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Abstract. To improve the ride comfort of car, this paper proposed a semi-active seat suspension 
with magneto-rheological (MR) damper and designed a new fuzzy sliding mode controller with 
expansion factor (FSMCEF) based on the neuro-inverse dynamics approximation of the MR 
damper. This FSMCEF combines the advantages of both sliding mode controller (SMC) and fuzzy 
controller (FC) with expansion factor (EF), and it takes an ideal skyhook model as the reference, 
and creates a sliding mode control law based on the errors dynamics between the seat suspension 
and its reference model. Further fuzzy rules are used to suppress the chattering occurred in the 
above sliding mode control by fuzzifying the sliding mode surface and its derivative. Moreover, 
in order to compute the required control current for MR damper after solving the desired control 
force using FSMCEF, this paper presented a BP algorithm based neural network inverse model, 
located between the FSMCEF and the MR damper, taking the displacement, velocity of the MR 
damper and the desired control force output by FSMCEF as its input, and predicting the control 
current required to input MR damper. The predicting error and stability of the neural network 
inverse model for MR is investigated by sample testing. In addition, the stability analysis of 
FSMCEF is also completed by under nominal system and non-nominal system with parameter 
uncertainty and external disturbance. The results of numerical simulations show that the vibration 
reduction effect of the semi-active seat is obviously improved using FSMCEF compared with 
using PID controller and SMC. 
Keywords: semi-active suspension, MR damper, fuzzy sliding mode controller, expansion factor, 
neuro-inverse dynamics model. 

1. Introduction 

Suspension is the main factor that affects the car smoothness and ride comfort, and its type 
and design have been a basic and important topic for the new car development [1]. In all the three 
prime suspension types, semi-active suspension is recognized to be the compromise solution to 
reduce vibration and improve ride comfort because of its higher performance improvement at less 
cost and energy consumption relative to active suspension. MR dampers are usually employed in 
the practical semi-active suspension for they have low control voltage and satisfactory response 
speed [2]. However, MR damper also has high nonlinear features such as hysteresis and saturation 
which make its control much more difficult. Recently, much attention has been paid to the control 
techniques of the car suspension systems with MR dampers. Some control methods have been 
used, such as fuzzy control [3], optimal control [4], preview control [5], LPV control [6, 7] and 
robust ܪஶ control [8]. Literature [9] studied neural network semi-active vibration control of a 
quarter car suspensions with MR damper based on the Bouc-Wen model of MR damper.  
Literature [10] studied the switch control of a quarter car suspension vibration. Due to the inherent 
highly nonlinear characteristics of MR damper, how to determine the input voltage corresponding 
to the control force worked out by suspension controller is need to be solved when MR damper 
used in vibration control. The solutions are usually based on switching control law to adjust the 
input voltage and switch the optimal control algorithm [11-13]. The input voltage of the MR 
damper switches between the minimum and maximum without being a continuous adjustable 
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control signal, which limits the performance of the MR damper. Neural network can approximate 
any nonlinear function, so in this paper the neural network technology is used to simulate the 
inverse dynamic characteristics of MR damper and to create a continuous signal for MR damper 
as its nonlinear controller. 

D’Amato and Viassolo demonstrated a fuzzy control strategy for active suspension systems to 
minimize vertical car body acceleration for improving the ride comfort and to avoid hitting 
suspension limits for preserving the component lifetime [14]. Miao et al. developed an adaptive 
fuzzy controller for a quarter-car active suspension system to effectively suppress the vehicle’s 
vibration and disturbance so as to improve ride comfort [15]. Sliding mode control (SMC) has 
been widely applied as a robust nonlinear control algorithm and its application in active 
suspension has recently attracted the interest of many researchers [16-20]. Yoshimura et al 
constructed an active suspension system for a quarter car model with pneumatic actuator, and used 
SMC with sliding mode surface created by LQ theory [21]. Yao et al. built a polynomial model 
for MR damper by using experimental data, and designed a model reference sliding mode 
controller with uniform reaching law for the semi-active suspension [22]. Chen and Zhao designed 
a sliding mode controller for a semi-active seat suspension system, but they did not consider the 
type and dynamics of semi-actuator [23]. SMC has better robustness and can be applied in the 
presence of model uncertainties and external disturbances, ensuring the system stability. However, 
using SMC to control a plant often requires high control gains, and results easily in a chattering 
phenomenon because the control variable is changed drastically during the control process. As a 
consequence, to investigate the combined advantages of SMC with the fuzzy logic controller has 
become an active field of research [24-28]. Lin et al proposed a fuzzy sliding mode controller 
(FSMC) to control an active suspension system and evaluated its control performance [29]. In 
order to improve the control precision, the variable universe fuzzy controller is a kind of high 
precision fuzzy controller. A stable adaptive fuzzy control of a nonlinear system is implemented 
based on the variable universe method proposed first in [30, 31]. 

In this paper, the model of quarter-car suspension with MR damper was first established in 
Section 2. Neural network technology is used to establish the nonlinear control of MR damper to 
simulate the inverse dynamic characteristics, which is also discussed in this section. The FSMCEF 
control method for semi-active control of vehicle suspension system is studied in Section 3. The 
FSMCEF with skyhook model as the reference is designed. Considering that the chattering of 
SMC can excite undesirable high-frequency dynamics, and fuzzy control with expansion factor 
rules are used to overcome these drawbacks. After the controller design is completed, the 
simulation model is built in Section 4. The simulation test and results analysis are also completed 
in this section, and the conclusion of FSMCEF performance is drawn finally. 

2. Model of quarter-car semi-active seat suspension with MR damper 

2.1. Overview of quarter-car semi-active seat suspension model 

Considering the quarter-car model to be with high accuracy in analyzing the suspension 
dynamics, it is employed to model the semi-active suspension in this paper. Fig. 1 presented a 
three DOF model of quarter-car suspension system containing the seat suspension with a MR 
damper. In this figure the car body, seat and human body are included as the sprung masses: ݉௩ 
and ݉௦, and the vertical dynamics of tire and axle is often considered by introducing an unsprung 
mass ݉௧ and spring ݇௧. MR damper is placed between the seat and the car body to form the seat 
suspension together with a spring and a damper. 

Based on Newton second law, the dynamic equations of seat suspension system is: 

ቐ݉௦ݖሷ௦ = −ܿ௦(ݖሶ௦ − (ሶ௩ݖ − ݇௦(ݖ௦ − (௩ݖ − ሷ௩ݖௗ,݉௩ܨ = ܿ௦(ݖሶ௦ − (ሶ௩ݖ + ݇௦(ݖ௦ − (௩ݖ + ௗܨ − ܿ௩(ݖሶ௩ − (ሶ௧ݖ − ݇௩(ݖ௩ − ሷ௧ݖ௧)݉௧ݖ = ܿ௩(ݖሶ௩ − (ሶ௧ݖ + ݇௩(ݖ௩ − (௧ݖ − ݇௧(ݖ௧ − ,(ݖ , (1)
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where ݉௧, ݉௩ and ݉௦ are unsprung mass, quarter car body mass and seat (plus human body) mass 
respectively. ݇௧, ݇௩ and ݇௦ are the stiffness coefficients of the tire, quarter car suspension and seat 
suspension respectively. ܿ௩ and ܿ௦ are the damping coefficients of quarter car suspension and seat 
suspension respectively. ܨௗ is the semi-active damping force created by the MR damper. ݖ, ݖ௧, ݖ௩ and ݖ௦ are the road excitation, vertical displacements of car axle, body and seat, respectively.  

