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Abstract. The complex dynamic working conditions of wind turbine make it a challenge to 
identify work status and fault type of wind turbine gearbox. In this paper, a novel method is 
presented to decompose non-stationary vibration signal and identify wind turbine faults applying 
ensemble intrinsic time-scale decomposition (EITD) with Wigner bi-spectrum entropy (WBE). 
Ensemble intrinsic time-scale decomposition (EITD) is able to restrict the end effect and to prevent 
the signal distortion. Wigner bi-spectrum entropy (WBE) has perfect energy aggregation and can 
extract the signal feature effectively. The advantage of method is that it does extract the fault 
features and recognize the gearbox fault types when two or more fault features are close to each 
other. This proposed approach based on EITD and WBE is applied in the fault diagnosis of wind 
turbine gearbox.  
Keywords: fault diagnosis, signal analysis, ensemble intrinsic time-scale decomposition (EITD), 
Wigner bi-spectrum entropy (WBE), wind turbine gearbox. 

1. Introduction 

In recent years, with the continuous need for renewable energy, wind energy has been greatly 
developed. In the meantime, due to poor operating conditions, the failure rate of the key 
components of the wind turbine is greatly improved [1, 2]. The main faults of wind turbine include 
of transmitting system faults [3], blade pitch faults [4], and rolling bearing faults [5]. The gearbox 
is one of important parts of the wind turbine. The faults of gearbox will unavoidably result in the 
system to stop working. It has always been being a difficult problem in the fault diagnosis how to 
extract fault feature information effectively and accurately from the vibration signals. The 
conventional feature extraction indicator in fault diagnosis of wind turbine gearbox can be 
concluded as Power spectrum entropy [6], Wavelet energy entropy [7] and Morphological 
Operators [8]. These methods analyze the fault vibration signal in time or frequency domain, so 
as to identify the working condition of wind turbine gearbox. However, because of the various 
effect of nonlinear factors, i.e. friction, clearance, stiffness and load to vibration signals, it is not 
easy to accurately recognize the fault type of wind turbine gearbox when the working condition 
of wind turbine gearbox is analyzed only in time domain or frequency domain. Hence, it is very 
necessary to develop feature extraction method to effectively recognize the working state and fault 
types of wind turbine gearbox.  

Currently, there are a lot of time-frequency analysis methods on fault diagnosis in wind turbine 
gearbox, including of wavelet transform (WT) [9], empirical mode decomposition (EMD) [10], 
and local mean decomposition (LMD) [11]. But the related studies have shown that these methods 
have some limitations for non-stationary frequency-modulated and amplitude-modulated signals 
and the practical vibration signal [12]. For example, WT needs selecting the appropriate wavelet 
basis function and decomposing layers to analysis the vibration signal, that is to say it is lack of 
adaptability for signal processing. EMD method has the drawback of envelope overshoot or 
shortage, mode mixing, end effect, etc. As an improvement of EMD, LMD method also possesses 
the problems of more iterative calculation, distorted components, mode mixing and time-
consuming decomposition. Therefore, a new non-stationary signal process method that was 

https://crossmark.crossref.org/dialog/?doi=10.21595/jve.2017.17465&domain=pdf&date_stamp=2017-05-15


2424. FAULT DIAGNOSIS FOR THE GEARBOX OF WIND TURBINE COMBINING ENSEMBLE INTRINSIC TIME-SCALE DECOMPOSITION WITH WIGNER 
BI-SPECTRUM ENTROPY. AIJUN HU, LING XIANG, NAN GAO 

