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Abstract. U-shape nanoelectromechanical systems (NEMS) are potential for developing 
miniature sensors. While the electro-mechanical performance of conventional beam-type NEMS 
has been exclusively addressed in the literature, few works have considered this phenomenon in 
U-shaped systems. Herein, the static and dynamic pull-in instability of the U-shaped NEMS is 
investigated under the presence of vdW force. Based on the recently developed consistent couple 
stress theory (CCST), the size-dependent constitutive equation is derived. Two types of the beam 
cross-sections including rectangular and circular geometries are considered. The nonlinear 
equations are solved by employing Ray-leigh-Ritz solution method. The developed model is 
validated by comparison with the results presented in literature. The effect of various parameters 
on the static and dynamic pull-in parameters, phase plans and stability threshold of the system is 
discussed. The obtained results reveal that the vdW attraction decreases the pull-in voltage while 
the size dependency enhances the instability voltage. On the other hand, the presented model 
demonstrates that characteristics of the tip-plate can change the pull-in parameters significantly.  
Keywords: U-shaped NEMS, consistent couple stress theory (CCST), vdW attraction, 
Rayleigh-Ritz method, dynamic pull-in instability. 

1. Introduction 

A true understanding of the electromechanical stable behavior of NEMS is crucial for reliable 
design, fabrication and operation of these devices. Many investigators have studied the mechanical 
characteristics of these miniature structures [1-4]. The pull-in instability of conventional NEMS 
with simple beam-type electrode is studied in many articles [4-6]. It can be seen that few articles 
analyzed pull-in instability of U-shaped NEMS. In this regard, the present work is devoted to 
study of the pull-in behavior of the U-shaped NEMS. The U-shaped NEMS are made of two 
parallel cantilever micro/nano-beams with a rigid plate attached to theirs free ends. The U-shaped 
MEMS/NEMS are used for developing new generation of miniature sensors, actuators and 
switches [7-10]. Qian et al. applied a U-shaped NEMS consist of a capacitive rigid plate supported 
by two silicon nanowires. Thay proved repeatable switching behavior and low actuation voltage 
for U-shaped NEMS [9]. The U-shaped actuator for capacitive applications with adjustable tuning 
range is studied by Yan and coworkers [8]. They showed that U-shaped structures provide 
enhanced electrical performance. They showed that the U-shaped structures provide enhanced 
electrical performance. Koukharenko et al. applied ANSYS software and surveyed the mechanical 
characteristics of the silicon U-shaped micro-generator [10].  

In order to precise modeling of the mentioned nanostructures, incorporation of the nano-scale 
phenomena such as van der Waals (vdW) force is crucial. It is well proved that the presence of 
vdW force substantially affects the pull-in instability of NEMS at the nano-scale separations. 
Many researchers have been demonstrated the impact of vdW force on adhesion and stability 
characteristics of ultra-small devices [11-13]. Experiments show a hardening trend in elastic 
response of some materials such as conductive metals as the dimensions approaches to the material 
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length scale [14, 15]. This size-dependency of material characteristics, i.e. size effect, cannot be 
modeled via classic continuum mechanics. In order to overcome this shortcoming, the 
non-classical theories such as non-local elasticity [16], couple-stress theory [17], strain gradient 
theory [14], modified couple-stress theory [18], consistent couple stress theory (CCST) [19] etc. 
have been applied to consider the size effect in theoretical continuum models.  

To the best knowledge of the authors, the electromechanical performance of U-shaped 
structures in the vdW regime has not been addressed yet. Herein, the effect of vdW force is 
incorporated in theoretical modeling of the U-shaped NEMS. Besides the vdW force, the size 
effect is another crucial small-scale phenomenon that might affect the performance of NEMS, 
hence should be incorporated in theoretical models. The equivalent boundary condition technique 
is applied to obtain the governing equation. The size dependency of material is modeled based on 
recently developed non-classical theory i.e. CCST in conjunction with the Euler-Bernoulli beam 
model. Two different cross sections (i.e. rectangle and circle) are simulated using the proposed 
model. The Rayleigh-Ritz method (RRM) is applied to solve the obtained equations. 

