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Abstract. Since earlier days, most of the failures encountered by the structures or machines are 
mainly due to material fatigue. The dynamic behaviour of the beam may change when cracks 
begin to appear in it. Knowledge of these changes in the dynamic individualism is important in 
crack detection as well as in structure or in machine design. This paper deals with systematic study 
on the free vibration of Euler-Bernoulli beam containing open edge transverse cracks. In this 
study, two springs steel materials (EN 8 and EN 47) are considered. The effect of the top side 
cracks and bottom side cracks on the natural frequency of a cantilever beam is discussed. The 
natural frequency of a cracked case cantilever beam is investigated numerically using FE analysis 
software ANSYS. Experimental work is done by using DeweFRF to investigate the natural 
frequency of cracked beams for strong validation of the numerical results. The results of this study 
suggest that the average value of natural frequencies for all top side cracked beams are identical 
to the average value of natural frequency for all bottom side cracked beams. This is true for both 
EN 47 and EN 8. Hence, it is clear that the dynamic characteristic (natural frequency) is not 
changing, when same configuration of cracks is either on top or bottom side of the beam. The 
natural frequencies for EN 8 material are comparatively on higher side than EN 47 material for 
the same crack configurations. In most of the cracked cases, the damping effect of EN 47 is greater 
than EN 8. It is also found that as crack location increases at constant crack depth, then natural 
frequency increases. At the last location, as crack depth increases, natural frequencies almost 
remain same. It is observed that, the presence of top side crack and bottom side crack of the same 
configuration in the cantilever beam is not a function of natural frequency, when cantilever beam 
is of a square cross section. 
Keywords: natural frequency, cantilever beam, EN 47, EN 8, top side crack, bottom side crack, 
Ansys, damping factor. 

Nomenclature ܽ Depth of the crack, m ܣ Cross sectional area of beam, m2 ܤ Breadth of beam, m ܪ Height or depth of beam, m ܽ/ܪ Ratio between the crack depth and depth of beam (crack depth ratio) ܧ Young’s modulus of beam, N/m2 ݂ Natural Frequency, Hz ܫ Moment of inertia of beam, m4 ்ܭ Torsional spring stiffness, N-m/rad ܮ Length of beam, m ܮଵ Location of the crack from the fixed end, m ܴ =  Ratio between the location of the crack from fixed end and the length of the beam ܮ/	ଵܮ
(crack location ratio) ߝ Damping factor ߣ Frequency parameters 
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′ߚ Poisson’s ratio ߤ =  Density of beam, Kg/m3 ߩ Ratio between co-ordinate along the beam and beam length ܮ/ݔ
BS Bottom side 
CD Crack depth 
EN Euro norm 
TS Top side 

1. Introduction 

Since more than last two decades, the problem of crack and its detection in structures or beams 
has attained significant role. An inadequate numerical and analytical study exists on vibration of 
beam with cracks. Shifrin and Rutolo [1] proposed a new method for enumerating natural 
frequencies of a beam with an arbitrary number of transverse open cracks. Cracks are 
characterized as massless rotational springs. Compared to the substitute methods which make use 
of continuous model of beam, the calculation time required here was reduced due to the reduced 
dimension of the matrix. The experimental investigations of the effects of cracks on the first two 
modes of vibrating beams for both hinged-hinged and fixed-free boundary conditions is elaborated 
by Owolabi and Swamidas [2]. The Frequency Response Function (FRF) amplitudes and changes 
in natural frequencies obtained from the measurements of dynamic responses of cracked beams 
as a function of crack depth and location of crack are used for the detection of crack. Zheng and 
Kessissoglou [3] obtained the natural frequencies and mode shapes of cracked beam using Finite 
Element Method (FEM). The total flexibility matrix is established by adding overall additional 
flexibility matrix to the flexibility matrix of the corresponding intact beam element. The results 
when compared with analytical results show more accuracy than when the local additional 
flexibility matrix was used in the place of overall additional stiffness matrix. Chen et al. [4] carry 
out experimental investigation to determine the location and size of crack. The intersection of 
curves of stiffness versus crack location for the first three natural frequencies obtained from the 
vibration of the cracked cantilever beam predicts the crack location and crack depth. Patil and 
Maiti [5] verified a method to predict the location and depth of crack experimentally for cantilever 
beams with edge crack. The energy approach method is used for analysis and the crack is 
represented as a rotational spring. For a particular mode, varying crack location, a plot of stiffness 
versus crack location is obtained. The intersection of these curves consequent to the three modes 
gives the crack location and the associated rotational spring stiffness. Sadettin [6] conducted the 
number of experiments on edge cracked cantilever beam to see the effect of crack on different 
vibration parameters.  

