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Abstract. Dynamic modeling for gear systems is very important for accurately predicting the 
dynamic responses during the gear engagements. During the modeling, meshing force must be 
determined, and it is usually calculated by the product of the relative displacement along the line 
of action (LOA) and the meshing stiffness. At present, the relative displacement calculation for 
helical gear systems is very complicated by several existing methods because the complicated 
geometric relationships need to be derived for determining the spatial positions of two meshing 
points along LOA. In this study, a simple method for calculating the relative displacement along 
LOA is presented based on ANSYS software. And on this basis, a new finite element modeling 
method for a helical gear transmission system with multiple shafts is developed, where the 
influences of shafts and bearing flexibilities are considered. Moreover, the proposed method is 
validated by comparing the dynamic characteristics, such as natural characteristics and vibration 
responses, with those obtained from Kubur’s method and Zhang’s method. 
Keywords: dynamic model, helical gear, finite element, vibration responses. 

Nomenclature ۱௜௝ The meshing damping matrix of gear pair ݆݅ ܿ௜௝ The meshing damping of gear pair ݆݅  ۱ The damping matrix of the gear system ݁௜௝(ݐ) The static transmission error of gear pair ݆݅ ۴௜௝, ۴௪ Excitation force vectors ۴௨ The external force vector of the gear system ܨ௜௝ Static transmission error excitation ௘݂ଵଶ, ௘݂ଷସ The meshing frequency of gear pairs 12 and 34 ௡݂௜ (݅ =	1, 2, 3,…) The ݅th natural frequency of the gear system ۵ The gyroscopic matrix of the gear system ܫ௜௫, ܫ௜௬, ܫ௜௭, ܫ௝௫, ܫ௝௬, ܫ௝௭ The moments of inertia about ݕ ,ݔ and ݖ axis ۹௕ The stiffness matrix of bearing  ۹௜௝ The meshing stiffness of gear pair ݆݅ ݇௜௝ The averaged meshing stiffness of gear pair ݆݅ ۻ The mass matrix of the gear system ۻ௜௝ The mass matrix of gear pair ݆݅ ݉௜, ௝݉ The masses of gear ݅ and gear ݆ ଵܰ௫, ଵܰ௬, ଵܰ௭, ଷܰ௫, ଷܰ௬, ଷܰ௭ The coordinates of ଵܰ and ଷܰ in ݕ ,ݔ and ݖ directions 

௜ܰ௫, ௜ܰ௬, ௜ܰ௭, ௝ܰ௫, ௝ܰ௬ ௝ܰ௭ The coordinates of spring-ends in ݕ ,ݔ and ݖ directions closing to 
the gear ݅ and ݆ ଵܰ ଶܰ, ଷܰ ସܰ The tangent lines of gears ݆݅ ௜ܱ௫, ௜ܱ௬, ௜ܱ௭, ௝ܱ௫, ௝ܱ௬ ௝ܱ௭ The coordinates of ௜ܱ and ௝ܱ in ݕ ,ݔ and ݖ directions ௜ܱ, ௝ܱ Geometrical centers of gear ݅ and gear ݆ ݌௜௝(ݐ) The relative displacement along the line of action 
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 ௜௝ The angle between the line connecting the gear centers and theߙ ݅ ௕௝ Radii of base circles of gear ݅ and gear ݆ ܶ The load torque ܼ௜ Tooth number of gearݎ ,௕௜ݎ
positive ݔ-axis ߚ௜௝ The helix angle of gear pair ݆݅ ߦଵ, ߦଶ Modal damping ratio of gear pairs 12 and 34 ߰௜௝ The angle between the plane of action and positive ݕ-axis ߮௜௝ The transverse operating pressure angle of the gear pair ݆݅ Ω௜, Ω௝ Rotational speeds of gears ݅ and ݆ 

1. Introduction 

Dynamic characteristics of geared systems are closely related to the noise and reliability of the 
system. The dynamic loads during the gear transmission can lead to larger dynamic stress which 
may threaten the security operation of the gear systems [1-3]. Therefore, a good dynamic modeling 
method for gear systems is essential for accurately predicting the vibration responses during gear 
engagement. Moreover, such a model can also be used to the dynamic design for the gear pairs, 
shafts and bearings. 