2. Theory 

Figs. 1(a) and 1(b) depict the schematic diagram of typical U-shaped element fabricated from 
two cantilever nanobeam or nanowire -depending on the fabrication method- attached to a rigid 
plate. The DC voltage difference and initial gap between the U-shaped element and the plane are ܸ and ܦ, respectively. For beam-made device the length of ܮ, width of ℎ and thickness of ݐ is 
considered. For wire-made device the length of ܮ and radius of ݎ is considered. The free-body 
diagram of the beam/wire cross-section is shown in Fig. 1(c) that ܨ and ܯ denote the force and 
moment at the non-supported end of the nanobeam/wire (ݔ =  .respectively ,(ܮ

 
a) 

 
b) 

 
c) 

Fig. 1. The schematic representation of a) U-shaped NEMS made of nanobeam, b) U-shaped NEMS made 
of nanowire, c) internal resultants in arbitrary cross-section 

Based on the CCST, the strain energy (ܷ) can be explained as [19]: 

ܷ = 12 න න(ߪߝ + ݔ݀ܣ݀(ߢߤ


 . (1)

The strain tensor (ߝ) and stress tensor (ߪ) can explain as: 

ߝ = 12 ,ݑ) + ߪ,), (2)ݑ = ߜߝߣ + , (3)ߝߤ2
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where ߣ and ߤ are the Lame’s constants and ݑ is the displacement field. The curvature tensor (ߢ) 
and the couple-stress tensor (ߤ) are defined as: 

ߢ = 12 ݁ݑ,, (4)ߤ = ଶ݇, (5)݈ߤ8−

where ݈  is the material length scale parameter. For an Euler-Bernoulli beam/wire, the 
displacement field can be expressed as [20]: 

ଵݑ = −ܼ ,ܺ)ݓ߲ ߲ܺ(ݐ ଶݑ    , = ଷݑ     ,0 = ,ܺ)ݓ (6) ,(ݐ

where ݓ is the centerline deflection of the beam/wire in the ݖ direction and ݑଵ, ݑଶ and ݑଷ are the 
displacement components in the ܺ , ܻ  and ܼ  directions, respectively. Considering small 
deformation, and substituting relations Eq. (6) in Eqs. (2-5) one obtains: 

ߢ = ߢ = − 12 ߲ଶݓ(ܺ, ଶ߲ܺ(ݐ ߢ      , = ߢ = ߢ = ߢ = ߢ = ߢ = ߢ = ߤ ,0 = ߤ− = ଶ݈ߤ4 ߲ଶݓ(ܺ, ଶ߲ܺ(ݐ ߤ     , = ߤ = ߤ = ߤ = ߤ = ߤ = ߤ = ߝ ,0 = −ܼ ߲ଶݓ(ܺ, ଶ߲ܺ(ݐ ߝ      , = ߝ = ߝ = ߝ = ߝ = ߪ ,0 = ܼܧ− ߲ଶݓ(ܺ, ଶ߲ܺ(ݐ ߪ      , = ߪ = ߪ = ߪ = ߪ = 0. 
(7)

By substituting Eq. (7) in Eq. (1) after some elaboration and integrating over the beam/wire 
volume, the bending strain energy is obtained as the following: 

න ቊ4݈ߤଶ ߲ଶݓ(ܺ, ଶ߲ܺ(ݐ ቆ12 ߲ଶݓ(ܺ, ଶ߲ܺ(ݐ ቇ − ଶ݈ߤ4 ߲ଶݓ(ܺ, ଶ߲ܺ(ݐ ቆ− 12 ߲ଶݓ(ܺ, ଶ߲ܺ(ݐ ቇ  
ݖ−       ߲ଶݓ(ܺ, ଶ߲ܺ(ݐ ቆ−ܧݖ ߲ଶݓ(ܺ, ଶ߲ܺ(ݐ ቇቋ ܺ݀ܣ݀ = 12 න (ܫܧ + (ଶ݈ܣߤ4 ቆ߲ଶ߲ܺݓଶቇଶ൩

 ݀ܺ. (8)

For each beam/wire element, the work done by external forces, ܸೣ , can be determined as: 

ܸೣ = න න ݂௫௧݀ܺ݀ݓ௪



 , (9)

where the external forces, ݂௫௧, is the summation of the electrostatic and vdW forces per unit length 
of the beam/wire.  

Based on capacitive model, the electrical attraction per unit length of the beam, ݂, in the 
case of nanobeam is expressed as [21, 22]: 

݂ = ଶܦℎܸଶ2ߝߝ ൬1 + 0.65 ℎ൰, (10)ܦ

where ߝ, ߝ, ℎ, ܦ, and ܸ are the permittivity of vacuum, dielectric constant, the beam width, the 
gap distance, and applied voltage, respectively. Also, the vdW attraction per unit length of the 
beam, ௩݂ௗௐ, is derived as [23]: 
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௩݂ௗௐ = ଷ, (11)ܦߨℎ6ܪ

where ܪ, ℎ, and ܦ, are the Hamaker constant, the beam width, and the gap distance, respectively. 
Similarly, for the U-shaped element made of nanowire (Fig. (1b)), the electrostatic force terms in 
relation Eq. (9) can be determined from the capacitive model as the following [23]: 

݂ = ܦ)ܸଶඥߝߝߨ + arccoshଶ(ܦ)(ݎ2 ቀ1 + ݎܦ ቁ,  (12)

where ݎ is radius of the nanowire. Also, the vdW attraction between a cylinder and flat plane can 
be evaluated as [24]: 

