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Abstract. In order to accurately identify the fault conditions of rolling bearing, this paper presents 
a fault diagnosis method based on improved complete ensemble empirical mode decomposition 
with adaptive noise (CEEMDAN) and distance evaluation technique. In this method, to effectively 
extract potential fault-related information, vibration signals of rolling bearing in different fault 
conditions are decomposed into a set of intrinsic mode functions (IMFs) through improved 
CEEMDAN. The first eight IMFs containing most fault information are selected for extracting 
fault features. The original feature set is obtained including energy values, singular values and 
envelope sample entropy values. Then distance evaluation technique is implemented for selecting 
sensitive feature set and discarding irrelevant or redundant features. Subsequently, the sensitive 
feature set is fed into support vector machine (SVM) for automatically identifying rolling bearing 
fault conditions. The simulation results demonstrate that improved CEEMDAN is able to solve 
the problem of mode mixing and achieve a numerically negligible reconstruction error. Meanwhile 
experimental consequences indicate that the proposed method can acquire higher identification 
accuracy, as well as reduce the classifier computational burden. 
Keywords: rolling bearing, fault diagnosis, improved complete ensemble empirical mode 
decomposition with adaptive noise (CEEMDAN), distance evaluation technique. 

1. Introduction 

As one of the most important part of rotating machinery, rolling bearing is extremely 
significant for ensuring reliable operation of the whole mechanical system. In the long-time 
running process, damage of rolling bearing components will inevitably take place. It will lead to 
some kinds of faults and severely influence the operation condition of machine [1]. Therefore, it 
is essential to monitor the condition of rolling bearing and detect faults as early as possible [2]. 

In recent years, rolling bearing fault diagnosis has become the research focus and received 
considerable attention from many scholars around the world. At present, the primary means of 
fault diagnosis is to obtain underlying fault-related information via processing vibration signals 
[3, 4]. However, rolling bearing vibration signals are usually nonstationary and nonlinear with a 
large amount of background noise. It is particularly difficult to achieve useful fault information. 
Thus, an effective signal processing method is demanded urgently.  

Empirical mode decomposition (EMD) is an adaptive method which is suitable for multiscale 
decomposition and time-frequency analysis of nonlinear and nonstationary signals. More 
specifically, it can decompose signals into a set of intrinsic mode functions (IMFs) under the local 
characteristic time scales [5]. The IMFs are amplitude and frequency modulated components and 
an ultimate monotonic residue signal is obtained. EMD has been successfully utilized in different 
fields due to its attractive advantage of dyadic filter bank and achieved ideal effects [6, 7]. 
Nevertheless, there are still some problems existing in the process of EMD, and one of the most 
serious drawbacks is the mode mixing phenomenon. It means that oscillations of quite disparate 
scales are produced in one mode or oscillations with similar scales appear in different modes. In 
order to alleviate the mode mixing or aliasing, a noise assisted signal decomposition method called 
ensemble EMD (EEMD) is applied in some situations [8, 9]. By using EEMD, different scale 
oscillations in the signals can be automatically projected onto the appropriate reference framework, 
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which is established by white noise based on the property of uniform distribution of spectrum. 
However, the influence of added noise on the decomposition effect is not completely offset 
through limited averaging processing. In a word, residue white noise still exists in the 
reconstructed components. The computation quantity is larger while reconstruction error can be 
reduced by increasing the number of ensemble trials. 

To settle the problem that the reconstruction signals are contaminated by residue noise, 
complementary EEMD (CEEMD) is presented via adding white noise in pairs with opposite signs 
to the targeted signals [10, 11]. Although it outperforms EEMD in eliminating the effect of 
remaining noise, it is still indispensable that a great number of ensemble trials need to be carried 
out. Moreover, the number of generated IMFs is different since diverse realizations of signal plus 
noise. It leads to the problem that the final averaging calculation is difficult to implement. The 
inappropriate parameters including the amplitude of white noise and the number of ensemble trials 
can also result in the generation of spurious modes. For the purpose of overcoming these  
situations, Torres et al. [12] propose an improved algorithm called complete EEMD with adaptive 
noise (CEEMDAN). It provides a new approach to reconstruct original signals with a numerically 
negligible error and lower computational consumption. In each stage of the decomposition of this 
method, an adaptive white noise is added and the unique residue signal is calculated to obtain the 
individual modes. It has been proven to be effective in areas such as biomedical engineering 
[12, 13] and energy economics [14]. 