A lot of researches on the dynamic characteristics of the spur gear rotor systems were carried 
out, such as Iida et al. [4], Choy et al. [4], Kahraman and Singh [6], Lim and Singh [7], Özgüven 
[8], Kahraman et al. [9], Rao et al. [10], Jia et al. [11], Lee et al. [12] and Ma et al. [13-17]. Except 
for the dynamics of spur gear systems, many researchers also developed many mathematical 
models for simulating the dynamic characteristics of spur gear systems. Blankenship and Singh 
[18] developed a new mesh dynamic model for gear pairs, which can provide a true, 
three-dimensional representation of the forces and moments during the gear engagement. Velex 
and Maatar [19] presented a general method for simulating 3D gear meshing, and introduced this 
meshing model into a lumped mass model of a gear system, and analyzed some parameters such 
as meshing stiffness and installation error on the system vibration responses. Choi et al. [20] 
studied the coupled lateral, torsional and axial vibrations of a gear system using finite element 
method. In their model, the tooth engagement was modeled using distributed spring and the force 
vibrations caused by unbalances and static transmission errors were also calculated. Baud and 
Velex [21] developed a finite element model for simulating dynamic tooth loads in gear rotor 
systems and verified the model by experiments using a single spur and helical gear reducer which 
includes flexible shafts mounted hydrostatic bearings. Kubur et al. [1, 2] proposed a new model 
for simulating the dynamic characteristics of a helical system with multiple shafts. In their model, 
the shafts are modeled using finite element method and the helical gear pairs are modeled using a 
lumped mass model. Based on Kubur’s model, Zhang et al. [22] established a general 
mathematical model of helical gear systems considering the effects of geometric eccentricity, gear 
meshing, bearing stiffness, and shaft flexibility. Based on the previous works in [1, 2, 22], Zhang 
et al. [23] developed a finite element model of a rotor system in centrifugal compressor. In their 
model, the effects of the constant meshing stiffness of helical gear pairs, the varying stiffness and 
damping of the bearings on the system vibration responses are considered.  

From the above literature analysis, it is clear that the dynamic models of gear pairs are very 
complicated, especially, in the calculation of the relative displacement along the line of action. 
This study focuses on a new mathematical model for a rotor system with helical gear pairs and 
multiple shafts by ANSYS software. This new model can easily calculate the relative displacement 
and meshing force using the geometric positions of the meshing points. 
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2. Dynamic models of geared rotor systems 

In this section, a new modeling method for geared rotor systems is developed in ANSYS software. 
The proposed model is verified by comparing the vibration behaviors with those obtained from 
Zhang’s model [22]. A brief introduction to Zhang’s model (see Figs. 1(a) and (b)) is described in 
Section 2.1, and the proposed model (see Figs. 1(c) and (d)) is introduced in Section 2.2. 

 
Fig. 1. a) Schematic of geared rotor systems, b) 3D model of the helical gear pair ݆݅,  

c) FE model of the gear rotor system, d) projection drawing in ݕ-direction 

2.1. Dynamic models of geared rotor systems using Zhang’s method 

A 3D mathematical model of helical gear pair with 12 degrees of freedom (DOFs) is displayed 
in Fig. 1(b), which includes two helical gears (݅  and ݆). Ω௜ , Ω௝ , ௜ܱ , ௝ܱ ௕௜ݎ ,  and ݎ௕௝  denote the 
rotational speeds, geometrical centers, radii of base circles of the gears ݅ and ݆. The flexible of 
gears are ignored and assumed to be the rigid disks. In addition, a spring-damping setting is 
adopted to simulate the gear meshing and the direction is defined according to the helix angle ߚ௜௝. 
The spring stiffness is determined by the average gear mesh stiffness due to the high contact ratio 
of helical gear. It is worth noting that Zhang’s method in Ref. [22] takes the effects of gear 
geometric eccentricity into account. However, in this paper the eccentric effect is ignored. Helix 
angle ߚ௜௝ is defined as: 

௜௝ߚ = ൝൐ 0, if gear ݅ has left hand teeth,= 0, if gear ݅ is a spur gear,൏ 0, if gear ݅ has right hand teeth. (1)

As shown in Fig. 1(b), the angle between the connecting line of gear centers and the positive ݔ-axis of gear ݅ is defined as relative position angle ߙ௜௝. The angle between the plane of action 
and positive ݕ-axis can be defined by ߰௜௝. Under different direction of rotation of driving gear, 
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߰௜௝ can be expressed as follows: 

߰௜௝ = ൜−߮௜௝ + ,௜௝ߙ Ω௜: Couterclockwise,߮௜௝ + ௜௝ߙ − ,ߨ Ω௜: Clockwise, (2)

where ߮௜௝ is the lateral pressure angle of gear pairs. 
The meshing position changes under the different direction of rotation of the driving gear. 