௩݂ௗௐ = 8ܪ ට ହ. (13)ܦ2ݎ

For the U-shaped system, the stress resultants are induced by the electrostatic and vdW 
attractions between the rigid plate and the ground. The work done by the moment traction, ெܸ, is 
obtained as: 

ெܸ = න ܯ ቆ(ܮ)ݓ, ߲ܺ(ܮ)ݓ߲ ቇ × ݀ డ௪()డ߲ܺ(ܮ)ݓ߲ . (14)

The work done by the force traction, ிܸ, is determined as: 

ிܸ = න ܨ ቆ(ܮ)ݓ, ߲ܺ(ܮ)ݓ߲ ቇ × ௪().(ܮ)ݓ݀
  (15)

In Eqs. (14) and (15), the force (ܨ) and moment (ܯ) are the summation of the force and 
moment due to electrostatic and vdW forces which are calculated by integrating over the rigid 
plate area which consided as a typical rigid plate with the length ܽ and width ܾ. The electrostatic 
and vdW forces and moments can be determined as: 

න ܦܸଶܾ2൫ߝ − (ܮ)ݓ − sin(߮)൯ଶݔ ݔ݀
  

      = 2ߝߝ ܾܸܽଶ
ቌܦ − (ܮ)ݓ − ܽඨ 1(ܮ)ᇱଶݓ + ቍ(ܮ)ᇱଶݓ ܦ) −  ,((ܮ)ݓ

௩ௗௐܨ = න ܦ൫ߨ6ܾܪ − (ܮ)ݓ − sin(߮)൯ଷݔ ݔ݀
  

      = ܾܽܪ 2ܦ − (ܮ)ݓ2 − ܽඨ 1(ܮ)ଶ′ݓ + (ܮ)ଶ′ݓ
ߨ12 ቌܦ − (ܮ)ݓ − ܽඨ 1(ܮ)ᇱଶݓ + ቍଶ(ܮ)ᇱଶݓ ܦ) −  ,ଶ((ܮ)ݓ

(16)
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ܯ = න ܦ2൫ݔ݀(߮)cosݔܸଶܾߝ − (ܮ)ݓ − sin(߮)൯ଶݔ
  

      = ܾܸܽଶ2ߝߝ ۈۉ
ۈۈۈ
ۇ ඨ 11 + (ܮ)ᇱଶݓ ቌܦ − ܽ(ܮ)ݓ − ඨ 1(ܮ)ᇱଶݓ + ቍ(ܮ)ᇱଶݓ

∙ ln ൮ܦ − (ܮ)ݓ − ܽඨ 1(ܮ)ᇱଶݓ + ܦ(ܮ)ᇱଶݓ − (ܮ)ݓ ൲ + 1(ܮ)′ݓ + ۋی(ܮ)ଶ′ݓ
ۋۋۋ
ۊ

1(ܮ)ᇱଶݓ + (ܮ)ᇱଶݓ ቌܦ − (ܮ)ݓ − ඨ ܽଶݓᇱଶ(ܮ)1 + ቍ(ܮ)ᇱଶݓ , 
௩ௗௐܯ = න ܦ൫ߨ6ܾܪ − (ܮ)ݓ − sin(߮)൯ଷݔ ݔ݀(߮)cosݔ

  
       = ଶܾටܽܪ 11 + (ܮ)ଶ′ݓ

ߨ12 ቌܦ − (ܮ)ݓ − ܽඨ 1(ܮ)ᇱଶݓ + ቍଶ(ܮ)ᇱଶݓ ܦ) −  .((ܮ)ݓ

(17)

It should be noted that half of the forces and momentum resultants should be considered as the 
contribution of each wire/beam. The kinetic energy of the beam and tip plate can be expressed as: 

ܶ = 12 න න ߩ ൬߲ݓ(ܺ, ݐ߲(ݐ ൰ଶ



 (18) ,ܺ݀ܣ݀

ܶ = 12 ܯ ቆ߲ݐ߲(ܮ)ݓ ቇଶ + 12 ܫ ቆ߲ଶݐ߲߲ܺ(ܮ)ݓ ቇଶ, (19)

and finally the virtual work ௗܹ performed by damping effects can be expressed as: 

ௗܹ = න න ܿௗݓ௧݀ܺ݀ݓ௪



 , (20)

where ܿௗ is the damping coefficient. The total energy of system can be summarized as:  