Based on Eq. (1), the state equation of the system is: ൜ ሶܺ = ܺܣ + ܻ,ܷܤ = ܺܥ + (2) .ܷܦ

where: ܺ = ଵݔ] ଶݔ ଷݔ ସݔ ହݔ ்[ݔ = ௦ݖ] ሶ௦ݖ ௩ݖ ሶ௩ݖ ௧ݖ ܻ ,்[ሶ௧ݖ = ଵݕ] ଶݕ ଷݕ ସݕ ହݕ ்[ݕ = ௦ݖ] ሶ௦ݖ ௩ݖ ሶ௩ݖ ሷ௦ݖ ௦ݖ −  ,்[௩ݖ
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Fig. 1. Model of quarter-car suspension 

2.2. MR damper modeling and analysis 

Bouc-wen hysteresis model paralleled with dashpot and spring is originally used to formulate 
the MR damper. It can describe the hysteretic nonlinearity of the MR damper, but it is unable to 
describe the nonlinear and saturation dependence of the magnetic field yielded by the direct drive 
current. A modified Bouc-wen hysteresis model, proposed by Spencer [32], effectively overcomes 
the above drawback and precisely describes the nonlinear saturated characteristic of the MR 
damper. The modified Bouc-wen hysteresis model is presented in Fig. 2 and it is finally obtained 
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by adding a serial viscous damping with the Bouc-wen model and further paralleling a linear 
spring to the serialized structure. 

 
Fig. 2. Modified Bouc-Wen model of MR damper 

In this paper, the modified Bouc-Wen model is used to describe the mechanical properties of 
the MR damper. The model introduces two internal variables, and it constructs a differential 
equation model with 14 parameters to be determined. According to Fig. 2, the mathematical 
equations of the modified Bouc-wen model are presented as follows: ܨௗ = ܿଵݕሶ + ݇ଵ(ݔ − ሶݕ), (3)ݔ = 1(ܿ + ܿଵ) ൫ݖߙ + ܿݔሶ + ݇(ݔ − ሶݖ൯, (4)(ݕ = ሶݔ|ߛ− − ሶݕ ିଵ|ݖ|ݖ| − ሶݔ)ߚ − ሶݕ |ݖ|( + ሶݔ)ܣ − ሶ) (5)ݕ

where ݑሶ = ݑ)ߟ− −  ଵ is the stiffness of the damper accumulator. ܿ is the viscous damping݇ ,(ݒ
observed when larger velocities is represented. ܿଵ is a dashpot, included in the model to produce 
the roll-off that was observed in the experimental data at low velocities. ݇ is presented to control 
the stiffness at large velocities, and ݔ is the initial displacement of spring ݇ଵ is associated with 
the nominal damper force due to the accumulator. ݑ is given as the output of a first-order filter. ݒ 
is the commanded voltage sent to the current driver. 

As for the RD-1005-3 damper produced by Lord Corporation, its parameters are chosen as 
follows. ߙ =  963 N/cm, ܿ =  53N·S/cm, ݇ =  14 N/cm, ܿଵ =  930 N·s/cm, ݇ଵ =  5.4 N/cm,  ߛ = 200 cm2, ߚ = 200 cm-2, ݊ ܣ ,2 = = 207, and ݔ = 18.9 cm, the response of the proposed 
model at 2.5 Hz is obtained as shown in Fig. 3. It can be seen from Fig. 3 that MR damper can 
provide the damping effect in the plane of I and III quadrant of velocity-force plane, unlike the 
active actuator in all the four quadrants. Therefore, the output of MR damper has to track the 
desired damping force only when the expected force and velocity have same sign, otherwise it 
should output the least damping force, so the formula described is: 

(ݐ)݂ = ൜ ݂(ݐ), ݂(ݐ) ⋅ ሶݔ > 0,݂୫୧୬, ݂(ݐ) ⋅ ሶݔ ≤ 0,  (6)

where ݂(ݐ) is the damping force of MR damper, ݂(ݐ) is the desired force which is obtained by 
using suspension controller, ݂୫୧୬ is the minimal damping force corresponding to the zero input 
current, however it is not a constant value changing with the instant velocity.  

If the MR damper controller employs the switching control method of Eq. (6), the input voltage 
of the MR damper switches between the minimum and maximum without being a continuous 
adjustable control signal, which limits the performance of the MR damper. In this paper neural 
network is used to simulate the inverse model of MR damper, and it is further be as the nonlinear 
controller of MR damper to create a continuous signal for MR damper, which will be discussed in 
next section. 
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a) Force vs. displacement 
 

b) Force vs. velocity 
Fig. 3. Experimentally obtained response of the model 

2.3. Neuro inverse model approximating of MR damper 

The reverse model of MR damper is defined as solving the voltage corresponding to input MR 
damper after the desired damping force is obtained by FSMCEF control algorithm. The aim of the 
reverse model is to make MR damper track this desired force as possible. The inverse model can 
be described using the following nonlinear function: ݒො(݇) = ℎ(߮(݇), (7) ,(ߠ

where ݒො(ݐ) is the input voltage, namely the output of MR damper reverse model. ߠ is the neural 
network weight vector, determined by training process. ߮  is the input vector as  ߶(݇) = ݇)ොݒ] − 1), . . . , ݇)ොݒ − ݊௩), ,(݇)ݔ . . . , ݇)ݔ − ݊௫), ,(݇)ܨ . . . , ݇)ܨ − ݊)] , in which ݇  is the ݇ th (current) time step, ݊௩ , ݊௫  and ݊  are the previous time step numbers of input voltage, 
damping force and displacement respectively.  

The BP neural network can approximate an arbitrary nonlinear continuous function with 
arbitrary precision, and it is used for the inverse-dynamics approximation of MR damper is shown 
in Fig. 4.  

 
Fig. 4. Block diagram of neuro inverse dynamics model for MR damper 

The typical BP network is divided into three layers, which are input layer, hidden layer and 
output layer. For the inverse dynamics model of Eq. (7), the network input layer is set with 9 nodes 
and the hidden layer with 20 nodes (see Fig. 5,  = 20), the output layer has one node, standing 
for the input voltage of the MR damper. 

The output of the hidden node is: 
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ܵ =  ܽݓ
ୀଵ − ,   ܾߠ = ݂൫ ܵ൯ = 11 + ݁ିௌೕೖ ,   ݆ = 1,2, … , ݇   , = 1,2, … , ݉. (8)

The output of the output node is: 

ܮ =  ௧ݒ ܾ
ୀଵ − ௧ܥ   ,௧ߛ = (௧ܮ)݂ = 11 + ݁ିೖ ݐ   , = 1,2, … , (9) .ݍ

 
Fig. 5. Detailed neural network for the inverse dynamics approximation 

This neural network training includes namely mode suitable transmission, error back 
propagation, memory training and learning convergence. The detailed training procedures are as 
follows. 