Indeed, CEEMDAN can avoid the mode mixing phenomenon and its decomposition process 
is complete. Yet, some minor aspects such as the presence of little residue noise in IMFs and the 
emergence of false modes still deserve to be ameliorated. Colominas et al. [15] put forward 
improvements on CEEMDAN to obtain IMFs with less residue noise and more abundant physical 
significance. The advantages of the new method have been demonstrated in analysis of artificial 
signals and actual biomedical signals.  

In addition, eigenvalue analysis has been performed availably in the study of vibration 
behaviors of gradient elastic micro beams and carbon nanotubes [16, 17]. By eigenvalue or modal 
analysis, the vibration frequencies of mechanical systems can be controlled and some problems 
which are caused by resonance can also be prevented. Normally, eigenvalues are closely related 
to the conditions of systems. Hence, it is necessary to extract appropriate fault features for 
accurately identifying variable rolling bearing fault types. In this paper, vibration signals of rolling 
bearing are decomposed through improved CEEMDAN. To reveal rolling bearing fault conditions 
from multiple aspects, the original feature set is obtained including energy values, singular values 
and envelope sample entropy values. Afterwards, distance evaluation technique is employed for 
selecting sensitive feature set and discarding irrelevant or redundant features. In the end, the 
sensitive feature set is as the input of support vector machine (SVM) to automatically identify 
fault conditions of rolling bearing. 

The remaining parts of this paper are organized as follows. In Section 2, theoretical knowledge 
of improved CEEMDAN is briefly described, and the simulation experiment is conducted to 
confirm the feasibility and effectiveness of improved CEEMDAN in eliminating mode mixing 
and reducing reconstruction error. Feature extraction and sensitive features selection based on 
distance evaluation technique are presented in Section 3. The whole procedure of rolling bearing 
fault diagnosis is provided in Section 4. In Section 5, the proposed method of this paper is 
employed in the rolling bearing fault diagnosis. Last but not least, conclusions or summaries are 
drawn in Section 6.  

2. Improved CEEMDAN  

2.1. Algorithm of improved CEEMDAN 

It has been certified in literature [12] that CEEMDAN outperforms EEMD in removing the 
residue noise of modes and exactly reconstructing original signals. In EEMD algorithm, each 
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realization of signal plus white noise is decomposed independently from the others and the 
decomposition of each realization produces a residue. Hence, the final modes are obtained by 
averaging processing, and it leads to the issue that the existence of residue noise in IMFs. In the 
method of CEEMDAN, the first IMF is achieved in the same way as EEMD. However, during the 
procedure of obtaining other modes, only a residue is produced in each stage of decomposition. 
Let ݎ௞ሺ݊ሻ be the ݇th residue and ܫ௞ሺ⋅ሻ is defined as the operator which produces the ݇th IMF via 
EMD. Let ܼሺ௠ሻሺ݊ሻ (݉  represent the ݉th realization of zero mean Gaussian white (ܯ ,…,2 ,1 =
noise andߝ௞is the desired signal-to-noise ratio (SNR) between the added noise and the residue 
signal. 

The ݇th residue and the ሺ݇ + 1ሻth IMF are respectively expressed as: ݎ௞ሺ݊ሻ = ௞ିଵሺ݊ሻݎ − ,௞ᇱሺ݊ሻܨܯܫ ௞ାଵᇱܨܯܫ(1) ሺ݊ሻ = ܯ1 ෍ ଵܫ ൬ݎ௞ሺ݊ሻ + ௞ܫ௞ߝ ቀܼሺ௠ሻሺ݊ሻቁ൰ெ
௠ୀଵ . (2)

The decomposition process continues until the obtained residue satisfies the iterative stopping 
criterion, that is the residue has at most two extrema. Despite of that, there are some minor aspects 
which still deserve to be further ameliorated. The issues which should be addressed mainly include 
two parts: 1) the existence of little residue noise in IMFs; 2) the appearance of spurious modes.  

Taking into account the above shortcomings, improved CEEMDAN is presented and 
demonstrated to be more effective. Here, ܮሺ⋅ሻ is defined as the operator which can calculate the 
local mean of signals. Except that, ܣ|⋅| denotes the averaging calculating operation of different 
realizations and ݔሺ݊ሻ is the original signal. The algorithm of improved CEEMDAN is described 
as follows, and the specific flowchart is shown in Fig. 1. 