Kirishmer [11], Thomson [12] and Petroski [13, 14] illustrated the effects of cracks on 
structural response through simple reduced section models of cracked beams using energy 
methods, and discussed the effect of the size and location of the crack to the natural frequency and 
vibration mode of the damaged beam. Inagaki et al. [15], estimated the crack size and position by 
natural vibration analysis of cracked rotors. Dealing with the same subject and using modal 
analysis, Grabowski [16] also came to the conclusion that there is a strong dependence of 
vibrational behaviour of cracked rotors on the crack position and magnitude. Mays and Davies 
[17] proposed a method for the prediction of the crack location and magnitude of a rotating cracked 
rotor, from frequency measurements and analytically obtained mode shapes. Mohammad et al. 
[18] are studied the small scale effect on the axial vibration of a tapered nanorod employing 
nonlocal elasticity theory. To analyze the mechanical behaviour of nanoscale materials, they used 
non-local elasticity theory. Differential quadrature method (DQM) is applied for different end 
conditions. The small scale effects on the natural frequencies of the tapered rods are investigated. 
They observed that the non-local vibration solutions are always smaller than their local 
counterparts for both uniform and tapered nanorod. Yayli [19] proposed a finite element procedure 
for computations of natural frequencies based on strain gradient elasticity theory. The results 
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reveal that for the microbeam with varying cross section comparable to its material length scale 
parameter, the effect of strain gradient is significant. They observed that the frequencies of 
microbeam can be controlled by choosing proper values of depths. Yayli [20] is studied the free 
axial vibration response of carbon nanotubes (CNTs) with arbitrary boundary conditions based on 
non- local elasticity theory. A unified analytical method has been developed, which can be used 
for a nanorod with any types of boundary conditions. It is suggested that by controlling the spring 
parameters and natural frequencies, the structures of nanotubes can be produced for nanosized 
devices. Lam et al. [21] observed experimentally that the normalized bending stiffness increases 
by about 2.4 times when the thickness was reduced from 115 to 20 µm. Stolken and Evans [22] 
examined that the plastic work hardening shows a great increase as the microbeam thickness 
decreases from 50 to 12.5 µm. Demir et al. [24] have examined nonclassical frequencies of carbon 
nanotubes based on shear deformable beam theory by discrete singular convolution technique. 
Akgoz and Civalek [25] have analyzed microsized beams for various boundary conditions based 
on strain gradient elasticity theory. In adition, small scale effect of the torsion response of bars 
and buckling of axially loaded microscaled a beam has been presented by Kahrobaiyan et al. [26] 
and Akgoz and Civalek [27], respectively. 

 From the detailed literature survey, it has been observed that most of the researchers have 
worked on the cracked cantilever beam. They have investigated the effect of crack locations and 
crack depths on different vibrating properties like natural frequency, damping factor and 
resonance amplitude. None of the researchers has worked on the top side and bottom side crack 
on the cantilever beam of square cross section. Also, the comparative vibration studies on EN 8 
and EN 47 structural material are missing in the literature. It is very essential to understand the 
dynamics of the cracked cantilever beam for the specific configurations because the natural 
frequency is used as basic criteria for predicting the location and the size of the damage. 

The present work deals with both numerical and experimental investigations on free vibration 
of cracked cantilever beam of two practically important spring steel beams EN 8 and EN 47 
materials; having square cross section. Effect of top side cracks and bottom side cracks on 
vibration parameters are investigated by finite element method and experimental method. 