1760 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. MAY 2017, VOL. 19, ISSUE 3. ISSN 1392-8716  

intrinsic time-scale decomposition (ITD) was put forward by Frei etc. [13], which was 
successfully used to the processing of biomedical signal. This method can adaptively decompose 
a complicated signal into proper rotation components (PRCs), whose instantaneous frequency has 
physical meaning. An et al. [14] proposed a method that base on ITD is used to identify the fault 
types of the wind turbine bearing. Yang et al. [15] proposed a robust regression-variable predictive 
mode-based class discriminate method and combined the improved intrinsic time-scale 
decomposition (IITD) method to make the fault features of bearing signals extract and effectively 
make the fault types and work conditions of roller bearing identify. Nonetheless, the original ITD 
algorithm is founded on linear transformation of signal to obtain baseline signal, which may 
produce distortion and lead to burr [16]. Therefore, to effectively overcome this drawback, an 
improved ITD algorithm is presented in the paper, which is called ensemble intrinsic time-scale 
decomposition (EITD). 

In recent years, higher order spectral analysis has been deeply studied. Its applications are in 
many fields: radars, biomedicine, plasma physics, seismic data processing, image reconstruction, 
and so on. The Wigner higher order spectrum (WHOS) is the fundamental representation in 
time-varying higher order spectral analysis [17], like the Wigner distribution in the case of 
time-frequency analysis. WHOS include Wigner bi-spectrum (WB) and Wigner third-order 
spectrum and so on. WB are the extensions of the Wigner-Ville distribution (WVD), which can 
reflect the changes of frequency-domain characterization of non-stationary signal [18] and has 
good time-frequency resolution, however, the cross-terms are its fatal disadvantages [19].  

At present, signal analysis methods like Fourier transform, EMD, WT and support vector 
machine have been used alone or combining two of them for the fault diagnosis of the wind  
turbine. Such as Tang et al. [20] identify the fault feature and type of the actual wind turbine 
transmission systems by using a Shannon wavelet support vector machine. Wang et al. [21] based 
ensemble empirical mode decomposition (EEMD) on independent component analysis to identify 
gearbox drawbacks, and illustrated the rationality of the provided method in reorganization and 
diagnosis of the gearbox defect. Hu et al. [22] have applied EITD and wavelet packet transform 
to recognize the fault types of wind turbine gearbox. Here, we combine EITD with WBE to detect 
the faults of wind turbine gearbox based on same experimental data. 

In spite of that, little research has been carried out on the wind turbine fault diagnosis. Based 
on that, this paper put forward a new method combining EITD with Wigner bi-spectrum entropy 
(WBE) to recognize the working state and fault type of wind turbine gearbox. The provided 
method is applied to remove cross-term interferences and effectively analyze non-stationary 
amplitude-modulated and frequency-modulated signals from complicated environments as wind 
plant. In the proposed method, EITD is utilized to decompose the vibration signal of gearbox into 
PRCs. Next, the principal PRCs are selected to assemble WB according to correlation coefficients 
and the hard threshold. After the time-frequency distribution is obtained, WBE is extracted as a 
feature, which is used to recognize the working state and fault type of the gearbox of wind turbine.  

The remainder of this paper is organized as follows: Section 2 gives the theoretical description 
of EITD. In Section 3, a fault diagnosis approach in which EITD and WBE are combined is put 
forward. In Section 4, the proposed approach is applied in the fault diagnosis of the gearbox of 
wind turbine, which demonstrates that the provided method is effective and feasible. Conclusions 
are given in Section 5. 

2. EITD method 

ITD is a self-adaptive time–frequency analysis method. The ITD method decomposes a 
complicated signal into a sum of PRCs and a monotonic trend, but this method can’t illustrate 
physical significance of the algorithm itself and the PRC. And the baseline signal is extracted by 
employing linear transformation to the given signal in original ITD method, which may cause 
waveform burr and distortion of the decomposed signal. The EMD method uses cubic spline 
interpolation to fit the upper and lower envelopes, which could give rise to the phenomenon of 
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envelope overshoot or shortage etc. Therefore, combining the linear transformation in original 
ITD algorithm and the cubic spline interpolation in the EMD method, a novel time-frequency 
signal analysis method, called EITD, is raised to effectively analyze non-stationary 
amplitude-modulated and frequency-modulated (AM-FM) signals. Fig. 1 is the flowchart of EITD 
algorithm. For any given signal ܺ௧, the process of EITD can be given as follows: 