Considering this changing, a sgn function can be defined as follows: sgn = ൜1, Ω௜:	Couterclockwise,−1, Ω௜:	Clockwise. (3)

The displacement vector of the gear pair ݆݅ can be written as follows: ܆௜௝ = ,௜ݔ] ,௜ݕ ,௜ݖ ,௫௜ߠ ,௬௜ߠ ,௭௜ߠ ,௝ݔ ,௝ݕ ,௝ݖ ,௫௝ߠ ,௬௝ߠ .்[௭௝ߠ (4)

Due to the equilibriums of lateral motion and force, the equations of motion of the gear pair ݆݅ 
can be written as the following expressions, where the influence of the geometric eccentricity of 
gear is ignored: 

ەۖۖ
ۖۖۖ
۔ۖۖ
ۖۖۖ
ۓۖۖ
݉௜ݔሷ௜	 − ݇௜௝݌௜௝(ݐ)cosߚ௜௝sin߰௜௝ − ܿ௜௝݌ሶ௜௝(ݐ)cosߚ௜௝sin߰௜௝ = 0,݉௜ݕሷ௜	 + ݇௜௝݌௜௝(ݐ)cosߚ௜௝cos߰௜௝ + ܿ௜௝݌ሶ௜௝(ݐ)cosߚ௜௝cos߰௜௝ = 0,݉௜ݖሷ௜	 + sgn × ݇௜௝݌௜௝(ݐ)sinߚ௜௝ + sgn × ܿ௜௝݌ሶ௜௝(ݐ)sinߚ௜௝ = 	ሷ௫௜ߠ௜௫ܫ,0 + ݇௜௝݌௜௝(ݐ)sinߚ௜௝ݎ௕௜sin߰௜௝ + ܿ௜௝݌ሶ௜௝(ݐ)sinߚ௜௝ݎ௕௜sin߰௜௝ + 	ሶ௬௜ߠ௜௭Ω௜ܫ = 	ሷ௬௜ߠ௜௬ܫ,0 − ݇௜௝݌௜௝(ݐ)sinߚ௜௝ݎ௕௜cos߰௜௝ − ܿ௜௝݌ሶ௜௝(ݐ)sinߚ௜௝ݎ௕௜cos߰௜௝ − 	ሶ௫௜ߠ௜௭Ω௜ܫ = 	ሷ௭௜ߠ௜௭ܫ,0 + sgn × ݇௜௝݌௜௝(ݐ)ݎ௕௜cosߚ௜௝ + sgn × ܿ௜௝݌ሶ௜௝(ݐ)ݎ௕௜cosߚ௜௝ = sgn × ௜ܶ,௝݉ݔሷ௝	 + ݇௜௝݌௜௝(ݐ)cosߚ௜௝sin߰௜௝ + ܿ௜௝݌ሶ௜௝(ݐ)cosߚ௜௝sin߰௜௝ = 0,௝݉ݕሷ௝	 − ݇௜௝݌௜௝(ݐ)cosߚ௜௝cos߰௜௝ − ܿ௜௝݌ሶ௜௝(ݐ)cosߚ௜௝cos߰௜௝ = 0,௝݉ݖሷ௝	 − sgn × ݇௜௝݌௜௝(ݐ)sinߚ௜௝ − sgn × ܿ௜௝݌ሶ௜௝(ݐ)sinߚ௜௝ = 	ሷ௫௝ߠ௝௫ܫ,0 + ݇௜௝݌௜௝(ݐ)sinߚ௜௝ݎ௕௝sin߰௜௝ + ܿ௜௝݌ሶ௜௝(ݐ)sinߚ௜௝ݎ௕௝sin߰௜௝ + 	ሶ௬௝ߠ௝௭Ω௝ܫ = 	ሷ௬௜ߠ௝௬ܫ,0 − ݇௜௝݌௜௝(ݐ)sinߚ௜௝ݎ௕௝cos߰௜௝ − ܿ௜௝݌ሶ௜௝(ݐ)sinߚ௜௝ݎ௕௝cos߰௜௝ − 	ሶ௫௝ߠ௝௭Ω௝ܫ = 	ሷ௭௝ߠ௝௭ܫ,0 + sgn × ݇௜௝݌௜௝(ݐ)ݎ௕௝cosߚ௜௝ + sgn × ܿ௜௝݌ሶ௜௝(ݐ)ݎ௕௝cosߚ௜௝ = sgn × ௝ܶ,