2. Theory 

The beam with a transverse edge crack is clamped at left end, free at other end, it has a uniform 
square cross-section. The Euler-Bernoulli beam model is assumed as length to width ratio of a 
beam is 18. The crack is assumed to be an open crack in this study. 

2.1. Governing equation of free vibration of a intact cantilever beam  

Consider an elastic beam of length ݈ subjected to a transverse force ݂(ݔ, ,ݔ)ݓ per unit length and (ݐ  is the transverse displacement of the string shown in Fig. 1(a). The free body diagram of (ݐ
an element of a beam shown in Fig. 1(b), where ݔ)ܯ, ,ݔ)ܸ ,is the bending moment (ݐ  is the (ݐ
shear force. 

Since the inertia force acting on the element of the beam is: 

	ݔ݀(ݔ)ܣߩ ߲ଶݐ߲ݓଶ ,ݔ) 	.(ݐ
The force equation of motion in the ݖ direction gives: 

−	(	ܸ + ܸ݀) + ,ݔ)݂ ݔ݀(ݐ + ܸ = ݔ݀(ݔ)ܣߩ ߲ଶݐ߲ݓଶ ,ݔ) ,(ݐ (1)

where ߩ  is the mass density and (ݔ)ܣ  is the cross-sectional area of the beam. The moment 
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equation of motion about the y axis passing through a point O in Fig. 1(b) leads to: (ܯ + (ܯ݀ − (	ܸ + ݔ݀(ܸ݀ + ,ݔ)݂ ݔ݀(ݐ 2ݔ݀ ܯ− = 0. (2)

 

 
a) A beam in bending [8] 

 
b) Free body diagram of a beam in bending [8] 

Fig. 1. An elastic beam 

By writing ܸ݀ = డడ௫ ܯ݀ and ݔ߲	 = డெడ௫  :Eqs. (1) and (2) can be written as ݔ݀ and disregarding terms involving second powers in ݔ߲	

ݔ߲ܸ߲− ,ݔ) (ݐ + ,ݔ)݂ (ݐ = (ݔ)ܣߩ ߲ଶݐ߲ݓଶ ,ݔ) ,(ݐ ݔܯ߲߲(3) ,ݔ)	 (ݐ − ,ݔ)ܸ (ݐ = 0. (4)

By using the relation ܸ = డெడ௫  from Eq. (4), Eq. (3) becomes: 

−߲ଶݔ߲ܯଶ ,ݔ)	 (ݐ + ,ݔ)݂ (ݐ = (ݔ)ܣߩ ߲ଶݐ߲ݓଶ ,ݔ) .(ݐ (5)

From Euler-Bernoulli theory of bending, the relationship between bending moment and 
deflection can be expressed as: 

,ݔ)ܯ (ݐ = (ݔ)ܫܧ ߲ଶݔ߲ݓଶ ,ݔ) ,(ݐ (6)

where ܧ is the Young’s modulus and (ݔ)ܫ is the moment of inertia of the beam cross section about ݕ axis. Inserting Eq. (6) into Eq. (5), we obtain the equation of motion for the forced lateral 
vibration of a nonuniform beam: 
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߲ଶ߲ݔଶ ቈ(ݔ)ܫܧ ߲ଶݔ߲ݓଶ ,ݔ) (ݐ + (ݔ)ܣߩ ߲ଶݐ߲ݓଶ ,ݔ) (ݐ = ,ݔ)݂ 	.(ݐ (7)

For a uniform beam, Eq. (7) reduces to: 

ܫܧ ߲ସݔ߲ݓସ ,ݔ) (ݐ + 	ܣߩ ߲ଶݐ߲ݓଶ ,ݔ) (ݐ = ,ݔ)݂ .(ݐ (8)

For free vibration, ݂(ݔ, (ݐ =	0, and so the equation of motion becomes: 

ܿଶ	 ߲ସݔ߲ݓସ ,ݔ) (ݐ + ߲ଶݐ߲ݓଶ ,ݔ) (ݐ = 0, (9)

ܿ = ඨܣߩܫܧ.	 (10)