(1) Determine the local extrema ܺ of the given signal ܺ௧ and the corresponding moment ߬ ሼ݇ = 1,2, … ሽ, as same as the original ITD method, we define piecewise linear extraction operator ܮ of signals on contiguous extrema interval [߬, ߬ାଵ], as follows: ܺܮ௧ = ௧ܮ = ܮ + ାଵܮ − ܺାଵܮ − ܺ (ܺ௧ − ܺ), (1)

where: ܮାଵ = ߙ ቂܺ + ቀఛೖశభିఛೖఛೖశమିఛೖቁ (ܺାଶ − ܺ)ቃ + (1 − ାଵ,    0ܺ(ߙ < ߙ < ߙ     ,1 = 0.5. (2)

The function value ܣାଵ is decided by linking any two-adjacent maximum and minimum (߬, ܺ), (߬ାଶ, ܺାଶ) at the corresponding time ߬ାଵ between the extremum ܺାଵ, are shown 
below: ܣାଵ = ܺ + ቀఛೖశభିఛೖఛೖశమିఛೖቁ (ܺାଶ − ܺ). (3)

(2) Calculate the baseline control points ܮ in terms of Eqs (1) and (2), and use the mirror 
continuation method to dispose of the endpoint of signal ܺ௧, and obtain the point of extreme value (߬, ܺ) and (߬ெାଵ, ܺெାଵ) on the ends. ݇ is respectively set to be zero and ܯ − 1, and the values 
of ܮଵ and ܮெ are obtained as Eq. (1). Subsequently, the cubic spline interpolation is used to fit the 
baseline points ܮ for obtaining baseline signal ܮଵ(ݐ). 

(3) Subtract the baseline signal ܮଵ(ݐ) from the given signal ܺ௧ to acquire the resulting signal ℎଵ(ݐ): ℎଵ(ݐ) = ܺ௧ − (4) .(ݐ)ଵܮ

Ideally, ℎଵ(ݐ) is equal to ܴܲܥଵ and is a high-frequency proper rotation component. However, 
the condition is not really satisfied; so, it is necessary to treat ℎଵ(ݐ) as the source data and repeat 
the iterative steps until ℎଵ(ݐ) is a proper rotation component, that is, the baseline signal needs to 
meet ܮାଵ = 0. 

(4) Separate ܴܲܥଵ from the given signal ܺ௧ to acquire a new signal ݎଵ(ݐ): ݎଵ(ݐ) = ܺ௧ − ଵ. (5)ܥܴܲ

(5) Repeat the above steps taking ݎଵ(ݐ) as the original signal to achieve the second proper 
rotation component (ܴܲܥଶ) of the given signal ܺ௧, and perform the above process ݊ times, until ݎ(ݐ) turns into a monotonic function to obtain the ݊th proper rotation component (ܴܲܥ) which 
satisfy the requirements of ܴܲܥ. Therefore, the signal ܺ௧ is decomposed into the sum of ݊ ܴܲܥ 
and a residual term ݎ(ݐ): ܺ௧ = ∑ ୀଵܥܴܲ + (6) ,(ݐ)ݎ

where  is the number of ܴܲܥ. Afterwards, the instantaneous frequency, phase and amplitude can 
be further obtained. An important problem in EITD method means how to select the terminating 
criterion which is concerned to the number of iterations and decomposition effects. In this paper, 
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three threshold criterions are adopted to control the iteration times. Define three thresholds ߠଵ, ߠଶ 
and Δ , and define ܽ = ܣ)| − ܺ)/2|, ܮ = ܣ) + ܺ)/2 and Δ = ܮ| ⁄ߙ |, where ݇ is the 
number of the extreme. The sifting process does not end until Δ < ଵ for fraction 1ߠ −  of the ߛ
total time and Δ < ߛ ,ଶ for the remaining part. Generallyߠ = ଵߠ ,0.05 = 0.05 and ߠଶ =  .ଵߠ10