	 (5)

where ݉௜  and ௝݉  denote the masses of gear ݅  and gear ݆ ௜௫ܫ . ௜௬ܫ , ௜௭ܫ , ௝௫ܫ , ௝௬ܫ ,  and ܫ௝௭  are the 
moments of inertia about ݕ ,ݔ and ݖ axis. ݇௜௝ denotes the averaged meshing stiffness of gear pair ݆݅. ܿ௜௝ represents the meshing damping of gear pair ݆݅. In a direction, normal to contact surface, 
the relative displacement of gear mesh is written as: ݌௜௝(ݐ) = ௜sin߰௜௝ݔ−] + ௝sin߰௜௝ݔ + ௜cos߰௜௝ݕ − ௝cos߰௜௝ݕ + sgn × ௭௜ߠ௕௜ݎ + sgn × +[sgn							௜௝ߚ௭௝]cosߠ௕௝ݎ × ௜ݖ − sgn × ௝ݖ + ௫௜ߠ௕௜sin߰௜௝ݎ + ௫௝ߠ௕௝sin߰௜௝ݎ − ௬௜cos߰௜௝ߠ௕௜ݎ − 	,(ݐ)−݁௜௝							௜௝ߚ௬௝cos߰௜௝]sinߠ௕௝ݎ (6)

where ݁௜௝(ݐ) denotes the static transmission error, and it is a displacement excitation in the same 
direction of ݇௜௝. The ݁௜௝(ݐ) can be defined as: ݁௜௝(ݐ) = ݁௜௝sin(ܼ௜Ω௜ݐ),	 (7)

where ݁௜௝ denotes the amplitude of static transmission error (STE) of the gear pair ݆݅. ܼ௜ and Ω௜ 
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denote the number of tooth and rotational speed of gear ݅.  
Substituting Eqs. (6) and (7) into Eq. (5), the equations of motion of the helical gear pair ݆݅ are 

rewritten as follows: ۻ௜௝܆ሷ ௜௝ + ൫۱௜௝ + ۵௜௝൯܆ሶ ௜௝ + ۹௜௝܆௜௝ = ۴௜௝ + ۴௪, (8)

where ۻ௜௝, ۱௜௝, ۵௜௝ and ۹௜௝ denote the mass, damping, gyroscopic and mesh stiffness matrices of 
the gear pair ݆݅. ۴௜௝ and ۴௪ are the excitation force vectors. And they can be expressed as: ۻ௜௝ = diag൫݉௜,݉௜,݉௜, ,௜௫ܫ ,௜௬ܫ ,௜௭ܫ ௝݉ , ௝݉ , ௝݉ , ,௝௫ܫ ,௝௬ܫ ,௝௭൯ܫ ௜௝܆(9) = ,௜ݔ] ,௜ݕ ,௜ݖ ,௫௜ߠ ,௬௜ߠ ,௭௜ߠ ,௝ݔ ,௝ݕ ,௝ݖ ,௫௝ߠ ,௬௝ߠ ,்[௭௝ߠ (10)۹௜௝ = ݇௜௝હ௜௝் ⋅ હ௜௝,	 (11)۱௜௝ = ܿ௜௝હ௜௝் ⋅ હ௜௝,	 (12)۴௜௝ = ݇௜௝હ௜௝்݁௜௝(ݐ) + ܿ௜௝હ௜௝் ሶ݁௜௝(ݐ), (13)۴௪ = [0,0,0,0,0, sgn ௜ܶ, 0,0,0,0,0, sgn ௝ܶ]், (14)

where હ௜௝ can be expressed as follows: હ௜௝ = [−sin߰௜௝cosߚ௜௝, cos߰௜௝cosߚ௜௝, sgn × sinߚ௜௝, ,௜௝ߚ௕௜sin߰௜௝sinݎ sgn							௜௝,ߚ௕௜cos߰௜௝sinݎ− × ,௜௝ߚ௕௜cosݎ sin߰௜௝cosߚ௜௝, −cos߰௜௝cosߚ௜௝, −sgn × sinߚ௜௝,						ݎ௕௝sin߰௜௝sinߚ௜௝, ,௜௝ߚ௕௝cos߰௜௝sinݎ− sgn × .[௜௝ߚ௕௝cosݎ (15)