Since the equation of motion involves a second-order derivative with respect to time and a 
fourth-order derivative with respect to ݔ, two initial conditions and four boundary conditions are 
needed for finding a unique solution for ݔ)ݓ,  Usually, the values of lateral displacement and .(ݐ
velocity are specified as ݓ(ݔ) and ݓᇱ(ݔ) at ݐ = 0, so that the initial conditions become: 

,ݔ)ݓ ݐ = 0) = 			,(ݔ)ݓ ݔ߲ݓ߲ ,ݔ) ݐ = 0) = .(ݔ)ݓ (11)

The free vibration solution can be found using the method of separation of variables as: ݔ)ݓ, (ݐ = 	.(ݐ)ܶ(ݔ)ܹ (12)

Substituting Eq. (12) into Eq. (9) and rearranging leads to: ܿଶܹ(ݔ) ݀ସܹ(ݔ)݀ݔସ = − (ݐ)1ܶ ݀ଶܶ(ݐ)݀ݐଶ = ܽ = ߱ଶ, (13)

where ܽ = ସݔ݀(ݔ)݀ସܹ	 ଶ is a positive constant. Eq. (13) can be written as two equations:ݓ (ݔ)ସܹߚ	− = 0, (14)݀ଶܶ(ݐ)݀ݐଶ + ߱ଶܶ(ݐ) = 0,	 ସߚ(15) = ߱ଶܿଶ = ܫܧଶ߱ܣߩ .	 (16)

The solution of Eq. (15) can be expressed as: ܶ(ݐ) = ܣ cos߱ݐ + ܤ sin߱ݐ, (17)

where ܣ and ܤ are constants that can be found from the initial conditions. For the solution of 
Eq. (14), we assume: ܹ(ݔ) = 	,௦௫݁ܥ (18)

where ܥ and ݏ are constants, and derive the auxiliary equation as: 
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ܵସ − ସߚ = 0.	 (19)

The roots of this equation are: ݏଵ,ଶ = ଷ,ସݏ				,ߚ±	 = .ߚ݅±	 (20)

Hence the solution of Eq. (14) becomes: ܹ(ݔ) = ଵ݁ఉ௫ܥ + ଶ݁ିఉ௫ܥ + ଷ݁ఉ௫ܥ + ,ସ݁ିఉ௫ܥ (21)

where ܥଵ, ܥଶ, ܥଷ, ܥସ are constants. Eq. (21) can be expressed as: ܹ(ݔ) = ଵܥ cos ݔߚ + ଶܥ sinݔߚ + ଷܥ coshݔ ݔߚ + ସܥ sinhݔߚ. (22)

The cantilever boundary conditions are: ܹ(0) = 0,	 ݔܹ݀݀	(23) 	(0) = 0,	 (24)݀ଶܹ݀ݔଶ (݈) = 0,	 (25)݀ଷܹ݀ݔଷ 	(݈) = 0.	 (26)

Substituting cantilever boundary condition in Eq. (22), we obtain: ܹ(0) = ଵܥ + ଷܥ = 0, ଵܥ = ,ଷܥ− ݔܹ݀݀	(27) 	(0) = ଵܥሾߚ sinhݔߚ + ݔଶcoshܥ ݔߚ − ଷܥ sin ݔߚ + ସܥ cosݔߚሿ௫ୀ = ଶܥሾߚ,0 + ସሿܥ = ଶܥ				,0 = ,ସܥ− (28)݀ଶܹ݀ݔଶ 	(݈) = ଵܥଷሾߚ cosh݈ߚ + ଶܥ sinh݈ߚ − ଷܥ cos݈ߚ − ସܥ sin ሿ௫ୀ݈ߚ = ݈ߚଵ(coshܥ ,0 + cos (݈ߚ + ݈ߚଶ(sinhܥ + sin (݈ߚ = 0, (29)݀ଷܹ݀ݔଷ 	(݈) = ଵܥଷሾߚ sinh ݈ߚ + ଶܥ cosh݈ߚ + ଷܥ sin݈ߚ − ସܥ cos݈ߚሿ௫ୀ = ݈ߚଵ(sinhܥ,0 − sin݈ߚ) + ݈ߚଶ(coshܥ + cos (݈ߚ = 0.	 (30)

