Eq. (8) after picking the 
corresponding peak in the MIF curve, as shown in Fig. 5. It is clearly observed that the 4th 
(harmonic component) ESK value at 33.4 Hz is very close to –1, which means that the harmonic 
component has been indicated successfully. In contrast with the SK method, the ESK method is 
more reliable to detect the harmonic components, because all of the measured responses are 
completely considered by the calculation of ESK from the enhanced PSD. 
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Fig. 5. ESK curves at each peak (two-storey building) 

Furthermore, Fig. 5 shows that the harmonic frequency is also indicated by other ESK curves 
(such as the first and third one), since the harmonic component is not always completely decoupled 
from the structural modes. As a result, the enhanced PSD of a structural mode may contain the 
harmonic component as well. Accordingly, the harmonic component should be removed to avoid 
the errors during the identification of modal parameters, especially when the harmonic frequency 
is close to a modal frequency. The virtual harmonic input signal can be assumed as:  ݔ = sin(2ߨ ൈ (ݐ33.4  and the random input signal is assumed as virtual white noise ݔ . 
According to the Eq. (12) and Eq. (13), the third enhanced power spectral density of virtual 
response is proportional to that of the real response except at harmonic frequencies in a narrow 
band, as shown in Fig. 6(a). For comparison, the constant of proportionality is normalized, as 
shown in Fig. 6(b). 

 
a) 

 
b) 

Fig. 6. Enhanced PSD curve in narrow band before and after harmonic component removal 

It should be noted that they do not match completely (shown in Fig. 6(b)), because the assumed 
excitation is uncorrelated with the real excitation (see Eq. (10)), which means the assumed 
excitation is indeed noise. Fortunately, the noise level is acceptable to identify the modal 
parameters by FSDD method. The modal frequencies and damping ratios identified before and 
after harmonic components removal are shown in Table 1 and Table 2, respectively. 

Table 1. Modal frequencies before and after harmonic component removal 
Mode No. Mode 1 Mode 2 Mode 3 Harmonic Mode 4 Mode 5 Mode 6 

Harmonic contained (Hz) 15.94 16.82 33.10 33.40 44.12 47.18 85.46 
Harmonic removed (Hz) 15.92 16.84 32.61 – 44.14 47.17 85.46 
Theoretical (Hz) 15.93 16.86 32.65 – 44.18 47.13 85.47 

As shown in Table 1 and Table 2, the relative error of the 3rd modal damming ratio is up to 
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24 % before the harmonic removal, but it is corrected after the harmonic removal. The modal 
assurance criterion (MAC) is introduced to check the orthogonality between the theoretical and 
identified mode shapes, as shown in Fig. 7. The mode shapes identified after harmonic component 
removal are shown in Fig. 8. 

It is seen in Fig. 7 that the orthogonality of the mode shapes is greatly improved after the 
harmonic removal. The analytical results indicate that the removal of harmonic components is an 
efficient way to adjust the structural modes. It also proves that the proposed method is an effective 
tool to remove the harmonic components in OMA. 

Table 2. Damping ratios before and after harmonic component removal 
Mode No. Mode 1 Mode 2 Mode 3 Harmonic Mode 4 Mode 5 Mode 6 

Harmonic contained (%) 1.28 1.22 1.24 0.15 1.00 1.03 1.54 
Harmonic removed (%) 1.23 1.22 1.00 – 1.05 1.05 1.52 
Theoretical (%) 1.25 1.21 1.00 – 1.05 1.08 1.53 

 

 
a) MAC before harmonic components removal 

 
b) MAC after harmonic components removal 

Fig. 7. Modal assurance criterion (MAC) 

   

   
Fig. 8. Structural modes of two-storey building after harmonic component removal 

4. Experimental case 

The technique discussed above is applied to the GARTEUR aircraft model in the laboratory. 
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Two shakers are fixed in two directions respectively, as shown in Fig. 9. A random noise of 
0-128 Hz is applied on the bottom of the structure by one shaker, and a harmonic load of 39.15 Hz 
is applied on the middle of the structure by another shaker. The experiment is performed with 102, 
400 points at a sampling frequency of 128 Hz. The acceleration responses of thirty-four DOFs are 
obtained in time domain, as shown in Fig. 10. The PSD matrix of responses is computed by the 
Welch method, with Hanning window applied. The frequency resolution is 0.08 Hz. The FSDD 
mode indicator curves of response signals, with nine resonance peaks indicated, are showed in 
Fig. 10. The first peak is the rigid body mode caused by rubber cord suspension, and the fifth peak 
is the harmonic component which is very close to the fourth structural mode. The original SKs of 
the thirty-four measured responses are computed to detect the harmonic component, and part of 
them is shown in Fig. 11. 