 
Fig. 1. The flowchart of EITD algorithm 

In order to demonstrate the proposed EITD method, a numerical signal (ݐ)ݔ denoted as follows 
is considered: (ݐ)ݔ = ൫1 + 0.6cos(20ݐߨ)൯sin(180ݐߨ + (ଶݐߨ150 + cos(50ݐߨ) + ݐ     ,(ݐ)0.05ܴ ∈ (0,1), (7)

where ܴ(ݐ) is the random function which denotes the random value of –1 to 1. The sampling 
frequency of the signal is 1000 Hz and the sampling number is 1000. Fig. 2(a) shows the numerical 
signal (ݐ)ݔ and its two components ݔଵ(ݐ) and ݔଶ(ݐ), but the component of white noise with 
amplitude 0.05 is not showed. The signal (ݐ)ݔ is composed of a AM-FM signal ݔଵ(ݐ) and a cosine 
signal ݔଶ(ݐ), and it is decomposed using EMD, ITD and EITD (See Fig. 2), the four evaluation 
parameters are given in Table 1. 

Table 1. The different evaluation index of decomposition results 
Evaluation index Time (s) ݊ ߩଵ ߩଶ 

EMD 0.4834 7 0.7348 0.6603 
ITD 0.1736 3 0.7760 0.6744 

EITD 0.3559 5 0.7813 0.6768 
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a) Numerical signal (ݐ)ݔ 

 
b) EMD 

 
c) ITD 

 
d) EITD 

Fig. 2. The signal and its decomposition 

From Fig. 2(d) we could find that the results generated by EITD can accurately reflect the two 
components of the original signal, and they represent the low frequency (25 Hz) and high 
frequency (90 Hz). Nevertheless, the second component see Fig. 2(c) in the original ITD method 
has the clear phenomenon of end effect and waveform burr. From Fig. 2(b) we can see that the 
second components in EMD exist obvious the phenomenon of mode mixing and curve distortion. 
Besides, from Table 1 it can be found that the time-consuming of the all components obtained by 
EMD are more than that obtained by EITD. And the correlation coefficients ߩଵ and ߩଶ of the first 
two PRCs in EITD are higher than those in EMD and ITD. The iteration times ݊ of the EITD is 
less than those in EMD, which means the EITD decomposition consequences are closer to the real 
values. The results indicate that EITD is appropriate for the processing of amplitude-modulated 
and frequency-modulated (AM-FM) signal with multi-component. 

3. Fault feature extraction method based on EITD and WBE 

WB, as the extended forms of WVD, has played important influence on non-stationary 
vibration signal analysis, which has a superior distribution and keeps a higher time-frequency 
resolution. Unfortunately, as for multi-component signals, WB suffer from the unavoidable 
cross-term interferences, thus are not suitable for many practical applications. For the purpose of 
solving this problem, combining WB with EITD, a new time frequency analysis method named 
Wigner bi-spectrum based on ensemble intrinsic time-scale decomposition (EITD-WB) is 
presented, which can get a superior distribution, hold a higher time-frequency resolution and 
inhibit the cross-term interferences in WB. Besides, Shannon entropy can be used to reflect the 
complexity and the uncertainty of the vibration signals, so a new fault feature extraction method 
founded on EITD and Wigner bi-spectrum entropy (WBE) is further proposed to identify the fault 
information in wind turbine gearbox. Fig. 3 is flowchart of this method and the process of the 
proposed fault feature extraction method can be described as follows: 

(1) Collect three kinds of state vibration signals (ݐ)ݔ: normal, the gear pitting fault and the 
gear faults with the broken teeth and worn at sample frequency ௦݂ under a certain speed, and gather ܰ group of samples for each work state. 