Step 1: Calculate the first IMF of ܯ white noise realizations, respectively. Then the final local 
mean is obtained, and the first residue can be presented as: ݎଵሺ݊ሻ = ܣ ቚܮ ൬ݔሺ݊ሻ + ଵܫ଴ߝ ቀܼሺ௠ሻሺ݊ሻቁ൰ቚ. (3)

Step 2: The first IMF is calculated as: ܨܯܫଵᇱ = ሺ݊ሻݔ − ଵሺ݊ሻ. (4)ݎ

Step 3: Compute the second IMF of ܯ white noise realizations, and estimate the average local 
mean of all ensemble trials to obtain the second residue: ݎଶሺ݊ሻ = ܣ ቚܮ ൬ݎଵሺ݊ሻ + ଶܫଵߝ ቀܼሺ௠ሻሺ݊ሻቁ൰ቚ. (5)

Step 4: The second IMF are extracted as follows: ܨܯܫଶᇱ = ଵሺ݊ሻݎ − ଶሺ݊ሻݎ = ଵሺ݊ሻݎ − ܣ ቚܮ ൬ݎଵሺ݊ሻ + ଶܫଵߝ ቀܼሺ௠ሻሺ݊ሻቁ൰ቚ. (6)

Step 5: Let ݇ from 3 to ܭ, evaluate the ݇th residue and the ݇th IMF individually: ݎ௞ሺ݊ሻ = ܣ ቚܮ ൬ݎ௞ିଵሺ݊ሻ + ௞ܫ௞ିଵߝ ቀܼሺ௠ሻሺ݊ሻቁ൰ቚ, ௞ᇱܨܯܫ(7) = ௞ିଵሺ݊ሻݎ − .௞ሺ݊ሻݎ (8)

Step 6: Continue the above decomposition until the acquired residue ݎሺ݊ሻ  is no longer 
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admitted to be decomposed. In the end, the original signal ݔሺ݊ሻ can be expressed as: 

ሺ݊ሻݔ = ෍ ௞ᇱ௄ܨܯܫ
௞ୀଵ + .ሺ݊ሻݎ (9)

 
Fig. 1. The algorithm flowchart of improved CEEMDAN 

2.2. Evaluation and comparison of EEMD, CEEMDAN and improved CEEMDAN 

EEMD is a noise assisted method which can solve the problem of mode mixing in the 
conventional EMD. However, the premise of this conclusion is that a large number of noise 
ensemble trials are performed, and it greatly increases the time complexity of the algorithm. 
Compared with EEMD, CEEMDAN can eliminate the phenomenon of mode mixing by the finite 
number of noise ensemble averaging operation. Furthermore, the numerical reconstruction error 
is nearly negligible, and it overcomes the drawbacks of EEMD in low efficiency and 
incompleteness. The aforementioned improved CEEMDAN method can further remove the minor 
white noise in the modes, and over decomposition problem can also be settled.  

EEMD, CEEMDAN and improved CEEMDAN are used separately to decompose the 
simulation signal. Then the IMFs components and the error of reconstruction signal are analyzed 
to verify above conclusions. In the course of decomposition, the number of ensemble trials is set 
as 100 and the noise standard deviation is 0.2 (the same two parameters are set when they are used 
in the full text). The simulation signal ݔ is consisted of the following three parts: 

۔ۖەۖ
1ݔۓ = 10sin ቀ2ߨ × ݐ60 + 2ቁߨ 2ݔ, = 6sin ቀ2ߨ × ݐ30 + 3ቁߨ 3ݔ, = 3sin ቀ2ߨ × ݐ5 − 4ቁߨ .  (10)
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Gaussian white noise is added into the simulation signal, and the SNR of obtained signal is 
36 db. The sampling frequency is 3.6 kHz and the sampling time is 0.8 second. The time domain 
waveform of simulation signal is shown in Fig. 2. 

 
Fig. 2. Time domain waveform of simulation signal 

Firstly, the signal is decomposed by EEMD, and the results are shown in Fig. 3. It can be seen 
that ten modes are produced and IMF4, IMF5, IMF6 correspond with ݔଵ, ݔଶ, ݔଷ respectively. Yet, 
obvious oscillations with other scales exist in the IMF3, and that is the mode mixing phenomenon. 
It indicates that EEMD is not able to achieve good decomposition effect in the case of less 
ensemble trials. Furthermore, the error between reconstruction signal and original signal is 
presented in Fig. 4. And we can find that the EEMD is not complete and larger error occurs in this 
case. 