 
Fig. 9. Experimental scene 

 

 
Fig. 10. Typical time response (top) and mode 

indicator curves (bottom) of GARTEUR 
 

 

 
Fig. 11. SK curves of responses (GARTEUR) 

The SK curves in Fig. 11 are not always effective enough to indicate the harmonic component, 
since the computational accuracy is affected by the band-pass filtering. Therefore, the SKs of all 
measured responses should be calculated and examined to make sure that there are no missing 
harmonics in practice. By comparison, there are only nine ESKs that need to be computed, and 
the results are shown in Fig. 12. It is observed that the harmonic is clearly indicated by the 5th 
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ESK value at 39.15 Hz. It is also noticed that the computation of the SKs takes about 
12.68 seconds, while the computation of the ESKs (including SVD) needs only about 3.03 seconds 
on the same computing platform. It turns out that the ESK method is more reliable and efficient 
to detect the harmonic components than the original SK method. 

 
Fig. 12. ESK curves at each peak (GARTEUR) 

The harmonic component may affect the modal parameters identified by FSDD, since it is 
close to the 5th mode (6th peak) and 6th mode (7th peak) and cannot be decoupled in the enhanced 
PSD. Therefore, the harmonic component, which has been detected, should be removed by using 
the VET. The comparison of the enhanced PSD before and after harmonic component removal is 
shown in Fig. 13. 

 
Fig. 13. Enhanced PSD of 5th and 6th mode enhanced PSD curves in narrow band before  

and after harmonic component removal 

As shown in Table 3 and Table 4, the relative error of the 4th and 5th modal damming ratios 
are up to 57.14 % and 50 %, respectively, before the harmonic removal, but they are modified 
after the harmonic removal. The MAC is used to check the orthogonality between the reference 
and identified mode shapes, as shown in Fig. 14. 
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Table 3. Modal frequencies of GARTUER before and after harmonic components removal 
Mode no. Mode1 Mode2 Mode3 Harmonic Mode 4 Mode 5 Mode 6 Mode 7 

 Harmonic contained (Hz) 6.12 16.11 35.76 39.15 39.45 39.98 47.18 48.44 
 Harmonic removed (Hz) 6.13 16.11 35.74 – 39.58 39.95 47.18 48.42 
 Only random excitation (Hz) 6.12 16.11 35.74 – 39.58 39.94 47.21 48.41 

Table 4. Damping ratios of GARTUER before and after harmonic components removal 
Mode No. Mode1 Mode2 Mode3 Harmonic Mode 4 Mode 5 Mode 6 Mode 7 

Harmonic contained (%) 0.20 0.18 0.33 0.06 0.11 0.10 0.28 0.22 
Harmonic removed (%) 0.13 0.17 0.32 – 0.08 0.07 0.33 0.22 
Only random excitation (%) 0.13 0.15 0.31 – 0.07 0.05 0.30 0.18 

 

 
a) MAC before harmonic components removal 

 
b) MAC after harmonic components removal 

Fig. 14. Modal assurance criterion (MAC) 

The improvement of the orthogonality (note the MAC value of the 4th mode) can also be 
observed after the harmonic removal. The experimental results prove that the proposed method is 
an effective tool to remove the harmonic components in the OMA. Then, the structural mode 
shapes in 0-50 Hz are obtained after harmonic component removal as shown in Fig. 15. 

    

   
Fig. 15. Mode shapes of GARTUER after harmonic components removal 

5. Conclusions 

Harmonic components make a difference in the dynamical response of many structural or 
mechanical systems which are excited by periodic loads. It is a challenge for many OMA 
techniques to detect and remove the harmonic components. 

The ESK method is proposed in this paper to optimize the process and result of the harmonic 
component detection. It takes all multiple-channel signals at each resonance frequency into 
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account by the enhanced PSD function. Less computation than the original SK method is asked, 
because the number of measured DOFs is generally larger than the number of modes in the OMA. 
It can also improve the accuracy of computation and avoids the risk of the harmonic component(s) 
absence by computing the enhanced mode.  

The VET method is presented in this paper for the removal of harmonic components. By 
assuming the Multiple Input Multiple Output (MIMO) model and virtual noise excitation, the 
responses without harmonic components are obtained by the Least Squares (LS) algorithm. Then 
the accuracy of identified modal parameters can be greatly improved for the modes highly coupled 
by the harmonic component. 

The results of the simulation and experiment demonstrate that the presented harmonic 
detection and removal methods are efficient and credible. 
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