In Ref. [22], the shafts are simulated using Timoshenko beam elements, and some rigid disks 
on the shaft are simulated using lumped mass elements. By introducing the lumped mass models 
of gear pairs into the FE models of the shafts, equations of motions of the entire system can be 
expressed as: ܝۻሷ + (۱ + ሶܝ(۵ + ܝ۹ = ۴௨, (16)

where ۵ ,۹ ,۱ ,ۻ and are the mass, damping, stiffness and gyroscopic matrices. ۴௨ is the external 
force vector of the system. Here, the stiffness matrix of bearing is expressed as  ۹௕ = diagൣ݇௫௫, ݇௬௬, ݇௭௭, ݇ఏ௫ఏ௫, ݇ఏ௬ఏ௬, ݇ఏ௭ఏ௭൧. According to the position of bearings and gears, the 
bearing stiffness matrix and mesh stiffness matrix are added to the stiffness matrix of the shafts. 
As shown in Fig. 2, total stiffness matrix of system is assembled, in which only two shafts are di 
splayed. The Rayleigh-type damping is adopted in this study, which can be expressed as: ۱ = +ۻߙ 	,۹ߚ (17)

where: 

ߙ = ߨ4 ௡݂ଵ ௡݂ଶ( ௡݂ଶߦଵ − ௡݂ଵߦଶ)( ௡݂ଶଶ − ௡݂ଵଶ ) , ߚ(18) = ( ௡݂ଶߦଶ − ௡݂ଵߦଵ)ߨ( ௡݂ଶଶ − ௡݂ଵଶ ) , (19)

here, ௡݂ଵ and ௡݂ଶ denote the first-order and the second-order natural frequencies (Hz), respectively. 
In this paper, modal damping ratios ߦଵ = ଶߦ =	0.04. 

2.2. A new mathematical model of gear rotor system  

In this section, a new dynamic model is presented using FE method based on ANSYS software. 
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Gear meshing is modeled as two lumped masses connecting by a liner spring, which is normal to 
the gear tooth contact surface, as shown in Figs. 1(b) and (d). According to the direction of the 
load, the direction of action plane changes. Here, a driving gear with counterclockwise rotation 
and left hand teeth is taken as a example, as shown in Figs. 1(b) and (d), in which the tangent lines ଵܰ ଶܰ and ଷܰ ସܰ can be determined according to the geometrical relationship. The length between ଶܰ and ଷܰ can be calculated as (see Fig. 3): 

ଶܰ ଷܰ = ௜ܱ ௝ܱsin߮௜௝ = ൫ݎ௕௜ + .௕௝൯tan߮௜௝ݎ (20)

 
Fig. 2. Schematic of the whole stiffness matrix 

The length of ଵܰ ଶܰ and ଷܰ ସܰ can be expressed as: 

ଵܰ ଶܰ = ଷܰ ସܰ = ଶܰ ଷܰtanߚ௜௝. (21)

Considering the symmetry of the gears about ݕݔ plane, ଵܰ ଶܰ and ଷܰ ସܰ are divided into two 
equal parts (i.e. ܥଵ ଵܰ = ଵܥ ଶܰ, ଶܥ ଷܰ = ଶܥ ସܰ), as shown in Fig. 1d. The coordinates of ଵܰ and ଷܰ 
can be written as (see Fig. 3): 

ەۖۖ
۔ۖۖ
ۓ ଵܰ௫ = ௜ܱ௫ + ௕௜cos߰௜௝,ଵܰ௬ݎ = ௜ܱ௬ + ௕௜sin߰௜௝,ଵܰ௭ݎ = ௜ܱ௭ − ଵܰ ଶܰ/2 = ௜ܱ௭ − ௕௜ݎ) + ௜௝/2,ଷܰ௫ߚ௕௝)tan߮௜௝tanݎ = ௝ܱ௫ − ௕௝cos߰௜௝,ଷܰ௬ݎ = ௝ܱ௬ − ௕௝sin߰௜௝,ଷܰ௭ݎ = ௝ܱ௭ + ଷܰ ସܰ/2 = ௝ܱ௭ + ௕௜ݎ) + ,௜௝/2ߚ௕௝)tan߮௜௝tanݎ