 
Fig. 3. EEMD results of simulation signal 

 
Fig. 4. EEMD reconstruction error of simulation signal 

After that, the simulation signal is processed by CEEMDAN. From the Fig. 5, we can see that 
twelve IMFs are generated and IMF6, IMF7, IMF9 correspond with the real three components. 
Compared with EEMD, the mode mixing problem is restrained, but IMF8 which is contaminated 
by little noise is obtained simultaneously. The Fig. 6 describes the result of reconstruction error, 
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and it can be observed that the magnitude order of error declines significantly. 

 
Fig. 5. CEEMDAN results of simulation signal 

 
Fig. 6. CEEMDAN reconstruction error of simulation signal 

 
Fig. 7. Improved CEEMDAN results of simulation signal 

Improved CEEMDAN is utilized in the simulation signal processing. The decomposition 
outcome is exhibited in Fig. 7. It can be seen that ten IMFs and a final residue are obtained. Further 
analysis shows that IMF5, IMF6, IMF8 are the actual components of the simulation signal. 
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Compared with Fig. 5, fluctuation of obtained modes is more stable and the mode mixing problem 
is completely eliminated. Moreover, the remaining noise in IMF7 is removed and one 
high-frequency spurious mode is also eliminated successfully. The reconstruction error is 
displayed in Fig. 8, we can discover that the error is reduced further. Therefore, it can demonstrate 
that improved CEEMDAN is effective and complete, and the above conclusions can be confirmed 
strongly. 

 
Fig. 8. Improved CEEMDAN reconstruction error of simulation signal 

3. Feature extraction and selection 

3.1. Feature extraction based on improved CEEMDAN 

Considering the advantages of improved CEEMDAN, it is applied to process the vibration 
signals of rolling bearing. A set of components with different scales from high to low frequencies 
are obtained. Generally, the first eight IMFs contain plentiful physical information. Hence, the 
feature indicators which are extracted from these IMFs are able to reflect the running conditions 
of rolling bearing. In this paper, three kinds of features are calculated to provide valuable 
information for the following fault diagnosis. 

3.1.1. Energy feature 

When rolling bearing is in variable fault conditions, the intrinsic characteristic frequencies are 
different from each other. Furthermore, improved CEEMDAN can decompose original signals 
into the corresponding frequency-band signals. It leads to the result that the energy distribution of 
different frequency-band signals changes with the conditions of rolling bearing. In another word, 
the uncertainty of signals energy distribution is different. Naturally, the feature vector which is 
composed of the energy of the first eight IMFs can distinguish different fault types. Therefore, the 
energy feature vector ܧ = ,ଵܧ} ,ଶܧ … ,  is achieved in this paper. The energy values are acquired {଼ܧ
through the following Eq. (11): 

௝ܧ = ෍ሾݔሺ݅ሻሿଶ௡
௜ୀଵ , (11)

where ݔሺ݅ሻ denotes the amplitude of IMFs discrete points, ݅ = 1, 2,…, ݊ is the number of discrete 
points of IMFs.  

3.1.2. Singular value feature 

Singular value decomposition (SVD) is an orthogonal matrix decomposition method, and 
singular values represent the inherent characteristics of matrix. Admittedly, they have excellent 
stability, and almost remain unchanged while minor changes occur in matrix [18, 19]. As a precise 
data-driven processing method, SVD is widely employed in many investigation fields including 
feature extraction and signal processing. 
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The matrix which is formed of the first eight IMFs contains most useful condition information. 
However, the IMFs are usually so complicated that they cannot immediately serve as the input 
feature vectors of the classifier. In order to deal with the deficiency, SVD is introduced to extract 
the main features and compress the scale of the IMFs. Specifically, the IMFs matrix elements of 
diverse fault conditions differ from each other significantly, as well as there are only slight 
differences in the IMFs matrix of different samples from the same fault type. Thus, we can draw 
the conclusion that the singular values of IMFs matrix in different fault conditions can be clearly 
discriminated. It satisfies the requirement of fault identification. Moreover, the robustness of fault 
feature vectors is also enhanced.  

According to the analysis above, singular values ܵ = { ଵܵ, ܵଶ, … , ଼ܵ}  of IMFs matrix are 
selected to serve as fault features. 