Π = 12 න න ܣߩ ൬߲ݓ(ܺ, ݐ߲(ݐ ൰ଶ
 ݀ܺ௧భ௧బ ݐ݀ + න 12 ܯ ቆ߲ܮ)ݓ, ݐ߲(ݐ ቇଶ ௧భ௧బݐ݀  

      + න 12 ܫ ቆ߲ଶܮ)ݓ, ݐ߲߲ܺ(ݐ ቇଶ ௧భ௧బݐ݀ − න න ܿௗݓ(ܺ, (ݐ ,ܺ)ݓ߲ ݐ߲(ݐ ݀ܺ


௧భ௧బ  ݐ݀
      − 12 න න (ܫܧ + (ଶ݈ܣߤ4 ቆ߲ଶݓ(ܺ, ଶ߲ܺ(ݐ ቇଶ൩

 ௧భ௧బݐ݀ܺ݀  
      + න න න ݂௫௧(ܺ, ௐܹܺ݀݀(ݐ





௧భ௧బ ݐ݀ + න න ܯ ቆ(ܮ)ݓ, ,ܮ)ݓ߲ ߲ܺ(ݐ ቇ ݀ డ௪(,௧)డ߲ܺ(ܮ)ݓ߲

௧భ௧బ  ݐ݀
      + න න ܨ ቆܮ)ݓ, ,(ݐ ,ܮ)ݓ߲ ߲ܺ(ݐ ቇ ,ܮ)ݓ݀ ௪(,௧)ݐ݀(ݐ


௧భ௧బ . 

(21)
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Now, by substituting Eqs. (10)-(13) and (16)-(20) in Eq. (21) and some mathematical 
elaboration the dimensionless total energy can be explained as: 

Πഥ = 12 න න ൬߲ݓෝ߲̂ݐ ൰ଶଵ
 ௧መభ௧መబݐ̂݀ݔ݀ + න න න ܿ̂ ௪ݐෝ߲̂ݓ߲

 ଵݓ݀
 ௧መభ௧መబݐ̂݀ݔ݀ + 12 න ܯ ቆ߲ݓෝ(1, ݐ߲̂(ݐ̂ ቇଶ ௧መభ௧መబݐ̂݀  

      + 12 න መܫ ቆ߲ଶݓෝ(1, ݐ߲̂ݔ߲(ݐ̂ ቇଶ ௧መభ௧መబݐ̂݀ + 12 න න (1 + (ߜ ቆ߲ଶݓෝ߲ݔଶ ቇଶ൩ଵ
 ௧መభ௧መబݐ̂݀ݔ݀  

     − න න ێێۏ
ߴ߬ߚۍێێ (1 − ෝ)ඥ1ݓ + ߬ଶݓෝ ᇱଶߦ − ෝݓ߬ ᇱ൩ ln 1 − ෝݓ߬ߦ ᇱ(1 − ෝ)ඥ1ݓ + ߬ଶݓෝ ᇱଶ൩ + ෝݓ߬ ᇱ

߬ଶݓෝ ᇱଶ ቆ1 − ෝݓ − ෝݓ߬ߦ ᇱඥ1 + ߬ଶݓෝ ᇱଶቇ 
௪ෝ (ଵ)


 

௧መభ௧መబ  
      + ߴߦ߬ߙ ቆ 1ඥ1 + ߬ଶݓෝ ᇱଶቇ

2 ቆ1 − ෝݓ − ෝݓ߬ߦ ᇱඥ1 + ߬ଶݓෝ ᇱଶቇଶ (1 − ۑۑۑے(ෝݓ
ېۑ

௫ୀଵ
 ݐෝ݀̂ݓ݀

      − න න න ൬ߚ  1(1 − ෝ)ଶݓ + 0.65 ݇(1 − ෝ)൨ݓ + 1)ߙ − ෝ)ଷ൰ݓ ௪ݓ݀


ଵ
 ௧መభ௧መబݔ݀  ݐ̂݀

      − න න  ቆ1ߴߚ − ෝݓ − ෝݓ߬ߦ ᇱඥ1 + ߬ଶݓෝ ᇱଶቇ (1 − ෝ)௪ෝݓ ᇲ(ଵ)


௧መభ௧መబ  
      + ߴߙ ቈ2 − ෝݓ2 − ෝݓ߬ߦ ᇱඥ1 + ߬ଶݓෝ ᇱଶ

2 ቆ1 − ෝݓ − ෝݓ߬ߦ ᇱඥ1 + ߬ଶݓෝ ᇱଶቇଶ (1 − ۑۑۑےෝ)ଶݓ
ېۑ

௫ୀଵ
ෝݓ݀ ᇱ݀̂ݐ. 