(1) Initialization: 
The weights of ൛ݓൟ, ൛ݒ௧ൟ and threshold of ൛ߠൟ, ሼߛ௧ሽ are all set as random values in (–1, 1). 
(2) Randomly pick up a pair of samples for network training. 
(3) Calculate the output of the hidden layer using Eq. (8). 
(4) Calculate the output layer using Eq. (9). 
(5) Calculate the average error of the output layer: ݀௧ = ௧ݕ) − ௧(1ܥ(௧ܥ −  .( ௧ܥ
(6) Calculate the hidden layer general error: ݁ = (∑ ݀௧ݒ௧)௧ୀଵ ⋅ ܾ(1 − ܾ ). 
(7) Modify the output layer weights and thresholds: 

ቊݒ௧(ܰ + 1) = (ܰ)௧ݒ + ௧݀ߙ ܾ, ߙ ∈ (0,1), ݐ = 1,2, … , ,ݍ ݆ = 1,2, … , ܰ)௧ߛ, + 1) = (ܰ)௧ߛ + .(௧݀ߙ−)  (10)

(8) Modify hidden layer weights and thresholds: 

ቊݓ(ܰ + 1) = (ܰ)ݓ + ߚ ݁ܽ,ߠ(ܰ + 1) = (ܰ)ߠ + ൫−ߚ ݁൯.  (11)

(9) Take out the next pair of sample and return Step (3) to repeat until completing all training 
samples. 

(10) Determine whether a global error is less than the preset value, otherwise, to return to  
Step (2) to continue until meeting the requirements. 

The displacement and the input voltage, as the network input, are generated by Gaussian white 
noise with frequency ranges of 0-3 Hz and 0-4 Hz respectively. A data set of 10000 points used 
for training and validation are created by 500 Hz sampling frequency in 20 s sample time. These 
data are used for training the network and another data set including 1200 points is further created 
to validate the training. The BP neural network training and validating process is shown in Fig. 6 
and the control voltage between the predict output and desired output shown in Fig. 7. The BP 
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network prediction error compared with the desired output is shown in Fig. 8. 

Fig. 6. BP neural network training  
and validating process 

 
Fig. 7. Control voltage between  

the predict output and the desired output 

 
Fig. 8. BP network prediction error 

Table 1. BP predict output data, desired output data and their errors 
Sample No. Predict output Desired output Errors 

1 1.154196198 1.139969109 0.014227089 
2 1.144247759 1.139969109 0.00427865 
3 1.141656099 1.139969109 0.00168699 
4 1.140767273 1.139969109 0.000798164 
5 1.140462485 1.139969109 0.000493376 
6 1.140385454 1.139969109 0.000416345 
7 1.140396186 1.139969109 0.000427077 
8 1.151196722 1.235470511 –0.084273789 
9 1.219608674 1.235470511 –0.015861836 
10 1.242757353 1.235470511 0.007286842 
11 1.228802917 1.235470511 –0.006667594 
12 1.228274434 1.235470511 –0.007196077 
13 1.229949686 1.235470511 –0.005520825 
14 1.231869009 1.235470511 –0.003601502 
15 1.227968248 1.326840347 –0.098872098 

…… …… …… …… 
 1.140153642 1.135359005 0.004794637 

1195 1.140148274 1.135359005 0.00478927 
1196 1.140113462 1.135359005 0.004754457 
1197 1.140047649 1.135359005 0.004688644 
1198 1.139997841 1.135359005 0.004638836 
1199 1.139988131 1.135359005 0.004629127 
1200 1.108848138 1.115573823 -0.006725686 

Table 1 shows the BP predict output data, the desired output data and their error. The sum of 
the absolute value of 1200 errors is 15.9525. Table 1 presented the detailed result of some samples, 
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and the results show that the BP neural network predict output values substantially agree with the 
actual situation, and the errors are small, demonstrating that this model is highly with the project 
reality and the neural network model is effective. 

3. Fuzzy sliding mode controller design 

The difference of sliding mode variable structure control from other conventional control 
strategies is its discontinuity of control. the system structure make switch characteristics change 
over time, and that control features can force the system make small amplitude and high frequency 
movement up and down along the switching surface, which called “sliding mode” (see Fig. 9). 
The sliding mode can be designed irrelative with parameter perturbation and external disturbance, 
and the system under sliding mode has good robustness.  

 
Fig. 9. Sliding mode motion in 2-D phase plot 

But the sliding mode motion under parameters perturbation and external disturbance is easy to 
cause the high frequency chattering, because the high frequency chattering is infinitely fast in 
theory, but in practice no actual actuators can realize it. The chattering phenomenon gives rise to 
the application difficulties of sliding mode control. In the next sections, the sliding mode controller 
for semi-active suspension will be designed and its combination with fuzzy logic will further 
completed to depress the chattering. The sliding mode controller takes an ideal skyhook model as 
the reference, and creates a sliding mode control law based on the errors dynamics between the 
seat suspension and its reference model. Thus, the skyhook model is first established and the next 
is discussing the errors dynamics. Further fuzzy rules are used to suppress the chattering occurred 
in the above sliding mode control by fuzzifying the sliding mode surface and its derivative. 
Considering that the chattering results in the errors changing in a large range, an expansion factor 
is used to change the universe of the fuzzy logic but without changing the fuzzy rules, which forms 
a new variable universe fuzzy controller with adaptive characteristic. The combining of the sliding 
mode controller and fuzzy controller with expansion factor is further studied, the new formed 
FSMCEF design is presented and its stability further completed. 

3.1. Skyhook reference model 

Herein the skyhook model is used as the reference to form the fuzzy sliding control algorithm, 
and it is presented in Fig. 10.  

The dynamics equations are derived based on Newton second law as follows: 

ቐ݉௦ݖሷ௦ = −ܿ௦(ݖሶ௦ − (ሶ௩ݖ − ݇௦(ݖ௦ − (௩ݖ − ܿ௦ݖሶ௦,݉௩ݖሷ௩ = ܿ௦(ݖሶ௦ − (ሶ௩ݖ + ݇௦(ݖ௦ − (௩ݖ − ܿ௩(ݖሶ௩ − (ሶ௧ݖ − ݇௩(ݖ௩ − ሷ௧ݖ௧),݉௧ݖ = ܿ௩(ݖሶ௩ − (ሶ௧ݖ + ݇௩(ݖ௩ − (௧ݖ − ݇௧(ݖ௧ − ,(ݖ  (12)

where ݖ௧, ݖ௩ and ݖ௦ are the road excitation, vertical displacements of unsprung mass, car body 
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and seat respectively, which are the corresponding variables in the reference system compared 
with the plant system in Fig. 1. ܿ௦ is the damping coefficient of “sky-hook” damper. 

 
Fig. 10. Skyhook reference model 

The state vector for the reference system is taken as ܼ = ,௦ݖ] ,ሶ௦ݖ ,௩ݖ ,ሶ௩ݖ ,௧ݖ  ሶ௧]், and theݖ
output vector is taken as ܻ = ,௦ݖ] ,ሶ௦ݖ ,௩ݖ  ሶ௩]். According to Eq. (12) the state equations areݖ
established as: ൜ ሶܼ = ܼܣ + ,ܻݑܤ = ܼܥ + ,ݑܦ  (13)

where: 

ܣ =
ێێۏ
ێێێ
ێێێ
ۍ 0 0 0 0 0 0−݇௦݉௦ −(ܿ௦ + ܿ௦)݉௦ ݇௦݉௦ ܿ௦݉௦ 0 00 0 0 1 0 0݇௦݉௩ ܿ௦݉௩ −(݇௦ + ݇௩)݉௩ −(ܿ௦ + ܿ௩)݉௩ ݇௩݉௩ ܿ௩݉௩0 0 0 0 0 10 0 ݇௩݉௧ ܿ௩݉௧ −(݇௧ + ݇௩)݉௧ −ܿ௩݉௧ ۑۑے