From Eq. (29) and (30), we obtain: (cosh݈ߚ + cos݈ߚ)/(sinh ݈ߚ − sin݈ߚ) = sinh݈ߚ + sin݈ߚcosh݈ߚ + cos ݈ߚ ,
which reduces to: cosh݈ߚ cos݈ߚ + 1 = 0. (31)

This last equation is satisfied by a number of values of ݈ߚ, corresponding to each normal mode 
of oscillation, which for the first and second modes are 1.875 and 4.695, respectively. The natural 
frequency of intact cantilever beam for the first mode is hence given by: 

߱ = 	.ସ݈ߩܫܧଶඨ(݈ߚ) (32)
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2.2. Formulation of a cracked cantilever beam 

The presence of crack increases the local flexibility in the beam, and hence there is a jump in 
the slope of a slender beam in the vicinity of the crack section. The magnitude of the stiffness is 
selected so that the rotation of the spring due to the moment at the crack section is equal to the 
jump in slope due to additional flexibility. As the bending vibration is studied, edge crack is 
modelled as a rotational spring with a lumped stiffness. The crack is assumed open. Based on this 
modelling, the beam is divided into two segments: the first and second segments are left and 
right-hand side of the crack, respectively. When this equation is solved by applying beam 
boundary conditions and compatibility relations, the natural frequency of the cracked beam is 
finally obtained: 

ଵܻ(ܴ) = ᇱߚߣଵsinܣ	 + ᇱߚߣଶcosܣ + ᇱߚߣଷsinhܣ + ,ᇱߚߣସcoshܣ (33)ଶܻ(ܴ) = ᇱߚߣଵsinܤ	 + ᇱߚߣଶcosܤ + ᇱߚߣଷsinhܤ + ,ᇱߚߣସcoshܤ (34)

where ܣ  and ܤ , ݅ = 1, 2, 3, 4, are constants to be determined from the boundary conditions,  ߣସ = ߱ଶܮܣߩସ/ܫܧ, ߱ is the vibration angular Velocity. 

2.3. Application to a cracked cantilever beam 

The boundary conditions for the structural member under consideration (see Fig. 2), are: 

ଵܻ(ܴ)|ఉᇲୀ = 0,					 ଵܻᇱ(ܴ)|ఉᇲୀ = 0, (35)ଶܻᇱᇱ(ܴ)|ఉᇲୀଵ = 0,					 ଶܻᇱᇱᇱ(ܴ)|ఉᇲୀଵ = 0. (36)

 
Fig. 2. Cracked cantilever beam model [23] 

If ܴ = ଵܮ ⁄ܮ  is the dimensionless crack position, the continuity conditions at the crack position 
are: 

ଵܻ(ܴ) = ଶܻ(ܴ)|ఉᇲୀோ,					 ଵܻᇱᇱ(ܴ) = ଶܻᇱᇱ(ܴ)|ఉᇲୀோ, ଵܻᇱᇱᇱ(ܴ) = ଶܻᇱᇱᇱ(ܴ)|ఉᇲୀோ, (37)

and the compatibility condition due to rotational flexibility is: 

ଵܻᇱ(ܴ) + ൬ 	൰்ܭܧ ଵܻᇱᇱ(ܴ) = ଶܻᇱ(ܴ)|ఉᇲୀோ. (38)

Eqs. (33) and (34) with equations (35)-(38) yield the characteristics equation [23] which, in 
turn, yields the natural frequencies of a cracked cantilever beam.  

3. Experimental study 

The aim of experimentation is to monitor the change in natural frequency and damping in a 
cantilever beam due to presence of transverse edge crack. 
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3.1. Experimental setup 

The instruments used for experimental analysis are accelerometer, DeweFRF and related 
accessories, as shown in Fig. 3. Specimens of EN 8 and EN 47 material are used to study the 
effects of cracks on vibration parameters. Both the materials are tested in ELCA Lab, Pune, India, 
for material properties like young’s modulus and density. The material properties and specimen 
geometric properties are shown in Table 1. Poisson’s ratio (ߤ) is assumed as 0.3. Wire EDM 
process is used to produce cracks on the specimens.  