(2) Apply EITD to decompose the collected vibration signal (ݐ)ݔ into several PRCs and a 
residue. 



2424. FAULT DIAGNOSIS FOR THE GEARBOX OF WIND TURBINE COMBINING ENSEMBLE INTRINSIC TIME-SCALE DECOMPOSITION WITH WIGNER 
BI-SPECTRUM ENTROPY. AIJUN HU, LING XIANG, NAN GAO 

1764 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. MAY 2017, VOL. 19, ISSUE 3. ISSN 1392-8716  

(3) Calculate the correlation coefficients between ܴܲܥ  (݅ = 1, 2,…, ݊) and the collected 
vibration signal (ݐ)ݔ, as shown below: 

,ܥܴܲ)ߩ (ݔ = ቤܥܴܲ)ܧ(ݐ) − (ߤ − (ݐ)ݔ)ܧ − ௫ߪߪ(௫ߤ ቤ, (8)

where ߤ  and ߤ௫  respectively represent the mean value of ܴܲܥ  and (ݐ)ݔ,  and ߪ  and ߪ௫ 
respectively represent the variance of ܴܲܥ and (ݐ)ݔ. 

(4) Employ a hard threshold ߣ to select the principal PRCs, and the hard threshold ߣ can be a 
proportion of the supreme ܥܴܲ)ߩ, ߣ :which can be expressed as ,(ݔ = ,ܥܴܲ)ߩ൫ݔܽ݉ ൯(ݔ ,ߝ (݅ = 1,2, … , ݊),⁄  (9)

where ߝ is a scaling factor, ߝ = 10.0. Supposing the correlation coefficients ܥܴܲ)ߩ,  is greater (ݔ
than the values of ܥܴܲ ,ߣ is a real component, which is regarded as the principal PRCs. 

(5) Calculate the WB of the principal PRCs and it can be listed as follows: 

ܹோ(ݐ, ଵ݂, ଶ݂) = න න ∗ܥܴܲ ൬ݐ − 13 ߬ଵ − 13 ߬ଶ൰ ܥܴܲ ൬ݐ + 23 ߬ଵ − 13 ߬ଶ൰ ∙      ఛమఛభܥܴܲ ൬ݐ + 23 ߬ଶ − 13 ߬ଵ൰ exp(−2ߨ ଵ݂߬ଵ)exp(−2ߨ ଶ݂߬ଶ)݀߬ଵ݀߬ଶ.  (10)

(6) Assemble the WB of all the principal PRCs to obtain the corresponding complete time-
frequency distribution, which can be defined by: 

,ݐ)ܹ ଵ݂, ଶ݂) =  ܹோ(ݐ, ଵ݂, ଶ݂)
ୀଵ , (11)

where ݎ is the number of the components, and ܹ(ݐ, ଵ݂, ଶ݂) is the Wigner bi-spectrum based on 
ensemble intrinsic time-scale decomposition (EITD-WB). 

(7) Allocate equally ܹ(ݐ, ଵ݂, ଶ݂)  in the time-frequency plane to achieve the first ܰ 
time-frequency sections with the same size, and energy of every time-frequency sections is ܹ  
( ݅ = 1, 2,…, ܰ ). The normalization processing for ܹ  can obtain  = ܹ ܹ⁄ . So, Wigner 
bi-spectrum entropy (WBE) can be defined as: 

ௐܪ = −  ே
ୀଵ log. (12)

(8) Calculate the WBE of different vibration signals, and observe the variation trend of WBE 
to identify the working state and fault type of wind turbine gearbox. 