3.1.3. Envelope sample entropy feature 

It produces a series of pulse forces when rolling bearing damage site contacts with its element 
surface, and the frequency of pulse force is the so-called fault feature frequency. In the meantime, 
the inherent vibration frequency of rolling bearing is much higher than the feature frequency.  
Thus, the main fault information is hidden in the modulation signals. The fault-related features 
can be obtained from the envelope demodulation signals by Hilbert transform to IMFs [20].  

On the other hand, there are several nonlinear parameter estimation methods such as 
permutation entropy [21], sample entropy [22], etc. The methodology of sample entropy supplies 
an alternative to excavate underlying condition-related information. It is a kind of means for 
estimating sequence complexity. In addition, sample entropy is independent to the signal length 
and has fine stability. Hence, we extract the sample entropy of IMFs envelope signals  ܻ = { ଵܻ, ଶܻ, … , ଼ܻ } as feature indicators. 

Now, the original feature set containing twenty-four features is achieved, and the feature vector 
is constructed as ܸܨ = ,ଵܧ} ,ଶܧ … , ,଼ܧ ଵܵ, ܵଶ, … , ଼ܵ, ଵܻ, ଶܻ, … , ଼ܻ }. 

3.2. Sensitive feature selection based on distance evaluation technique 

The original feature set contains not only sensitive features, but also irrelevant or redundant 
features which may conflict with each other. The sensitive features include dominant 
condition-related information, and other uncorrelated features should be discarded for enhancing 
computational efficiency of the classifier. Besides, curse of dimensionality can be avoided.  

The principle of selecting sensitive features is the ability to distinguish samples of different 
fault types. In practical, there are many sensitive feature selection methods which have been 
employed in actual situations, such as non-negation sparse principal component analysis (NSPCA) 
[23], neighborhood rough set (NRS) [24, 25], and distance evaluation technique [26, 27], etc. In 
view of the simplicity and reliability of distance evaluation technique, it is utilized to select 
sensitive features from the original feature set. Furthermore, it can greatly save the calculation 
time cost of the classifier. 

The evaluation factor is defined as the ratio between the average distance of different and same 
condition samples. Larger evaluation factor means that the feature is more suitable for separating 
fault conditions, and identification effect of the classifier is better. The detailed algorithm is 
described as follows: 

Assume the feature set which includes all kinds of rolling bearing fault conditions is: ൛ ௖݂,௕,௪,    ܿ = 1,2, … , ;ܥ ܾ = 1,2, … , ;௖ܤ ݓ = 1,2, … , ܹൟ, (12)

where ௖݂,௕,௪ represents the ݓth eigenvalue of the ܾth sample in the ܿth condition, and ܤ௖ denotes 
the sample number of the ܿth condition. There is a total of ܥ ×  ௖ samples. ܹ is the number ofܤ
features in each sample, and ܥ × ௖ܤ × ܹ is the number of all features.  
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Step 1: Calculate the average inner-class distance of the same condition samples: 

݀௖,௪ = ௖ܤ௖ሺܤ1 − 1ሻ ෍ ห ௖݂,௦,௪ − ௖݂,௧,௪ห஻೎
௦,௧ୀଵ , ,ݏ ݐ = 1,2, … , ,௖ܤ ݏ ≠ ,ݐ (13)

then achieve the average inner-class distance of all ܥ conditions: 

௪ሺ௔ሻܦ = ܥ1 ෍ ݀௖,௪஼
௖ୀଵ . (14)

Step 2: Compute the average eigenvalue of all samples in the ܿth condition: 

௖,௪ݍ = ௖ܤ1 ෍ ௖݂,௕,௪஻೎
௕ୀଵ , (15)

then average distance between different condition samples can be expressed as follows: 

௪ሺ௩ሻܦ = ܥሺܥ1 − 1ሻ ෍ หݍ௛,௪ − ௘,௪ห஼ݍ
௘,௛ୀଵ , ݁, ℎ = 1,2, … , ,ܥ ݁ ≠ ℎ. (16)

Step 3: Define and calculate the evaluation factor ߙ௪ as follows: 

௪ߙ = ௪ሺ௔ሻ. (17)ܦ௪ሺ௩ሻܦ

After that, the evaluation factors of all features are sorted from large to small. Starting from 
the most sensitive feature, the feature sets are composed by adding the number of features one by 
one. Then the sensitive feature sets are fed into the classifier for training and testing. Eventually, 
the most superior sensitive feature set is obtained, in which the number of features is the fewest 
and identification performance of the classifier is the most ideal. 