The beam is clamped at one end by a fixture and another end is free. An accelerometer of piezo 
electric type is mounted on the beam is used to measure the acceleration of the vibrating body. A 
vibration of transverse waves is comparatively on upper side than longitudinal waves [7]. Again, 
pure bending mode is obtained at the first natural frequency only in the crosswise direction. Owing 
to this reason, only the vibration in the transverse direction is considered in this study. 

 
Fig. 3. Experimental set-up 

Table 1. Material properties and geometric properties of specimen 
Property EN 8 EN 47 

Density (kg/m3) 7820 7800 
Modulus of Elasticity (N/m2) 2.104×1011 1.95×1011 
Length of specimen (m) 0.360 0.360 
Cross section of specimen (m2) 0.02×0.02 0.02×0.02 

3.2. Crack configurations 

Total 48 cracked specimens are used in this study, to find out how the cracks affect the dynamic 
behavior of a cantilever beam.  

 
a) Cantilever beam with top side transverse crack 

 
b) Cantilever beam with bottom side transverse crack 

Fig. 4. Schematic diagram of a cracked cantilever beam 

Case 1: In this case, 12 specimens of EN 8 material are considered and cracks are taken on the 
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specimen from top side. Single transverse crack is taken on each specimen. Case 1 is subdivided 
into 3 sub cases. In the first sub case, 120 mm crack location is selected from the cantilever end 
and at this location crack depth is varied by an interval of 4 mm from 4 mm to 16 mm. The second 
and third sub cases are similar to first sub case, only difference is that instead of 120 mm crack 
location, 180 mm and 240 mm crack location is chosen for the second and third sub case 
respectively.  

Case 2: This case is similar to case 1, the only difference is that cracks are taken on the beam 
from the bottom side. 

Case 3: This case is similar to case 1, but instead of EN 8 material, EN 47 material is chosen. 
Case 4: This case is similar to case 2, but instead of EN 8 material, EN 47 material is chosen. 

4. Finite element modelling and analysis 

ANSYS [10] finite element program is used to determine natural frequencies of the undamaged 
as well as cracked beams. For this purpose, rectangle area is created. This area is extruded in the 
third direction to get the 3 D model. Then at the required location, small rectangular area of crack 
of 0.5 mm width and required depth is created and extruded. Then small volume of crack is 
subtracted from large volume of cantilever beam to obtain cracked three dimensional models.  

The width of crack is kept constant throughout its depth in this study. A 20 node structural 
solid element (solid 186) is selected for modelling the beam because of some special features like 
stress stiffening, large strain, and large deflection. Finite element boundary conditions are applied 
on the beam to constrain all degrees of freedom of the extreme left hand end of the beam. The 
Block Lanczos eigenvalue solver is used to calculate the natural frequencies of the beams. 

 
Fig. 5. Cracked beam finite element modelling 

 
Fig. 6. Natural frequency plot, EN 47 TS crack, crack details: ܮଵ ⁄ܮ = 0.33; ܽ ⁄ܪ = 0.8 

 
Fig. 7. Natural frequency plot, EN 8 BS crack, crack details: ܮଵ ⁄ܮ =	0.33; ܽ ⁄ܪ = 0.8 

5. Results 

Experimental values of natural frequency and damping factor determined by DeweFRF are 
shown in Figs. 8-9. In Figs. 10-11, through finite element analysis it is found that, the average 
value of natural frequency of top side cracked beams is identical to the average value of natural 
frequency of bottom side cracked beams of EN 8 material. The same theory holds true for EN 47 
material also. 
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Fig. 8. Natural frequency and damping factor Plot by DeweFRF,  