EITD-WB can get a superior distribution, hold a higher time-frequency resolution and inhibit 
the cross-term interferences. Here we give an example to verify its advantages. The signal (ݐ)ݔ 
See Eq. (7) is made up of a AM-FM signal and a cosine signal. Different methods are used to 
extract the feature of the signal as Fig. 4. It can be shown in Fig. 4(a) that the instantaneous 
frequencies of the signal are precisely extracted by the WB, but there is a cross-term of 55 Hz both 
in frequency and time domain in Fig. 4(a). The time-frequency representations (TFR) generated 
by the WT, shown in Fig. 4(b), can merely indicate the inherent time-frequency pattern of the 
signal (ݐ)ݔ. The time-frequency representation at 90 Hz demonstrates the clear instantaneous 
frequency trajectory. However, the representation at 25 Hz is too blur to reveal the IF trajectory. 
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In Fig. 4(c), the cross-term has been eliminated by using WB after Choi-Williams kernel filter, 
but frequency component of 90 Hz has been deformed, that is to say, the TFR at 90 Hz cannot 
display the explicit instantaneous frequency trajectory. The result from EITD-WB is shown in 
Fig. 4(d). It can clearly show that 25 Hz and 90 Hz components are effectively demodulated, and 
accurately conform to the two AM-FM components in the numerical signal. Obviously, it has also 
no the cross-term. Therefore, numerical analysis results show that, compared to conventional 
methods, EITD-WB has perfect time-frequency concentration. In the last step, entropy is used to 
distinguish the features of signal which mean the type of fault. Thus, the proposed method base 
on EITD and WBE can effectively extract the feature and identify the working state and fault type. 

 
Fig. 3. Flowchart of the proposed fault feature extraction method 

 
a) Wigner bi-spectrum 

 
b) Wavelet transform 

 
c) Wigner bi-spectrum after  
Choi-Williams kernel filter 

 
d) EITD-WB 

 
Fig. 4. The time-frequency representations 
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4. Application for fault diagnosis of gearboxes of wind turbine 

Gearbox fault of wind turbine is one of the most general faults, which is quite dangerous to 
the operation of wind turbine. Therefore, the provided method is used to detect gearbox faults to 
escape unscheduled downtime and catastrophic accidents. The gearbox type for wind turbine is 
FL1500A. To obtain the data of the gearbox faults, supervisory control and data acquisition 
(SCADA) system is applied. The sampling frequency was set to be 32768 Hz, and the sampling 
number was 16384. 

Fig. 5 shows pitted gear, and Fig. 6 shows the worn and broken teeth of gear. The gear pitting 
vibration signal is taken to illustrate the performance of the proposed EITD-WB method. For 
comparison, EITD and EMD are used to decompose the vibration signal in Fig. 7(b) into five 
components shown in Fig. 8, respectively. 

  
Fig. 5. The pitting faults in secondary level meshing gear 

  
Fig. 6. The worn and broken teeth faults in third level gear 

 
a) Normal 

 
b) Pitted gear fault 

 
c) Worn and broken teeth faults 

Fig. 7. The signal waveform in three work states 
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a) EITD 

 
b) EMD for pitting fault signal 

Fig. 8. Decomposition results  

The correlation coefficient of each components obtained by EITD and EMD is calculated and 
the results are shown in Table 2. From Table 2 it is known that the PRC2, PRC3 and PRC4 are 
principal components and the PRC1 and PRC5 are noise interferences, while the ݑଵ-ݑହ is regarded 
as the principal components. Therefore, the PRC2, PRC3 and PRC4 are chosen to assemble WB, 
while ݑଵ-ݑହ is used to assemble WB. The time-frequency distribution obtained by EITD-WB is 
shown in Fig. 9(a), which has the WB’s high resolution characteristic but eliminates the cross-term 
for EITD. Meanwhile, from Fig. 9(a), it is clear that the frequency is mainly concentrated in  
6.2 Hz, which is equal to fault characteristic frequency of the gear with pitting. However, as shown 
in Fig. 9(b), the time-frequency distribution obtained by WB based on EMD (EMD-WB) has 
obvious cross-term in high frequency. The results show that EITD-WB can not only remove 
cross-term interference in WB, but also keep all the good qualities of the WB, which lays a 
foundation for the next fault feature extraction. 