(22a)

For nanobeam-made sensor and: 

Πഥ = 12 න න ൬߲ݓෝ߲̂ݐ ൰ଶଵ
 ௧መభ௧መబݐ̂݀ݔ݀ + න න න ܿ̂ ௪ݐෝ߲̂ݓ߲

 ଵݓ݀
 ௧መభ௧መబݐ̂݀ݔ݀ + 12 න ܯ ቆ߲ݓෝ(1, ݐ߲̂(ݐ̂ ቇଶ ௧መభ௧መబݐ̂݀  

      + 12 න መܫ ቆ߲ଶݓෝ(1, ݐ߲̂ݔ߲(ݐ̂ ቇଶ ௧መభ௧መబݐ̂݀ + 12 න න (1 + (ߜ ቆ߲ଶݓෝ߲ݔଶ ቇଶ൩ଵ
 ௧መభ௧መబݐ̂݀ݔ݀  

      − න න න ቌ 2݇ଷଶߚඥ(1 − ෝ)[1ݓ + ത݇(1 − ෝ)]arccoshଶ(1ݓ + 2ത݇(1 − ෝ))௪ݓ


ଵ


௧መభ௧መబ+ 3݇ଵଶ1)8ߙ − ෝ)ହଶቍݓ ݓ݀ ݔ݀  ݐ̂݀

(22b)
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      − න න ێێۏ
ߴ߬ߚۍێێ (1 − ෝ)ඥ1ݓ + ߬ଶݓෝ ᇱଶߦ − ෝݓ߬ ᇱ൩ ln 1 − ෝݓ߬ߦ ᇱ(1 − ෝ)ඥ1ݓ + ߬ଶݓෝ ᇱଶ൩ + ෝݓ߬ ᇱ

߬ଶݓෝ ᇱଶ ቆ1 − ෝݓ − ෝݓ߬ߦ ᇱඥ1 + ߬ଶݓෝ ᇱଶቇ௪ෝ (ଵ)
  

௧መభ௧መబ  
      + )ߴߦ߬ߙ 1ඥ1 + ߬ଶݓෝ ᇱଶ)

2(1 − ෝݓ − ෝݓ߬ߦ ᇱඥ1 + ߬ଶݓෝ ᇱଶ )ଶ(1 − ۑۑۑے(ෝݓ
ې

௫ୀଵ
 ݐෝ݀̂ݓ݀

      − න න  ቆ1ߴߚ − ෝݓ − ෝݓ߬ߦ ᇱඥ1 + ߬ଶݓෝ ᇱଶቇ (1 − ෝ)௪ෝݓ ᇱ(ଵ)
  

௧መభ௧መబ  
      + ߴߙ ቈ2 − ෝݓ2 − ෝݓ߬ߦ ᇱඥ1 + ߬ଶݓෝ ᇱଶ2(1 − ෝݓ − ෝݓ߬ߦ ᇱඥ1 + ߬ଶݓෝ ᇱଶ) ଶ(1 − ۑۑےෝ)ଶݓ

ېۑ
௫ୀଵ

ෝݓ݀ ᇱ݀̂ݐ. 
For nanobeam-made sensor. In Eqs. (22), the dimensionless parameters are defined as: 

ݔ = ܮܺ ෝݓ     , = ܦݓ ߦ     , = ܦܽ ,     ߬ = ܮܦ ߜ     , =   ,ܫܧଶ݈ܣߤ
ݐ̂ = ඨ ̂ܿ    ,ݐ ସܮℎܾߩܫܧ = ଶඨܮܿ መܫ     , ܫܧℎܾߩ1 =  ,ଷܮℎܾߩܫ
ߙ = ۔ۖەۖ

,ସܦܫܧߨସ6ܮℎܪ ۓ     nanobeam,
ସܦܫܧସ3ܮݎܪ  ,       nanowire,     ݇ = ൞ܦℎ ,       beam,ݎ2ܦ ,      wire, ߴ       = ൞ ܾܽ2ℎܮ ,        beam,ܾܽ4ܮݎߨ ,       wire.  

(23)

3. Solving methods 

In this section, the Rayleigh-Ritz method in conjunction with the total energy of the system 
(Eq. (22)) are employed to obtain the deflection of the beam/wire. The displacement is expressed 
as a combination of a complete set of independent basis functions ߮(ݔ) in the form of: 

(ݔ)ෝݓ =  (ݔ)߶ (ݐ)ݍ
ୀଵ , (24)

where the index ݅ refers to the number of modes included in the simulation. We use the linear 
mode shapes of the cantilever nanobeam (based on the classic continuum theory) as basic 
functions in the Rayleigh-Ritz procedure: 

߶(ߦ) = cosh(߱ߦ) − cos(߱ߦ) − cosh(߱) − cos(߱)sinh(߱) − sin(߱) ൫sinh(߱ߦ) − sin(߱ߦ)൯, (25)

where ߱ is the ݅th root of characteristic equation of the cantilever beams in the classical theory. 
For minimize the total energy of the system we must have: 
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߲Πഥ߲ݍ = 0,      ݅ = 1,2, . . , ܰ. (26)