ۑۑۑ
ۑۑۑ
ې
ݑ     , =  .[ݖ]

ܥ = ൦1 0 0 0 0 00 1 0 0 0 00 0 1 0 0 00 0 0 1 0 0൪,     ܤ = 0 0 0 0 0 ݇௧݉௧൨் ܦ    , = [0 0 0 0]்.    
3.2. Error dynamics model used for SMC and FSMCEF 

Both the sliding mode controller and the fuzzy sliding mode controller are designed to make 
the actual seat suspension motion to track the reference mode, and so they are based on the 
dynamic errors between the seat suspension and the skyhook reference model. Based on the above 
seat model and the reference model, the seat suspension displacement error, its integral and its 
differential (velocity error) are taken as the control variables, and they form the general tracking 
error vector݁as ݁ = [݁ଵ ݁ଶ ݁ଷ]் = ௦ݖ)] − (௦ݖ ௦ݖ − ௦ݖ ሶ௦ݖ − ்[ሶ௦ݖ  and its differential is ሶ݁ = ௦ݖ] − ௦ݖ ሶ௦ݖ − ሶ௦ݖ ሷ௦ݖ − ሷ௦]். so, the error dynamic equation is obtained as: ሶ݁ݖ = ݁ܧ + ݑܨ + ܼܩ + , (14)ܼܪ

where: 
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mv
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ܧ = ൦0 1 00 0 10 −݇௦݉௦ −ܿ௦݉௦
൪ ܩ   , = ൦0 0 0 0 0 00 0 0 0 0 00 0 ݇௦݉௦ ܿ௦݉௦ 0 0൪ ܪ   , = ൦0 0 0 0 0 00 0 0 0 0 00 ܿ௦݉௦ −݇௦݉௦ −ܿ௦݉௦ 0 0൪,    

ܨ = 0 0 −1݉௦൨் ݑ   , =  .[ௗܨ]
3.3. Sliding mode control based on pole placement 

The switching surface is taken as: ݏ = ܿ݁ = [ܿଵ, ܿଶ, 1][݁ଵ, ݁ଶ, ݁ଷ]். (15)

As for ݏ = ܿଵ݁ଵ + ܿଶ݁ଶ + ݁ଷ = 0, Eq. (14) can be written to partitioned matrix form as:  ሶ݁ଵሶ݁ଶ൨ = ቂ0 10 0ቃ ቂ݁ଵ݁ଶቃ + ቂ01ቃ ݁ଷ = ቂ0 10 0ቃ ቂ݁ଵ݁ଶቃ + ቂ01ቃ ݏ) − ܿଵ݁ଵ − ܿଶ݁ଶ)=  0 1−ܿଵ −ܿଶ൨ ቂ݁ଵ݁ଶቃ + ቂ01ቃ (16) ,ݏ

ሶ݁ଷ = −݇௦݉௦ ݁ଶ − ܿ௦݉௦ ݁ଷ − 1݉௦ ௗܨ + ܿ௦݉௦ ሶ௦ݔ + ݇௦݉௦ ௩ݔ) − (௩ݔ + ܿ௦݉௦ ሶ௩ݔ) − ሶ௩). (17)ݔ

As for ݏሶ = ܿଵ݁ଶ + ܿଶ݁ଷ + ሶ݁ଷ = 0, Eq. (16) can be written as:  ሶ݁ଵሶ݁ଶ൨ =  0 1−ܿଵ −ܿଶ൨ ቂ݁ଵ݁ଶቃ. (18)

The characteristic polynomial for Eq. (18) is (ߣ)ܦ = ଶߣ + ܿଶߣ + ܿଵ. To obtain the value of ܿଵ 
and ܿଶ, its characteristic roots are equal to the given poles. 

The chief problem of pole assignment is rationally to determine the desired closed-loop poles 
set. The standard form of the second-order system transfer function is: 

Φ(ݏ) = (ݏ)ܷ(ݏ)ܻ = ߱ଶݏଶ + ݏ߱ߞ2 + ߱ଶ. (19)

The two closed-loop poles are ݏଵ,ଶ = ߱ߞ− ± ݆߱ඥ1 − ଶߞ , and the system works in less 
damping state (0 < ߞ < 1) which makes these two poles to be conjugate complex roots located in 
the left half plane of ݏ domain and to have the appropriate oscillation and short transition process. 
For the three orders system are in Eqs. (16) and (17), the desired poles number are ݊ = 3. The 
conjugate pole pair of ݏଵ and ݏଶ are selected as the dominant poles, and the third is a non-dominant 
one. The poles placement of our closed-loop system is completed to ensure the two dynamic 
performance indices: peak time ݐ  and overshoot ߪ  %. These two indices are set as ߪ ≤ ݐ ,% 15  ≤  0.7, which determines the dominant poles be at –2.7326±4.4886i and the 
non-dominant pole at –20. The corresponding parameters are ߞ = 0.52 and ߱ = 5.255. So, the 
switching function coefficient vector is ܿ = [68 4 1] . The system performance is mainly 
determined by these two dominant poles and the non-dominant pole only produces minimal effect.  

When system is in sliding mode motion, ݏ = ݐ݀/ݏ݀ ,0 = 0 and: ݀ݐ݀/ݏ = ܿ ሶ݁ = ݁ܧ)ܿ + ݑܨ + ܺܩ + (ܺܪ = 0. (20)

The equivalent control for system into fuzzy sliding mode or sliding mode is ݑ∗, and: 
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∗ݑ = ݁ܧ)ଵܿି[ܤܿ]− + ܺܩ + ௗܨ), (21)ܺܪ = (ܿଵ݉௦ − ݇௦)݁ଶ + (ܿଶ݉௦ − ܿ௦)݁ଷ + ݇௦(ݔ௩ − (௩ݔ + ܿ௦(ݔሶ௩ − (ሶ௩ݔ + ܿ௦ݔሶ௦. (22)

In order to improve the dynamic quality of the movement, the approaching mode employs the 
constant speed reaching law as: ݀ݐ݀/ݏ = (23) ,(ݏ)sgnߝ−

where ߝ = 3.  
The final sliding mode control law is taken as:  ݑ = ݑ + ௦௪ݑ = ∗ݑ + ሶݏଵି[ܤܿ] = ∗ݑ + (24) .(ݏ)௦sgn݉ߝ

So, the desired real-time variable damping force is as: 

ௗܨ = ቊܨௗ + ,ௗೞೢܨ ௗܨ] + ሶ௦ݔ)[ௗೞೢܨ − (ሶ௩ݔ ≥ 0,0, ௗܨ] + ሶ௦ݔ)[ௗೞೢܨ − (ሶ௩ݔ < 0, (25)

where ܨௗೞೢ = ௦௪ݑ = ߝ ,(ݏ)௦sgn݉ߝ = 3. 

3.4. Fuzzy sliding mode control  

The fuzzy logic control is further added to overcome sliding mode controller “chattering” 
problem. The connection of the sliding mode controller and the fuzzy logic controller is shown in 
Fig. 11, which formed the final fuzzy sliding mode controller. The detailed content of the fuzzy 
control block in Fig. 11 is presented in Fig. 12. Its inputs are ݏ(݁) and ݏሶ(݁), with one output ߝ sent 
to the sliding mode controller. 