	 (22)

where, ଵܰ௫, ଵܰ௬, ଵܰ௭, ଷܰ௫, ଷܰ௬, ଷܰ௭, ௜ܱ௫, ௜ܱ௬, ௜ܱ௭, ௝ܱ௫, ௝ܱ௬ and ௝ܱ௭ denote the coordinates of ଵܰ, ଷܰ, ௜ܱ  and ௝ܱ  in ݕ ,ݔ and ݖ directions. Once these coordinates are determined, the direction of 
spring can be defined, i.e., the meshing relation of two gears can be determined. Here, for the 
convenience of the modeling, ଵܰ and ଷܰ are selected as the ends of spring. 

There are four working modes for the driving gear ݅ , i.e., counterclockwise rotation and 
left-hand teeth, counterclockwise rotation and right-hand teeth, clockwise rotation and left-hand 
teeth, clockwise rotation and right-hand teeth. Thus the positions of spring will change under 
different cases. However, these coordinates of the two ends of spring for the four cases can be  
expressed as: 
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۔ۖۖەۖۖ
ۓ ௜ܰ௫ = ௜ܱ௫ + sgnݎ௕௜cos߰௜௝,௜ܰ௬ = ௜ܱ௬ + sgnݎ௕௜sin߰௜௝,௜ܰ௭ = ௜ܱ௭ − sgn(ݎ௕௜ + ௜௝/2,௝ܰ௫ߚ௕௝)tan߮௜௝tanݎ = ௝ܱ௫ − sgnݎ௕௝cos߰௜௝,௝ܰ௬ = ௝ܱ௬ − sgnݎ௕௝sin߰௜௝,௝ܰ௭ = ௝ܱ௭ + sgn(ݎ௕௜ + ,௜௝/2ߚ௕௝)tan߮௜௝tanݎ

	 (23)

where ௜ܰ௫, ௜ܰ௬, ௜ܰ௭, ௝ܰ௫, ௝ܰ௬ and ௝ܰ௭ denote the coordinates of the two ends of spring in ݕ ,ݔ and ݖ directions, respectively. 
In ANSYS software, the detailed modeling process is briefly introduced as follows (see 

Fig. 1(c)): (1) According to the physical dimensions of the shafts and the actual gear positions, the 
FE models of bearing-rotor systems including bearings, shafts, gears and rigid disks are 
established; (2) The coordinates of gears are determined, and then the coordinates of the two ends 
of the meshing spring are determined based on Eq. (23); (3) Rigid connections are established 
between the ends of meshing springs and gears by using the command “cerig”. Thus, the FE model 
of the whole gear rotor system will be established. 

For the gear static transmission error excitations, it is loaded on both ends of meshing spring 
in an opposite direction along the direction of spring. And the excitation force due to the static 
transmission error ܨ௘௜௝ can be written as: ܨ௘௜௝ = ݇௜௝݁௜௝(ݐ) + ܿ௜௝ ሶ݁௜௝(ݐ). (24)

 
Fig. 3. Projection drawing of Fig. 1(b) in ݖ-direction 

3. Model verification and discussion 

In order to prove the validity of the present method, two gear rotor systems offered in Refs. 
[1, 9] are adopted. First of all, the present method will be verified by comparing the natural 
characteristics with those obtained using different methods in published literatures. Subsequently, 
the vibration responses obtained from present method and previous methods will be compared to 
verify the present method. 

3.1. Model verification by comparing the natural characteristics 

A spur gear rotor system is taken into account at first (see Fig. 4), and the parameters of system 
are listed in Table 1, which are offered in Refs. [9, 24]. Here, the effect of damping is ignored, 
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and the helix angel ߚ௜௝ is equal to zero for the spur gear. The first 11 orders of natural frequencies 
calculated by present method are compared with the results of Ref. [9] (see Table 2). At the same 
time, the descriptions of the mode shapes based on the present method are also listed in Table 2. 
It is obvious that the frequencies obtained by present method agree well with those offered in 
Ref. [9] except for some higher modes, and the relative error is less than 3.31 %. 