This leads to a system of time-dependent equations which can be solved numerically. 
Substituting Eqs. (23) and (24) into Eq. (26), assuming the orthogonality of ߮(ݔ)  and then 
following some straightforward mathematical operations, a system of governing equations can be 
fined as: 

ሷݍ + ሶݍ̂ܿ + [1 + ݍସ߱[ߜ − ߶ܯ  ሷ߶ேݍ
ୀଵ − መ߶ܫ  ሷ߶ᇱேݍ

ୀଵ  
      − න ߶ଵ

 ቆߚ ቈ 1(1 − ∑ ߶ேୀଵݍ )ଶ + 0.65 ݇൫1 − ∑ ߶ேୀଵݍ ൯ + 1)ߙ − ∑ ߶ேୀଵݍ )ଷቇ  ݔ݀

      − ەۖۖ
۔ۖ
ۓۖ

ۈۉ
ۇ ߴ߬ߚ ቈ൫1 − ∑ ߶(1)ேୀଵݍ ൯Ωߦ − ߬ ∑ ߶ᇱேୀଵݍ (1)

∙ ln ቈ1 − ߬ߦ ∑ ߶ᇱேୀଵݍ (1)൫1 − ∑ ߶(1)ேୀଵݍ ൯Ω + ߬ ∑ ߶ᇱேୀଵݍ ۋی(1)
ۊ

߬ଶ(∑ ߶ᇱேୀଵݍ (1))ଶ ቆ1 − ∑ ߶(1)ேୀଵݍ − ߬ߦ ∑ ߶ᇱேୀଵݍ (1)Ω ቇۙۖۖ
ۘۖ
ۖۗ

߶(1) 
      − (1)2Ω߶ߴߦ߬ߙ ቆ1 − ∑ ߶(1)ேୀଵݍ − ߬ߦ ∑ ߶ᇱேୀଵݍ (1)Ω ቇଶ (1 − ∑ ߶(1)ேୀଵݍ ) 
      − (1)ቆ1߶ߴߚ − ∑ ߶(1)ேୀଵݍ − ߬ߦ ∑ ߶ᇱேୀଵݍ (1)Ω ቇ (1 − ∑ ߶(1)ேୀଵݍ ) 
      − ۔ۖەۖ

ۓ ߴߙ ቈ2 − 2 ∑ ߶(1)ேୀଵݍ − ߬ߦ ∑ ߶ᇱேୀଵݍ (1)Ω 
2 ቆ1 − ∑ ߶(1)ேୀଵݍ − ߬ߦ ∑ ߶ᇱேୀଵݍ (1)Ω ቇଶ (1 − ∑ ߶(1)ேୀଵݍ )ଶۙۘۖ

ۖۗ ߶(1) = 0, 
݅ = 1,2, . . , ܰ. 

(27)

For nanobeam-made sensor and: 

ሷݍ + ሶݍ̂ܿ + [1 + ݍସ߱[ߜ − ߶ܯ  ሷ߶ேݍ
ୀଵ − መ߶ܫ  ሷ߶ᇱேݍ

ୀଵ  
      − න ߶

ۈۉ
ۇ 2݇ଷଶߚඨቆ൫1 − ∑ ߶(1)ேୀଵݍ ൯ൣ1 + ത݇൫1 − ∑ ߶(1)ேୀଵݍ ൯൧arccoshଶ(1 + 2ത݇(1 − ∑ ߶(1)ேୀଵݍ )) ቇ

ଵ
  

      + 5݇ଵଶ1)16ߛ − ∑ ߶(1)ேୀଵݍ )ଶቍ  ݔ݀
(28)
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      − ەۖۖ
۔ۖ
ۓۖ

ۈۉ
ۇ ߴ߬ߚ ቈ൫1 − ∑ ߶(1)ேୀଵݍ ൯Ωߦ − ߬ ∑ ߶ᇱேୀଵݍ (1)

∙ ln ቈ1 − ߬ߦ ∑ ߶ᇱேୀଵݍ (1)൫1 − ∑ ߶(1)ேୀଵݍ ൯Ω + ߬ ∑ ߶ᇱேୀଵݍ ۋی(1)
ۊ

߬ଶ(∑ ߶ᇱேୀଵݍ (1))ଶ ቆ1 − ∑ ߶(1)ேୀଵݍ − ߬ߦ ∑ ߶ᇱேୀଵݍ (1)Ω ቇۙۖۖ
ۘۖ
ۖۗ

߶(1) 

      − (1)2Ω߶ߴߦ߬ߙ ቆ1 − ∑ ߶(1)ேୀଵݍ − ߬ߦ ∑ ߶ᇱேୀଵݍ (1)Ω ቇଶ (1 − ∑ ߶(1)ேୀଵݍ ) 