 
Fig. 11. Block diagram of FSMCEF system 

The fuzzy controller first change the range of ݏ(݁) and ݏሶ(݁), namely from their original ranges 
of [–0.04, 0.03] and [–6×10-3, +8×10-3] both to the new range of [–6, +6] for further discretization 
and fuzzification. The corresponding conversion equation is: 

ݕ = 12ܾ − ܽ ݔ − ܽ + ܾ2 ൨. (26)
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Fig. 12. The structure of fuzzy controller 

The variables after conversion are ܵ and ܵܥ (Fig. 12), and they are further discretized and 
fuzzified to form fuzzy sets ܵ, ܵܥ . In this process ܵ and ܵܥ  are classified into seven grades, 
forming seven fuzzy subsets, including: NL (Negative Large), PL (Positive Large), NM (Negative 
Medium), PM (Positive Medium), NS (Negative Small), PS (Positive Small), NE (0). The ܵ and ܵܥ of domain ܺ and ܻ are belonging to 7 fuzzy subsets, respectively. Similarly, the output value ߝ are also ranked into seven fuzzy subsets: NL, PL, NM, PM, NS, PS, NE.  

For this double input and single output fuzzy controller, the control rules can be written as the 
following form: If ܵ = ܵ and ܵܥ = ܷ  thenܥܵ = ܷ, (݅ = 1, 2,…, 7, ݆ = ݅ = 1, 2,.., 7), where ܵ, ܵܥ are input fuzzy sets, and ܷ is output fuzzy sets.  

These fuzzy sets conditional statements can be summed up in a fuzzy relation ܴ , and  ܴ =∪ ܧ) × (ܥܧ × ܷ . According to each inference rules, the corresponding fuzzy relations, ܴଵ, ܴଶ, . . . , ܴ can be calculated. So, the total of the whole system corresponding fuzzy control 
rule ܴ is: ܴ = ܴଵ ∨ ܴଶ ∨ ⋯ ∨ ܴସଽ = ∨ୀଵସଽ ܴ. (27)

The final fuzzy rules are shown in Table 2, and according to Table 2 the 3-D input-output 
relation diagram of the fuzzy controller is obtained as shown in Fig. 13. 

Table 2. Fuzzy rules ܥܵ ߝ 
NL NM NS ZE PS PM PL 

ܵ 

NL NL NL NM NM NS NS ZE 
NM NL NL NM NS NS NS ZE 
NS NM NM NS ZE ZE ZE ZE 
ZO NM NM NS ZE ZE PS PS 
PS NS NS ZE ZE PS PS PM 
PM ZE PS PS PS PS PM PL 
PL PS PS PS PM PL PL PL 

 
Fig. 13. 3-D diagram of Fuzzy control rules  

When ܴ  is determined, according to ܵ = ሼ−6, −5, ⋯ + 5, +6ሽ ܥܵ , = ሼ−6, −5 ⋯ + 5, +6ሽ 
and synthetic fuzzy reasoning rules, the corresponding fuzzy sets of controls is ܷ = ܧ) × (ܥܧ ∘ܴ, and: 

s

sc
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(ݖ)ఌߤ =∨ ,ݔ)ோߤ ,ݕ (ݖ ∧ (ݔ)ௌߤൣ ∧ ௨௭௭௬ߝ൧, (28)(ݕ)ௌߤ = ∑ (ߝ)ߤ ∗ ∑ସଽୀଵߝ ସଽୀଵ(ߝ)ߤ , ௨௭௭௬ߝ ∈ (2,5). (29)

The final fuzzy sliding or sliding mode control law is taken as: ݑ = ݑ + ௦௪ݑ = ∗ݑ + ݏଵି[ܤܿ] = ∗ݑ + (30) .(ݏ)௨௭௭௬݉௦sgnߝ

3.5. Fuzzy sliding mode control with expansion factor  

Equidistant domain partitioning method is used in fuzzy control generally. When the error is 
large, the system has sufficient error resolution, and it is shown as the “big error” dotted line in 
Fig. 14. When the error is small, the system response only changes around “ZO” corresponding 
to the original fuzzy partition, and other fuzzy subsets obviously do not work. Ideally, when the 
error is reduced, the domain of the fuzzy controller should be able to make self-adaptation 
adjustment. The accuracy of the fuzzy controller is related to the number of output variables and 
fuzzy rules. Supposing the input is ݊-dimensional, the fuzzy control rule of the universe is divided 
into ݉; the total rule number is ݉, if the fuzzy subset of the domain is divided into smaller, the 
number of fuzzy control rules will increase exponentially, increasing the difficulty of making  
rules. Therefore, under the premise of not affecting the control effect, we should try to use less 
fuzzy subset to reduce the number of fuzzy control rules. With the same form of rules, the universe 
shrinks as the error becomes smaller, and the universe expands as the error increases. The 
contraction of the domain is equivalent to increasing the fuzzy control rules to improve the control 
accuracy. The function of the scaling factor (ݔ)ߙ transforms the domain into [−ܧ(ݔ)ߙ,  ,[ܧ(ݔ)ߙ
where (ݔ)ߙ is a continuous function of the error variable ݔ. The appropriate domain expansion 
factor (ݔ)ߙ is chosen so that the range of the universe changes with the error, which can realize 
the adaptive implementation of the expansion of the domain, without the need for other auxiliary 
algorithms and increase the control rules. 

 
Fig. 14. Adjustment of the domain 

Let ܺ = ,ܧ−] [ܧ  be the universe of input variable ݔ (݅ = 1,2, … , ݊) , ܻ = [−ܷ, ܷ]  is the 
universe of output variable ݕ; ߰ = ൛ܣൟ is the fuzzy partition on ܺ , ߶ = ൛ܤൟ is the fuzzy 
partition on ܻ, 1 ≤ ݆ ≤ ݉. As ߰, ߶ are the linguistic variables, fuzzy inference rule ܴ can be 
formed: 

if  ݔଵ  is  ܣଵ  and  ݔଶ  is  ܣଶ  and … , (31)ܤ  is  ݕ    thenܣ    isݔ

where ݔ  is ܣ  peak, and ݕ  is ܤ  peak (݅ = 1,2, … , ݊) , (݆ = 1,2, … , ݉) , The fuzzy control 
system of Eq. (31) can be expressed as an ݊-piece piecewise interpolation function: 
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,ଵݔ)ݕ ,ଶݔ … , (ݔ = ,ଵݔ)ܨ ,ଶݔ … , (ݔ ≜   ୀଵ
 ෑ ݕ(ݔ)ܣ

ୀଵ . (32)

The variable universe is that domain ܺ and ܻ can be adjusted independently with the change 
of input variable ݔ and output ݕ, respectively: 

ܺ(ݔ) = ,ܧ(ݔ)ߙ−] (ݕ)ܻ], (33)ܧ(ݔ)ߙ = ,ܷ(ݕ)ߚ−] (34) ,[ܷ(ݕ)ߚ

where ߙ(ݔ) and (ݕ)ߚ is the domain expansion factor. In contrast to the variable universe, the 
original universe ܺ  and ܻ is called the initial universe. Eq. (32) can be expressed as ݊-piece 
dynamic interpolation function: 