4. The procedure of rolling bearing fault diagnosis 

The detailed process of rolling bearing fault diagnosis is presented as follows: 1) vibration 
signals are decomposed into a set of IMFs by applying improved CEEMDAN, and the first eight 
IMFs are selected for extracting fault features; 2) the original feature set is obtained including 
energy values, singular values and envelope sample entropy values; 3) sensitive feature set is 
selected through distance evaluation technique; 4) due to the advantages in high accuracy and 
great generalization of SVM, the sensitive feature set of training sample is fed into SVM [28, 29]. 
Besides, genetic algorithm (GA) is an effective tool in global optimization. It is utilized to 
optimize SVM parameters for enhancing identification accuracy; 5) the testing sample is as the 
input of the trained SVM to automatically identify fault conditions of rolling bearing. The fault 
diagnosis model is exhibited in Fig. 9. 

5. Experiment verification 

5.1. Signal processing and feature extraction 

The experiment data which is provided by the Bearing Data Center of Case Western Reserve 
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University is investigated in this section. The sampling frequency of vibration signals is 12 kHz 
and the rotating speed of shaft is 1797 r/min. The data set includes 290 samples with ten kinds of 
fault conditions and each sample contains 4096 data points. The specific data set is exhibited in 
Table 1. 

 
Fig. 9. The flowchart of rolling bearing fault diagnosis 

Table 1. The specific description of data set 
Fault type Defect size (mm) Number of training sample Number of testing sample Label 

Inner race 1 0.1778 10 19 1 
Inner race 2 0.3556 10 19 2 
Inner race 3 0.5334 10 19 3 
Outer race 1 0.1778 10 19 4 
Outer race 2 0.3556 10 19 5 
Outer race 3 0.5334 10 19 6 

Normal 0 10 19 7 
Rolling element 1 0.1778 10 19 8  
Rolling element 2 0.3556 10 19 9 
Rolling element 3 0.5334 10 19 10 

Firstly, vibration signal of each sample is processed by improved CEEMDAN. The Fig. 10 
shows the time domain waveform of rolling bearing outer race fault signal, and the defect size is 
0.1778 mm. The first eight IMFs are presented in Fig. 11.  

 
Fig. 10. The time domain waveform of rolling bearing outer race fault signal 
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Fig. 11. The first eight IMFs of rolling bearing outer race fault signal by improved CEEMDAN 

 
Fig. 12. Energy values of the ten kinds  

of fault conditions 

 
Fig. 13. Singular values of the ten kinds  

of fault conditions 

 
Fig. 14. Envelope sample entropy values of the ten kinds of fault conditions 

In the next step, the first eight IMFs are selected for calculating the energy values, singular 
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values and envelope sample entropy values. The original feature set is obtained. In order to clearly 
reflect the sensitivity of features for identifying rolling bearing fault conditions, eigenvalues of 
various fault types are described in Fig. 12, Fig. 13 and Fig. 14. From these figures, we can see 
that eigenvalues of the first four IMFs can preferably distinguish the ten kinds of fault types. It 
indicates that some features are irrelevant or redundant and should be removed from the original 
feature set. Therefore, it is essential to select sensitive feature set for enhancing computational 
efficiency of classifier. 

5.2. Sensitive feature selection 

Distance evaluation technique is employed for selecting sensitive feature set. The evaluation 
factors of the twenty-four features are shown in Fig. 15. It can be found that evaluation factors of 
the first four IMFs are larger than others. It means that they are more sensitive for identifying 
rolling bearing fault conditions. Moreover, it is identical with the above theoretical analysis. 

 
Fig. 15. Feature evaluation factors 

Evaluation factors of various features are put in the order from large to small. Starting from 
the most sensitive feature, the feature sets are formed by increasing the number of features one by 
one. Then they are fed into SVM for training and testing. Fig. 16 describes the relationship 
between the input feature number and SVM identification accuracy. The identification accuracy 
is defined as the percentage of the number of testing samples that are correctly identified in total 
samples. It can be seen that the identification accuracy is less than 80 % with the first two sensitive 
features, and it is rising gradually with the number of features increasing. The highest 
identification accuracy reaches 99.4737 % when the first six features are as the input of SVM. 