      − (1)ቆ1߶ߴߚ − ∑ ߶(1)ேୀଵݍ − ߬ߦ ∑ ߶ᇱேୀଵݍ (1)Ω ቇ (1 − ∑ ߶(1)ேୀଵݍ ) 

      − ۔ۖەۖ
ۓ ߴߙ ቈ2 − 2 ∑ ߶(1)ேୀଵݍ − ߬ߦ ∑ ߶ᇱேୀଵݍ (1)Ω 

2 ቆ1 − ∑ ߶(1)ேୀଵݍ − ߬ߦ ∑ ߶ᇱேୀଵݍ (1)Ω ቇଶ (1 − ∑ ߶(1)ேୀଵݍ )ଶۙۘۖ
ۖۗ ߶(1) = 0, 

݅ = 1,2, . . , ܰ. 
For nanowire-made sensor. In Eq. (27) we have: 

Ω = ඪ1 + ߬ଶ ൮ ߶ᇱேݍ
ୀଵ (1)൲ଶ. (29)

Finally, the MAPLE commercial 
software is used to numerically solve the system of equations. 

4. Results and discussion 

The asymptotic cases (0 → ߴ) of the U-shaped NEMS are compared with that of conventional 
systems (a cantilever nanobeam suspended over a ground plane) studied in Refs. [25, 26]. Fig. 2(a) 
shows the variation of the instability voltage of the nanobeam versus the parameter ߙ for the 
conventional [25] and the asymptotic U-shaped (0 → ߴ) systems. Also, Fig. 2(b) shows the 
variation of pull-in voltage of the nanowire versus the size effect parameter [26]. As shown, if  0 → ߴ the results of the presented model approaches to those of conventional systems. 

Furthermore, the accuracy of the present model is examined by comparing the obtained 
theoretical results with the experiment and COMSOL simulation reported in the literature [9]. 
Qian et al. studied the instability voltage of the U-type switches made of silicon-nanobeams with 
2 μm length and 4 μm width supported by two silicon nanobeams with 5 μm length. This U-shaped 
structure suspended on top of the substrate with a gap of 145 nm. A comparison between our 
model and those of experiments and COMSOL simulation is summarized in table 1. It can be seen 
an acceptable agreement between the proposed model and those of experiments and simulation. 

Fig. 3 shows the variation of the beam/wire tip displacement (ݓෝ௧) versus the dimensionless 
voltage (ߚ) for different values of parameter ߴ. As seen, for any applied voltage, where ߚ ≤  ,ூߚ
one can find a solution for ݓෝ௧. On the other hand, when ߚ >  .ෝ௧ݓ ூ, no solution exists forߚ
This implies the occurrence of the instability and the beam/wire adheres to the fixed plane. At the 
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instability threshold, the slope of the curves approaches to infinity (݀ݓෝ௧ ⁄ߚ݀  → ∞) that implies 
the feasibility of further increase in the beam/wire deflection even in the absence of electrical/ܹ݀ݒ 
force(s). Also, Fig. 3 demonstrates that enhancing the parameter ߴ decreases the maximum tip 
displacement (ݓෝ௧) of the sensors. 

Table 1. Pull-in voltage comparison between the proposed solutions  
and experimental reports [9]. (ܧ = 202 GPa and ݈ = 2 nm) 

Case Experiment [9] COMSOL [9] RRM 
Pull-in voltage (V) 1.12 1.04 1.03 

Error (%) – 7.1 8.0 
 

 
a) 

 
b) 

Fig. 2. Comparison between the conventional and the asymptotic U-shaped (0 → ߴ) systems; a) variation 
of the pull-in voltage of nanobeam vs. vdW parameter (ܦ ℎ⁄ = 1.0, and ߜ = 0), b) effect of the size 

dependency on the pull-in characteristics of nanowire (ܦ ⁄ݎ = 100, and ߙ = 0) 

 
a) Nanobeam 

 
b) Nanowire 

Fig. 3. The ݓෝ௧ versus ߚ for various values of ߴ (݇ ߦ ,0.5 = = 0.2, ߬ ߙ ,0.02 = = 0.5, Ω = 0.5, and ߜ = 0) 

To demonstrate the impact of the rigid plate geometry on the stability of the sensor, the 
variation of the instability characteristics as a function of the geometrical parameter ߴ for various 
vdW parameter (ߙ ) is plotted in Fig. 4. The dimensionless parameter ߴ  represents the ratio 
between rigid plate surface area and beams/wires surface area. By increasing ߴ, the pull-in voltage 
ݔ)ෝூݓ) and pull-in deflection (ூߚ) = 1)) decrease. This implies that increase in the rigid plate 
surface increases the external forces and reduces the stability threshold of the sensor. Furthermore, 
the ߚூ  and ݓෝூ(ݔ = 1)  approach to an asymptotic value by decrease in ߴ  value. These 
asymptotic values equal to ߚூ and ݓෝூ(ݔ = 1) of conventional sensor (without rigid plate). Fig. 5 
illustrates the impact of the size dependency on the pull-in of the sensor. The zero value of ߜ 
corresponds to the classic continuum theory i.e. the beam diameter is highly larger than the 
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intrinsic material length scale (݈). According to the results of this figure, increase in the size 
parameter (ߜ) enhances the instability characteristics of the actuator. Furthermore, this figure 
shows that the impact of size phenomenon on the instability of the U-shaped is more pronounced 
for higher values of ߴ (large rigid plates).  