ݐ)ݔ)ݕ + 1)) = ߚ ቀݕ൫(ݐ)ݔ൯ቁ  ෑ ܣ
ୀଵ


ୀଵ ቆ ൯ቇ(ݐ)ݔ൫ߙ(ݐ)ݔ , (35)ݕ

where (ݐ)ݔ ≜ ,(ݐ)ଶݔ ,(ݐ)ଵݔ] … ,  :is chosen as (ݔ)ߙ and ,்[(ݐ)ݔ

(ݔ)ߙ = ቆ|ܧ|ݔ ቇఛ ,   0 < ߬ < 1, (36)

or: (ݔ)ߙ = 1 − ߣ    ,(ଶݔ݇−)expߣ ∈ (0,1),   ݇ > 0. (37)

In this paper (ݔ)ߙ = 1 − 1 √1 + ⁄ଶݔ݇ , ݇  :is chosen as (ݕ)ߚ .104 =

(ݐ)ߚ = ܭ   න ݁(߬)݀߬ + ௧,(0)ߚ



ୀଵ  (38)

where ܭ is the proportionality constant, and (0)ߚ is according to the actual situation, usually try (0)ߚ = 1. The control law of the variable universe fuzzy controller is: 

(ݐ)ݑ = ቌܭ   න ݁(߬)݀߬ + ௧(0)ߚ



ୀଵ ቍ ܷ  ෑ ܣ

ୀଵ


ୀଵ ቆ ൯ቇ(ݐ)ݔ൫ߙ(ݐ)ݔ . (39)ݕ

ܺ = ,ܧ−] ܻ ,[ܧ = ,ܦ−] ܼ is two-dimensional input domain, respectively, and [ܦ = [−ܷ, ܷ] 
is the output domain. When ܺ and ܻ are relatively independent, we can get the expansion factor (ݕ)ߚ ,(ݔ)ߙ and ܼ expansion factor (ݖ)ߛ. But in most cases, ܻ and ܺ are related. If ܺ is the error 
domain and ܻ is often the domain of error variation, ܻ = ൫−ܧሶ , ሶܧ ൯ and (ݕ)ߚ should be defined on ܺ × ܻ and (ݕ)ߚ = ,ݔ)ߚ  :then the input and output of the domain expansion factor are ,(ݕ

(ݔ)ߙ = ቆ|ܧ|ݔ ቇఛ ,    0 < ߬ < 1, (40)

,ݔ)ߚ (ݕ = ቈቆ|ܧ|ݔ ቇఛ + ቆ|ܧ|ݕ ቇఛభ ,   or    ݔ)ߚ, (ݕ = ቆ|ܧ|ݔ ቇఛ ቆ|ܧ|ݕ ቇఛభ ,    0 < ߬,    ߬ଵ < 1. (41)
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Since the error variation depends on the error, ߚ can be simply taken as (ݕ)ߚ, Eq. (41) can be 
rewritten as: 

(ݕ)ߚ = 12 ቈቆ|ܧ|ݕሶ ቇఛభ ,   or  (ݕ)ߚ = ቆ|ܧ|ݕሶ ቇఛభ. (42)

3.6. Stability analysis 

3.6.1. Stability analysis of nominal system based on Lyapunov theorem 

The poles placement of our closed-loop system is completed to ensure the two dynamic 
performance indices: peak time ݐ and overshoot ߪ %. These two indices are set as ߪ ≤ ݐ ,% 15 ≤ 0.7 which determine the dominant poles be at –2.7326±4.4886i and the non-dominant pole 
at –20. The corresponding parameters are ߞ = 0.52 and ߱ = 5.255. So, the switching function 
coefficient vector is ܿ = [68 4 1] . The energy function is taken as ܸ(ݔ) =  ଶ/2 and it isݏ
positive definite, and its differential ሶܸ (ݔ) = ݏ ⋅ ሶݏ = ݏ ⋅ ((ݏ)௨௭௭௬sgnߝ−) ≤ 0, namely negative 
definite, so the entire system is asymptotically stable.  

3.6.2. Robust stability analysis of system under parameter uncertainty and external 
disturbance 

Considering the general form of the linear uncertainty system is: ሶܺ = ܣ) + Δܣ)ܺ + ܤ) + Δܤ)ܷ + (43) ,߱ܦ

where ܺ ∈ ܴ,  ܷ ∈ ܴ; ܣ  ∈ ܴ×, ܤ  ∈ ܴ×, ܦ  ∈ ܴ×;  Δܣ ∈ ܴ×,  Δܤ ∈ ܴ×  are 
uncertainty matrix of A and B respectively, which describes the differences between the nominal 
value of parameters and the actual true values; ߱ ∈ ܴ is the uncertainty of disturbance. Without 
loss of generality, the nominal model (ܣ,  of the controlled object Eq. (43) is supposed to be (ܤ
completely controllable. 

In order to study the impact of various uncertainties on the control system, Δܣ, Δܤ and Δܥ can 
be decomposed into: Δܣ = ܪܤ + ܤΔ    ,ܣߜ = ܧܤ + ܦ   ,ܤߜ = ܨܤ + (44) ,ܦߜ

where ܪ ∈ ܴ×, ܧ ∈ ܴ×; ܨ ∈ ܴ×, ܣߜ ∈ ܴ×, ܤߜ ∈ ܴ×, ܦߜ ∈ ܴ×.  
The first term on the right-hand side of Eq. (44) satisfies the matching condition and is the 

matching part of the uncertainty factor; the second term is the residual part, which is the 
mismatching uncertainty factor. Generally, the information easy to obtain for the uncertainty 
factor is its lower and upper bounds. 

Hypothesis 1: The uncertain factors of the controlled object Eq. (43) are bounded: ‖Δܣ‖ ≤ ‖ܤఙ,   ‖Δߩ ≤ ‖߱‖   ,௩ߩ ≤ ‖ܣߜ‖   ,ఠߩ ≤ ‖ܤߜ‖   ,ఙߩ̅ ≤ ௩, (45)ߩ̅

where ߩఙ ≥ ఙߩ̅ ≥ ௩ߩ ,0 ≥ ௩ߩ̅ ≥ ఠߩ ,0 ≥ 0 are known constants. 
When ܤߜ ,ܣߜ and ܦߜ are equal to zero respectively, Eq. (44) is equivalent to uncertainty 

factor matching conditions or invariance conditions: [ܤ]݇݊ܽݎ = ܣΔ]݇݊ܽݎ [ܤ = ܤΔ]݇݊ܽݎ [ܤ = (46) .[ܤ   ܦ]݇݊ܽݎ

The controlled object Eq. (43) is the matching uncertainty system; when either ܣߜ ≠ 0 ܤߜ  , ≠ 0 or ܦߜ ≠ 0 is established, the controlled object is a linear mismatch uncertainty system. 
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For the linear mismatch uncertainty system described by Eq. (43), the design of m-dimensional 
sliding mode domain in n-dimensional state space is as: ܵ = ܺܩ = ܩ   ,0 ∈ ܴ×. (47)

In order to guarantee the non-singularity of the variable structure control system, the sliding 
mode requirement is |ܤܩ| ≠ 0. Thus, by the equivalent control method, the state equation of the 
variable structure closed-loop equivalent system of the mismatched uncertain Eq. (43) can be 
deduced: ሶܺ = ܫ] − ܺܣ[ܩଵି(ܤܩ)ܤ + ܫ] − ܺܣߜ)[ܩଵି(ܤܩ)ܤ + ܷܤߜ + (48) .(߱ܦߜ

Due to when ‖߱‖ is bounded, mismatch perturbation uncertainty factor ߱ܦߜ has nothing to 
do with stability, so lose the generality: ߱ = 0. And mismatch parameters and input uncertainty 
factors are introduced the equivalent system and will cause the disturbance of its Eigen values, 
affecting the dynamic characteristics and stability of closed-loop system. The stability and 
robustness of the variable-structure closed-loop control system Eq. (49) will be studied by 
estimating the perturbations of ܣߜ and ܤߜ to the eigenvalues. 