Table 2. The correlation coefficients of each components obtained by EITD and EMD 
Method PRC1 / ݑଵ PRC2 / ݑଶ PRC3 / ݑଷ PRC4 / ݑସ PRC5 / ݑହ 
EITD 0.0858 0.9261 0.7673 0.2623 0.0734 
EMD 0.1483 0.2281 0.4337 0.4746 0.5348 

 

 
a) EITD-WB 

 
b) EMD-WB 

Fig. 9. The time-frequency representations 

We choose 15 groups data from SCADA of the wind plant, which include three work states: 
normal, pitted gear fault and worn and broken teeth faults. According to the flowchart in Fig. 3, 
WBE can be obtained by combining the Shannon entropy and WB to extract the state feature. The 
result is shown in Fig. 9, which has very good stability and classification effect. Moreover, WBE 
of gear vibration signal in normal state is the maximum from Fig. 10, which conforms to the 
uniformity and uncertainty of energy distribution in frequency spectrum of gear vibration signal 
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in the normal state. The WBEs of the other two fault conditions are smaller, because the energies 
of fault states whether pitting fault or worn and broken teeth faults are mainly focused on 
resonance frequency bands. The results indicate that WBE based on EITD can characterize the 
complexity of signal, and availably depict the dynamic change of vibration signal, and has very 
good anti-jamming ability. Besides, the proposed method can effectively identify the vibration 
characteristics of wind turbine gear and provides a new idea for accurate diagnosis of working 
state and faults of wind turbine gear.  

In order to evaluate the performance of the proposed fault diagnosis method based on WBE 
and EITD in this paper, the following comparison is given. The effect of distribution with WBE 
is compared with the other two entropy algorithms of power spectrum entropy (PSE) and envelope 
spectrum entropy (EPE). The distributions of entropy value of PSE and EPE are shown in Fig. 11. 
Fig. 11 indicates that PSE or EPE cannot effectively discriminate between the three different types 
of patterns. As shown in Fig. 11 that while using PSE, there were overlaps between the values of 
pitting fault and broken teeth fault, also the normal state is mixed with the pitting fault while EPE. 
It reveals that WBE has more excellent clustering performance than both PSE and EPE. 

This application adequately points the superior performance of the proposed method which 
combines EITD with WBE. The method can remove cross-term interference, and keep high 
time-frequency resolution and good energy aggregation. Pattern recognition also provided better 
performance than other algorithms, and the proposed method is more favorable to distinguish the 
different faults type. 

 
Fig. 10. The distribution of entropy value with Wigner bi-spectrum entropy (WBE):  

1 – normal, 2 – pitting, 3 – worn and broken teeth 

 
a) Power spectrum entropy 

 
b) Envelope spectrum entropy (ESE) 

Fig. 11. The distribution of entropy value: 1 – normal, 2 – pitting, 3 – worn and broken teeth 

5. Conclusions 

In this paper, a new synergistic idea of EITD and WBE is applied to tackle nonlinear fault 
diagnosis. The observations and conclusions of the study are summarized as follows: 

1) EITD, a novel time-frequency analysis method, is proposed to effectively analyze 
non-stationary signals. The results show that the new method is better than the EMD and ITD 
methods. 

2) The time-frequency representations are investigated in this paper using different method. 
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EITD-WB has perfect time-frequency concentration and can effectively extract the feature of the 
signal. 

3) The novel strategy of utilizing combined EITD and WBE to fault recognition in wind turbine 
gearbox is developed, and the algorithm is proved effective to identify the working state and fault 
type of wind turbine. It was provided an effectual way for the fault identification of wind turbine 
to combine EITD and WBE. 
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