 
a) Nanobeam, ߚூ  

b) Nanobeam, ݓෝூ(ݔ = 1) 

 
c) Nanowire, ߚூ  

d) Nanowire, ݓෝூ(ݔ = 1) 
Fig. 4. The variation of the pull-in characteristics versus ߴ for different values of ߙ  

(݇ ߦ ,0.5 = = 0.2, ߬ = 0.02, Ω = 0.5, and ߜ = 0) 

The dynamic pull-in corresponds to the influence of the beam inertia on the instability 
threshold of the system. It is well-known that the dynamic instability threshold is lower than the 
static instability threshold due to the presence of the inertia effect. The time history and phase 
plane of the U-shaped nanostructures for various applied voltages is shown in Fig. 6. This figure 
reveals that maximum amplitude of the beam/wire tip deflection increases by increasing the DC 
voltage. When the applied voltage exceeds its critical value, ߚூ, then the tip deflection increase 
rapidly and instability occurs. Fig. 6 reveals that the phase plane has two fixed points; the stable 
center point and the unstable saddle node. The homoclinic orbit originates from the unstable 
branch saddle node and returns to it with the stable one. Beyond the unstable saddle node, the 
beam/wire collapses to fixed plane and become structurally unstable. The influence of the 
damping on the dynamic behavior of vibrating nanoactuators is illustrated in Fig. 7. The obtained 
results show that the stable center equilibrium point becomes a stable focus point when the 
damping parameter is taken into account. It can be concluded that the beam/wire makes 
convergent oscillations near the focus point because of the damping, and makes periodic 
oscillations if the damping is neglected. On the other hand, the second equilibrium point is 
unstable saddle point for any values of damping parameter. When the actuation voltage reaches 
the pull-in voltage, the trajectories which are attracted to the stable focus due to the damping effect, 
diverge and system becomes unstable. 
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a) Nanobeam, ߚூ  

b) Nanobeam, ݓෝூ(ݔ = 1) 

 
c) Nanowire, ߚூ  

d) Nanowire, ݓෝூ(ݔ = 1) 
Fig. 5. The variation of the ߚூ and ݓෝூ(ݔ = 1) versus ߜ for different values of ߴ  

(݇ ߦ ,0.5 = = 1.0, ߬ = 0.1, Ω = 0.5, and ߙ = 0.25) 

 
a) Time history of beam 

 
b) Phase plane of beam 

 
c) Time history of wire 

 
d) Phase plane of wire 

Fig. 6. Dynamic behavior of system (݇ ߦ ,5 = = 0.5, ߬ ߴ ,0.25 = ߙ ,0.25 = = 0.1 and ߜ = 0.1) 
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a) Time history of beam 

 
b) Phase plane of beam 

 
c) Time history of wire 

 
d) Phase plane of wire 

Fig. 7. Influence of damping parameter on the dynamic behavior of system  
(݇ ߦ ,5 = = 0.5, ߬ ߴ ,0.25 = ߙ ,0.25 = = 0.1 and ߜ =0.1) 

This paper has been done on the supervision of N. Abadian. The paper has been wrote by 
A. Koochi and N. Abadian. M. Abadyan and E. Ghahremani have developed the mechanical and 
mathematical models for considering the size dependency. J. Mokhtari has developed the physical 
model for considering vdW and electrical forces. J. Mokhtari and A. Koochi solved the nonlinear 
governing equation and plot the figures. The paper has been revised by M. Keivani and 
E. Ghahremani. 

5. Conclusions 

In this research, the CCST was applied for modeling the size-dependent pull-in instability of 
U-shaped sensors in the vdW regime. A general continuum model was developed and the 
governing equation was derived and solved using Rayleigh-Ritz method. It is found that the vdW 
attraction decreases while the size effect increases the pull-in voltage of the sensors. The pull-in 
characteristics and the critical value of vdW force was significantly affected by geometrical 
characteristics of the tip-plate. The good agreement between the present model and those in 
literature corroborated the reliability of the present approach. The U-shaped sensors showed 
convergent oscillations near the focus point in the presence of damping and periodic oscillations 
in the absence of damping. The obtained results are beneficial to design and fabrication of 
U-shaped systems. 
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