1. When ܣߜ) ܣߜ ≠ ܤߜ ,0 = 0). 
For a variable structure equivalent system Eq. (48): ሶܺ = ܫ] − ܺܣ[ܩଵି(ܤܩ)ܤ + ܫ] − ܺܣߜ)[ܩଵି(ܤܩ)ܤ + ܷܤߜ + (߱ܦߜ = ܺܣ + ܺ. (49)ܣߜ

When ‖ܣߜ‖ஶ ≤ ఙߩ̅ ,ఙߩ̅ ≥ ݊  hasܣ ;0 − ݉ nonzero single eigenvalues ߣଵ, ߣଶ,…, ߣି. 
(1) There is always a similarity transformation matrix ܲ ∈ ܲିଵܣܲ :×, andܥ = ቂܦଵଵ ଵଶ0ܦ 0 ቃ ܲିଵܣߜܲ     , = ቂܣߜଵଵ ଵଶ0ܣߜ 0 ቃ ଵଵܦ, = diag(ߣଵ, ,ଶߣ … , ଵଵܣߜ     ,(ିߣ ∈ ܴ(ି)×(ି).  (50)

(2) Because the eigenvalue has invariance to matrix similarity transformation, all the 
disturbance of the characteristic value caused by ܣߜ(ܣߜ)  to ܣ  is transformed into the 
disturbance of ܣߜଵଵ  to ܦଵଵ  in Eq. (50). Let ܣߜଵଵ = ൛Δܽଵଵൟ, ܲିଵܣߜܲ  = ൛Δܽଵ ൟ , and  ܦ)ߣଵଵ + (ଵଵܣߜ = ሼߤଵ, ,ଶߤ … , ߤ ିሽ. Then by Gerschgorin in the theorem, for eachߤ  there is 
always ߣ: 
หߤ − ߣ) + Δܽଵଵ)ห ≤  |Δܽଵଵ|ି

ୀஷ
,   ݅, ݆ = 1,2, … , ݊ − ݉, (51)

and: 

หߤ − หߣ ≤ |Δܽଵଵ| +  |Δܽଵଵ|ି
ୀஷ

≤ maxୀଵି หΔܽ ห
ୀଵ = maxୀଵ หΔܽ ห

ୀଵ       = ฮܲΔܣܲିଵฮஶ ≤ ஶ‖ܣߜ‖ ⋅ (ܲ)݀݊ܿ ⋅ ܫ‖ − ,ஶ‖ܩଵି(ܤܩ)ܤ  (52)

and: หߤ − หߣ ≤ ఙߩ̅ ⋅ . (53)ߝ
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The above equation shows that the existence of parameter mismatch uncertainty factor ܣߜ 
makes the eigenvalue of the equivalent system change from ߣଵ, ߣଶ,…, ߣି to ߤଵ, ߤଶ,…, ߤି, 
and all the ݊ − ݉ values of the eigenvalue ߤ (single or multiple) are in the union of ݊ − ݉ circles 
with ̅ߩఙ ⋅  . as the radiusߝ

The sufficient condition for the asymptotic stability of the variable structure equivalent 
systems is given by Eq. (49). To substitute Eq. (53) into the equation, the sufficient condition 
becomes max ܴ(ߣ) ≤ ఙߩ̅− ⋅  .ߝ

A sufficient condition for the asymptotic stability of the variable structure equivalent system 
Eq. (49) is given as: maxRe(ߣ) < ఙߩ̅− ⋅ ܫ]‖(ܲ)݀݊ܿ − ‖[ܩଵି(ܤܩ)ܤ = ఙߩ̅− ⋅ , (54)ߝ

where ‖ܣߜ‖ ≤  .ఙ, ‖⋅‖ is absoluteߩ̅
2. When ܣߜ) ܤߜ = ܤߜ ,0 ≠  is as a mismatching input uncertainty factor, and the effect of disturbance on the eigenvalue ܤߜ .(0

and stability of the variable structure equivalent system is more complicated than that of the 
mismatch parameter uncertain factor ܣߜ, and with the control of the variable structure control 
system law intertwined. According to the characteristics of nonlinear discontinuous feedback in 
variable structure control systems, the control law has the general form:  ܷ = ܺܭ + ‖ܵ‖)ܵߩ + ଵ, (55)ି(ߜ

where ܭ ∈ ܴ×, ߩ > 0 and ߜ > 0 are the quiver factors. 
For a variable structure equivalent system: ሶܺ = ܫ] − ܺܣ[ܩଵି(ܤܩ)ܤ + ܫ]ൣ − (56) .ܷܤߜ൧[ܩଵି(ܤܩ)ܤ

Given that ‖ܤߜ‖ ≤ ௩ߩ̅ ௩ߩ̅ ,  and [ܫ − ܣ[ܩଵି(ܤܩ)ܤ  have ݊ − ݉  single nonzero eigenvalues, 
then the sufficient conditions for the asymptotic stability of the equivalence system is: maxRe(ߣ) < ௩ߩ̅− ⋅ ܫ]‖(ܲ)݀݊ܿ − ‖ܭ[ܩଵି(ܤܩ)ܤ = ௩ߩ̅− ⋅ ,ߝ ݅ ∈ ሼ1,2, … , ݊ − ݉ሽ, (57)

where ܲ ∈  .×ܥ
3. When ܣߜ and ܣߜ) ܤߜ ≠ ܤߜ ,0 ≠ 0). 
For linear mismatched uncertain system Eq. (43), the sliding mode is Eq. (47), and the variable 

structure control law is given by Eq. (55), if [ܫ − ܣ[ܩଵି(ܤܩ)ܤ  has ݊ − ݉  nonzero single 
eigenvalues ߣଵ, ߣଶ,…, ߣି; then the sufficient conditions for large-scale asymptotic stability of 
variable structure equivalent systems is: max ܴ(ߣ) < ఙߩ̅− ⋅ ߝ − ௩ߩ̅ ⋅ , (58)ߝ

where ߝ and ߝ are definitude respectively. 

4. Numerical simulation and performance analysis 

To evaluate the effectiveness of the proposed FSMCEF, A Simulink model is completed 
according to a certain model of car parameters which are shown in Table 3. For comparison, the 
FSMCEF, SMC, PID and passive mode are established for the same model.  

The road input is ݔሶ(ݐ) = ߨ2− ݂ݔ(ݐ) + ,(ݐ)ݓܷܩඥߨ2  where ݔ(ݐ)  is the vertical 
displacement for pavement input; ݂  is the cut off frequency for road input; ܩ  is the road 
roughness coefficient; ܷ  is the speed; (ݐ)ݓ  is the input white noise. Simulation parameter 
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settings are as follows: ܩ =  6.4×10-3 m3, ܷ =  20 m/s, ݂ =  0.01 Hz. Fig. 15 presented the 
FSMCEF simulink model without MR of quarter-car seat suspension system. Fig. 16 is the result 
of comparing the proposed FSMCEF with the sky-hook reference model. It displays that the 
FSMCEF can effective track the sky-hook reference mode. 