Table 1. Parameters of the gear system 
Gear parameters 

Gear ܫ௫ = ௭ܫ ௬ (kg·m2)ܫ  (kg·m2) ݉ (kg) Base circle radius (m) Tooth number ݇௠  (N/m) 
1 0.0009 0.0018 1.84 0.0445 28 1×108 
2 0.0009 0.0018 1.84 0.0445 28 

Bearing parameters 
Bearing ݇௫௫ ݇௬௬ 

All 1×109 1×109 
Material parameters 

Modulus of elasticity (GPa) Density of material (kg/m3) Poisson’s ratio  
207.8 7806.0 0.3 

 
Fig. 4. Schematic of the spur gear rotor system [9] 

Table 2. Natural frequencies of the spur gear rotor system 

Mode no. Natural frequencies (Hz) Relative errors Mode description Present method Ref. [9] ௡݂ଵ 572.61 581 1.44 % Coupled lateral-torsional vibration ௡݂ଶ 678.68 687 1.21 % 1st lateral, ݕ-direction, driving shaft ௡݂ଷ 679.64 689 1.36 % Coupled lateral- torsional vibration ௡݂ସ 680.61 691 1.50 % 1st lateral, ݕ-direction, driven shaft ௡݂ହ 2513.4 2524 0.42 % Coupled lateral-torsional vibration ௡݂଺ 3371.0 3387 0.47 % 2nd lateral, ݔ-direction, driving shaft ௡݂଻ 3371.0 3387 0.47 % 2nd lateral, ݕ-direction, driving shaft ௡଼݂ 3395.3 3421 0.75 % 2nd lateral, ݕ-direction, driven shaft ௡݂ଽ 3395.4 3421 0.75 % 2nd lateral, ݔ-direction, driven shaft ௡݂ଵ଴ 6322.3 6447 1.93 % Torsional, ݖ-direction, driving shaft ௡݂ଵଵ 6322.3 6539 3.31 % Torsional, ݖ-direction, driven shaft 

In this section, a two-stage helical gear rotor system offered in Ref. [1] is taken for further 
comparison, as shown in Fig. 1(a). Here, the example system with ߙଵଶ =	0 and ߙଷସ =	0 is 
considered, and the detailed parameters of the system and the STE of gear can be found in Ref. 
[2]. The lumped mass values and the material parameters, which are not provided in Ref. [1], can 
be found in Ref. [22]. The natural frequencies are calculated using Zhang’s method and present 
method, as listed in Table 3. In addition, the typical mode shapes obtained from two methods are 
shown in Fig. 5, which shows that the natural frequencies and mode shapes obtained from the 
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present method agree well with those obtained from Zhang’s method, and the maximum relative 
error of natural frequency is less than 2.17 % (see Table 3).  

 
Fig. 5. Partial mode shapes: a) ௡݂ଵ, b) ௡݂ଶ, c) ௡݂ଷ, d) ௡݂ସ, e) ௡݂ହ, f) ௡݂଻, g) ௡݂ଽ	

 
Fig. 6. Mode shape corresponding to 812 Hz in Ref. [1] 
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In Ref. [1], only a mode shape corresponding to 812 Hz is provided, as shown in Fig. 6. This 
mode corresponds to the first non-rigid mode ௡݂ଵ in present method. It is clear that the natural 
frequencies and mode shapes obtained by present method also show a good agreement with those 
provided in Ref. [1]. These comparisons show that the present model is effective to calculate the 
natural characteristics of the geared rotor systems. 

Table 3. Natural frequencies of the helical gear rotor system 

Mode No. Natural frequencies (Hz) 
Relative errors Present method (Hz) Zhang’s method (Hz) ௡݂ଵ 808.49 806.84 –0.2 % ௡݂ଶ 1357.05 1337.42 –1.47 % ௡݂ଷ 1468.04 1543.27 –1.02 % ௡݂ସ 1658.66 1669.46 0.65 % ௡݂ହ 2334.52 2321.96 –0.54 % ௡݂଺ 2349.00 2345.32 –0.16 % ௡݂଻ 2368.75 2364.55 –0.18 % ௡଼݂ 2553.83 2545.12 –0.34 % ௡݂ଽ 2656.51 2657.08 0.02 % ௡݂ଵ଴ 2845.74 2859.26 0.47 % ௡݂ଵଵ 2988.27 3054.63 2.17 % ௡݂ଵଶ 3045.66 3060.67 0.49 % ௡݂ଵଷ 3287.33 3262.50 –0.76 % ௡݂ଵସ 3338.58 3268.07 –2.16 % ௡݂ଵହ 3749.98 3785.57 0.94 % 