The selected sensitive features are presented in Table 2. It consists of two energy features, 
three singular value features and one envelope sample entropy feature. The sixth sensitive feature 
corresponds to the envelope sample entropy value of IMF1, and the evaluation factor is  ߙ଺ = 5.8629.  

Table 2. Sensitive feature set 
IMF components Energy feature SVD feature Envelope sample entropy  

IMF1 * * * 
IMF2 + * + 
IMF3 * * + 
IMF4 + + + 
IMF5 + + + 
IMF6 + + + 
IMF7 + + + 
IMF8 + + + 

Note: * denotes the selected sensitive features; + is not selected 
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Fig. 16. The relationship between input feature 

number and SVM identification accuracy 

 
Fig. 17. The optimization results  

of SVM parameters with GA 

5.3. The result of fault diagnosis 

The sensitive feature set of training sample is fed into SVM. In order to obtain better 
generalization performance, GA is performed to optimize parameters of SVM. In the process of 
optimization, the number of termination generation is set as 100 and the initial population quantity 
is set as 20. The fitness diagram of GA is shown in Fig. 17. We can find that the best fitness of 
training sample is 95 %. The optimization result is that the kernel function parameter  ݃ = 73.3481, and the penalty factor ܿ = 62.4312. 

The trained SVM model is applied to identify rolling bearing fault conditions, and the 
identification results are shown in Fig. 18. It can be seen that the final identification accuracy is 
99.4737 % and only one of the 190 samples is misclassified. Hence, it demonstrates that the 
proposed method is able to accurately identify rolling bearing fault conditions. 

 
Fig. 18. SVM identification results with improved CEEMDAN and sensitive feature set 

5.4. Comparison and analysis 

1) In order to highlight the advantages of improved CEEMDAN, conventional EMD and 
improved CEEMDAN are utilized to process vibration signals of rolling bearing, respectively. 
Original feature set is extracted from the first eight IMFs and taken as the input of SVM. GA is 
applied to optimize SVM parameters. The ultimate identification results of improved CEEMDAN 
and conventional EMD are presented in Fig. 19 and Fig. 20. 

From Fig. 19, it can be seen that the identification accuracy of improved CEEMDAN is 
95.7895 % and 8 samples are wrongly identified. In contrast, there are 22 samples are identified 
by error and the identification accuracy is 88.4211 % by employing conventional EMD. In detail, 
the accuracy of fault diagnosis decreases by 7.3684 %. Thus, it demonstrates that improved 
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CEEMDAN is an effective tool for processing rolling bearing vibration signals. 
2) To verify the effectiveness of distance evaluation technique, the identification results are 

compared by using the aforementioned two kinds of feature sets based on improved CEEMDAN. 
From Fig. 18 and Fig. 19, we can find that the sensitive feature set increases the identification 

accuracy by 3.6842 %. The comparison indicates that distance evaluation technique can discard 
irrelevant features and enhance identification accuracy effectively. Thus, it is appropriate for fault 
diagnosis which needs to deal with large amounts of data. 

 
Fig. 19. SVM identification results with improved CEEMDAN and original feature set 

 
Fig. 20. SVM identification results with conventional EMD and original feature set 

6. Conclusions 

1) Vibration signals of rolling bearing are decomposed by improved CEEMDAN and the first 
eight IMFs are selected for extracting fault features. Then the original feature set is obtained 
including energy values, singular values and envelope sample entropy values. It can reveal rolling 
bearing fault conditions entirely, and the underlying fault information can be excavated from 
different aspects.  

2) Distance evaluation technique is implemented for selecting sensitive feature set, and 
irrelevant or redundant features can be discarded. By using sensitive feature set, the computational 
efficiency of classifier is enhanced and identification accuracy can be improved effectively. 

3) The simulation experiment indicates that improved CEEMDAN is able to eliminate the 
mode mixing phenomenon and achieve negligible reconstruction error. In the meantime, the 
proposed method is utilized to identify different rolling bearing fault conditions. The experimental 
results demonstrate that improved CEEMDAN can increase the identification accuracy by  
7.3684 % based on the original feature set. Moreover, the sensitive feature set can further enhance 
the identification accuracy by 3.6842 % based on improved CEEMDAN. Thus, it provides a new 
approach for rolling bearing fault diagnosis.  
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