Table 3. parameters of a certain model of car 
Parameter Value Unit ݉௦ 80 kg ݉௩ 400 kg ݉௧ 40 kg ݇௦ 8000 N/m ܿ௦ 250 N/(m·s-1) ܿ௦ଵ 700 N/(m·s-1) ܿ௦ 2000 N/(m·s-1) ݇௩ 18500 N/m ܿ௩ 1500 N/(m·s-1) ݇௧ 185000 N/m ߝ௨௭௭௬ 2-5 – 

 
Fig. 15. FSMCEF Simulink model with MR of quarter-car seat suspension system 

 
Fig. 16. Comparing the proposed FSMCEF with the sky-hook reference model 

Fig. 17, Fig. 18 and Fig. 19 are the ݁1-݁2-݁3, 2݁-1݁-ݐ and 3݁-2݁-ݐ phase diagram of fuzzy 
sliding with expansion factor and sliding mode movement respectively, and every figure has two 
different view angle parameters: azimuth (AZ) and elevation (EL). In the beginning with ݁1, ݁2 
and ݁3 are in the system initial states, and the defaults are zeros, through the results can be seen 
in the graph, each cycle system is able to achieve balance, and it can be seen that FSMCEF can 
effectively restrain the chattering.  
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a) AZ: –29 EL:42 

 
b) AZ:70EL:16 

Fig. 17. The ݁1-݁2-݁3 phase diagram of FSMCEF and SMC 

 
a) AZ: –18 EL:10 

 
b) AZ: –49 EL:34 

Fig. 18. The 2݁-1݁-ݐ phase diagram of FSMCEF and SMC 

 
a) AZ: –14 EL:20 

 
b) AZ: –33 EL:44 

Fig. 19. The 3݁-2݁-ݐ phase diagram of FSMCEF and SMC 

In order to verify the effectiveness of MR damper neural network-based inverse dynamics 
model, the Simulink model of seat suspension without neural network-based inverse dynamics 
model is further built as shown in Fig. 20, and Fig. 21 and Fig. 22 demonstrated the acceleration 
and force of FSMCEF controller with and without the inverse dynamic model of MR damper. It 
can be seen from the experimental results that the neural network model is used to simulate the 
inverse dynamic characteristics of the MR damper for the highly nonlinear characteristics of the 
MR damper. The neural network model directly provides the desired control force for the 
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generation of the fuzzy sliding mode with expansion factor to obtain a continuous input voltage, 
and can be seen that FSMCEF controller with the inverse dynamic model of MR damper can 
effectively follow the ideal FSMCEF controller. 

To testify the performance of FSMCEF, other control methods including SMC, PID and 
passive suspension (no control) are also simulated as the comparisons. Fig. 23 and Fig. 24 
presented the simulation results of all the above methods. It can be seen that FSMCEF is much 
better than SMC, PID and passive mode at both acceleration and deflection aspects. 

 
Fig. 20. FSMCEF Simulink model without MR of quarter-car seat suspension system 

 
Fig. 21. Force result of FSMCEF with and without the inverse dynamic model of MR damper 

 
Fig. 22. Acceleration result of FSMCEF with and without the inverse dynamic model of MR damper 

Table 4 and 5 presented the standard deviation (STD), maximum (max), minimum (min), mean 
value (mean) and Root Mean Square (RMS) of the deflection and acceleration of seat suspension 
under different controllers. It can be seen that using FSMCEF the STD, max, min, mean and RMS 
of seat deflection and acceleration are all the best, compared with using SMC, PID and passive 
mode. The simulation results are analyzed statistically, Table 6 and Table 7 presented the 
performance improvement of FSMCEF compared with other methods when employed in seat 
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suspension. It can be seen that FSMCEF is the best controller, and improves the riding comfort 
and ride comfort. 

 
Fig. 23. Simulation result of seat dynamic deflection 

 
Fig. 24. Simulation results of seat acceleration 

Table 4. Statistics results of seat deflection 
Controller type mean / m STD / m max / m min / m RMS / m 
Passive mode 0.0084 0.0105 0.0228 –0.0243 0.0104 

PID 0.0079 0.0098 0.0223 –0.0226 0.0097 
SMC 0.0069 0.0085 0.0183 –0.0208 0.0084 

FSMCEF 0.0068 0.0083 0.0182 –0.0202 0.0082 

Table 5. Statistics results of seat acceleration 
Controller type mean / m·s-2 STD / m·s-2 max / m·s-2 min / m·s-2 RMS / m·s-2 
Passive mode 0.4746 0.6283 2.3419 –1.8309 0.6281 

PID 0.4186 0.5574 1.9041 –1.5512 0.5573 
SMC 0.3416 0.4179 1.3151 –0.9721 0.4179 

FSMCEF 0.2506 0.3040 0.8860 –0.7641 0.3042 

From Table 6 it can be concluded that FSMCEF outperforms the other their control methods, 
especially with 51.57 % improvement relative to the traditional seat suspension in passive mode. 
Further, the frequency domain performance of FSMCEF is verified, and the seat suspension 
acceleration power spectrum density under the random road excitation is shown in Fig. 25. It is 
shown that FSMCEF improves significantly the ride comfort of vehicle in lower frequency 
compared with the SMC, PID and passive seat acceleration, and it improves the vehicle ride 
comfort. In vehicle body resonant vibration range (1-1.5 Hz) and the low-mid frequency range 
(4-12.5 Hz) which human body is sensitive to, the FSMCEF also can effectively reduce the seat 
acceleration. So, the FSMCEF effectively reduces the vehicle vibration influence on the human 
body, significantly improves the dynamic comfort of vehicle systems. 
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Table 6. The performance deflection improvement of FSMCEF compared with other methods 
Controller type mean STD RMS 

FSMCEF vs Passive mode 19.05 % 20.95 % 21.15 % 
FSMCEF vs PID 13.924 % 15.31 % 15.46 % 

FSMCEF vs SMC 1.45 % 2.35 % 2.38 % 

Table 7. The performance acceleration improvement of FSMCEF compared with other methods 
Controller type mean STD RMS 

FSMCEF vs Passive mode 47.19 % 51.62 % 51.57 % 
FSMCEF vs PID 40.13 % 45.46 % 45.42 % 

FSMCEF vs SMC 26.63 % 27.26 % 27.21 % 

 
Fig. 25. Acceleration power spectrum density of seat suspension under random road excitation 

5. Conclusions 

In this paper, a fuzzy sliding mode controller with expansion factor (FSMCEF) is designed for 
the MR damper-based semi-active seat suspension. This FSMCEF takes the sky-hook model as 
the reference, and can guarantee the output of MR damper to be effective damping when the 
motion direction frequently changes. Aiming at the high nonlinearity of MR damper, the neural 
network model is used to simulate the inverse dynamic characteristic of MR damper. The neural 
network model directly provides the expected control force to generate the fuzzy control 
sliding-mode expansion factor to obtain continuous input voltage. The FSMCEF is derived based 
on the error dynamics of the skyhook and the controlled plant, and its fuzzy control term can 
attenuate the chattering. Considering the hysteresis nonlinearity of MR damper, a three-layer BP 
neural network is trained to approximate the MR damper’s reverse dynamics and taken as the 
controller of the MR damper. Numerical simulations verified the effectiveness of the FSMCEF 
compared with PID control, SMC and passive mode for seat suspensions with same model 
parameters, and the performance of the vehicle suspension system can be effectively improved by 
the introduction of the MR damper in the control strategy, and the active control of the MR damper 
can be realized at the same time. 
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