3.2. Model verification by comparing the vibration responses 

In this section, the present dynamic model is further verified by comparing the vibration 
responses with those in Refs. [1, 2] and Zhang’s method [22]. Considering the excitation force 
due to the static transmission error (Eq. (24)), ܨଵଶ  (meshing force of gear pair 12) and ܨଷସ 
(meshing force of gear pair 34) are calculated using the present method, and they are also 
compared with the results in Ref. [2] (see Fig. 7). In the figure, ௘݂ଵଶ and ௘݂ଷସ denote the meshing 
frequencies of gear pairs 12 and 34. The figure shows that two peaks ( ௘݂ଵଶ = ௡݂ଵ and ௘݂ଷସ = ௡݂ଵ) 
obtained from the present method agree well with those in Ref. [2], however, there are some errors 
for other peaks. Some reasons may lead to these errors as follows: 1) Some geometric parameters 
may be different because of the lack in Ref. [2], and some parameters of system are adopted by 
referring to the Ref. [22]. 2) The torque and other working condition are not provided in Ref. [2]. 

 
Fig. 7. Dynamic meshing forces: a) gear pair 12, b) gear pair 34 
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Fig. 8. Gear meshing force amplitudes and maximum values under ܶ =	50 Nm: a) meshing force amplitude 
of ܨଵଶ, b) maximum values of ܨଵଶ, c) meshing force amplitude of ܨଷସ, d) maximum values of gear pair ܨଷସ 

 
Fig. 9. Vibration responses under ܶ =	100 Nm: a) ݕ-direction responses of gear 1; b) ߠ௭-direction 

responses of gear 1; c) ݕ-direction responses of gear 2; d) ߠ௭-direction responses of gear 2 
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Vibration responses of the helical gear rotor system under ܶ =	50 Nm and 100 Nm are shown 
in Figs. 8, 9 and 10, respectively. These figures show the following dynamic characteristics: 

(1) Meshing forces, vibration displacements, and frequency components obtained from the 
present method agree well with those obtained from Zhang's method under lower frequency 
regions, and there exist slight errors under higher frequency regions (see Figs. 8 and 9). The main 
reason of the slight error may be that some high order terms due to the lateral-torsional-axial-
swing coupling of gear pairs are ignored for Zhang’s method. 

(2) The resonant peaks of the rotor system appear under ௘݂ଵଶ = ௡݂ଵ , ௡݂ଶ , ௡݂ସ , ௡݂ଵହ  and  ௘݂ଷସ = ௡݂ଵ (see Table 3), which are primary members of the lateral-torsional coupling vibration 
(see Fig. 5). For these modes, the vibration of shaft 1 is dominated (see Fig. 5), and the vibration 
mode at the first natural frequency ௡݂ଵ is easily excited (see Figs. 8 and 9). 

(3) The vibration responses at Ωଵ =	932 rev/min show that two meshing frequencies of the 
gear pairs 12 and 34 (808 Hz and 247 Hz) can be observed (see Fig. 10). The amplitude at meshing 
frequency of 808 Hz is dominated because the meshing frequency coincides with ௡݂ଵ. In addition, 
the torsional vibration is easily excited relative to the lateral vibration (see Fig. 10). 

 
Fig. 10. Vibration responses of gear 4 under ܶ =	50 Nm and Ωଵ =	932 rev/min:  

a) time-domain waveforms in ݕ-direction, b) time-domain waveforms in ߠ௭-direction,  
c) amplitude spectra in ݕ-direction, d) amplitude spectra in ߠ௭-direction 

4. Conclusions 

In ANSYS software, a new finite element model for general helical gear rotor systems is 
presented taking the lateral-torsional-axial-swing coupling due to helical gear pairs into account. 
The proposed method is validated by comparing the natural characteristics and vibration responses 
with those obtained from the published references and Zhang’s method. Main conclusions are 
listed as follows: 

1) The proposed method can easily deal with the meshing relation of gear pairs by conveniently 
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calculating the displacement of the meshing spring. The new method not only has a good 
calculation accuracy, but also can greatly reduce the difficulty of programming relative to the 
conventional method, such as Kubur’s method [1, 2] and Zhang’s method [6].  

2) For the studied geared rotor system provided in Ref. [2], the results show that the first-, 
second- and fourth-order natural frequencies are more easily excited, especially the first natural 
frequency. In addition, for the studied geared rotor system, the torsional vibration is easily excited 
relative to the lateral vibration at a low rotational speed. 
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