EN 47 TS crack, crack details: ܮଵ ⁄ܮ = 0.33; ܽ ⁄ܪ = 0.8 

 
Fig. 9. Natural frequency and damping factor plot by DeweFRF,  

EN 8 BS crack, crack details: ܮଵ ⁄ܮ =	0.33; ܽ ⁄ܪ = 0.8 

Experimental results showed some error between the average value of natural frequency of top 
side and bottom side cracked beams. Small experimental deviation in results is mainly due to 
presence of some error in the boundary conditions. The existing fixture is not perfectly rigid, 
means it is associated with some flexibility property. This flexibility property changes the 
vibrating natural frequency of the beam. During experimentation time, a free length (unclamped 
length) of the beam may get changed by 1 or 2 mm from the required length, therefore, it leads to 
change the value of natural frequency of the beam significantly. It is get clear from Eq. (32). Also, 
the presence of manufacturing defects, machining induced residual stresses in the beam changes 
its natural frequency. The presence of top side crack or bottom side crack in the beam for the same 
crack configuration gives the same value of flexural rigidity, due to square cross section of a 
cantilever beam. So, natural frequency of a cantilever beam of square cross section is independent 
of top side or bottom side cracks.  

It is also found that when the crack location increases from the fixed end and keeping the crack 
depth constant, then the value of natural frequency remains unvarying. This holds true when crack 
depth is either equal to or less than 20 % of the beam depth. A constant value of natural frequency 
means an almost constant stiffness of the beam. For larger crack depth, natural frequency increases 
notably with crack location. 

From Figs. 12-13, it is found that as crack depth was increased for any unique location, then 
natural frequency of the beam decreases, attributed mainly to the reduction in rigidity of the beam. 
Therefore, it is clear that change in crack depth is a function of natural frequency. The natural 
frequency of the beam decreases considerably when crack depth increases to 80 % of the beam 
depth, and it is least affected when crack depth is either 20 % or less than 20 % of the depth the 
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beam. It is also found that for 120 mm crack location, when crack depth was increased, then natural 
frequency decreases more abruptly than 180 mm and 240 mm crack location. This is because of 
more damping effect at 120 mm crack location. 

 
Fig. 10. Variation of natural frequency ratio versus crack location ratio for EN 47 specimens 

 
Fig. 11. Variation of natural frequency ratio versus crack location ratio for EN 8 specimens 

 
Fig. 12. Variation of natural frequency ratio versus crack depth ratio for EN 47 specimens 

From Fig. 14, it is found that values of natural frequency for EN 8 cracked beams is 
comparatively on higher side than EN 47 cracked beams, because of higher stiffness properties of 
EN 8 material. From Fig. 15, it is observed that as crack depth is increased at any unique location, 
then damping factor in the beam increases. This is mainly due to decrease in stiffness of the beam. 
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A greater increase in damping factor is observed as crack depth increases for 120 mm crack 
location from the fixed end, than for 180 mm and 240 mm crack locations. This is due to the fact 
that the cracks which are nearer to the fixed end contribute a larger damping effect in the beam. It 
is also found that the damping factor of EN 47 material is greater than EN 8. 

 
Fig. 13. Variation of natural frequency ratio versus crack depth ratio for EN 8 specimens 

 
Fig. 14. Variation of natural frequency ratio versus crack location ratio for EN 8 and EN 47 specimens 

 
Fig. 15. Variation of damping factor versus crack depth ratio for EN 8 and EN 47 specimens 

6. Conclusions 

By finite element analysis, the natural frequencies present in the cracked cantilever beams are 
found to confirm the experimental results. 

The following conclusion can be drawn from this study. 
1) Natural frequency of a cantilever beam of square cross section is independent of top side or 

bottom side crack of same configuration. 
2) The average value of natural frequency for top side cracked beams is identical to the average 
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value of natural frequency for bottom side cracked beams for the same cracked configuration. 
3) When the location of crack is kept constant and crack depth is increased, then natural 

frequency of the beam decreases. 
4) When the crack depth is kept constant and crack location is varied from the fixed end, then 

natural frequency of the beam increases. 
5) When the crack depth is increased at any unique location then damping factor in the beam 

increases. 
6) Natural frequency for EN 8 cracked beams is relatively on higher side than EN 47 cracked 

beams. From this it can be concluded that EN 8 material will take care of dynamic loads effectively 
than EN 47 material, when put in the service. 
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