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Abstract. As wind turbine blades tend to be long and narrow, the demand for its properties of 
bending resistance and vibration suppression is improving day by day. Mimicking the three-layer 
structure (the outer skin, the middle, the inner skin) of bamboo, this paper puts forward a new 
damping structure with the blade as a basic layer, one transitional layer and one free damping 
layer added to it. The formula of the structural loss factor is deduced by vibration differential 
equations. Then combined with the formula, the models of airfoil flutter and damping vibration 
suppression and related data, the numerical simulation is done using Matlab/Simulink Software. 
Consequently, the comparison diagrams of swing and wave velocity responses and their 
displacement responses between conditions with and without the new damping structure are 
gained, which indicates that the property of vibration suppression of wind turbine blades with the 
new damping structure is significantly improved. 
Keywords: wind turbine blade structure, property of vibration suppression, bionic three-layer 
bamboo structure, structural loss factor. 

Nomenclature ߱ Angular velocity ݉ Mass ܤത  Composite bending stiffnessܤ Bending stiffnessߝ Elongation ܯ Bending moment ݒ Transverse vibration velocity ߠ Bending angle displacement ܲ Transverse force ߪ Normal tensile and compressive stress ܪ Thickness ߞ Distance between the center line of the barycenter of the damping beam and the basic 
layer surface ߟ Loss factor of damping structure ߚ Loss factor of damping material ܧ Elastic modulus ݔ Displacement of blade section ߠଵ Torsional angle of blade section ݇ Spring stiffness ݁ Distance between mass ܩ and torsion ߜ ܧ Distance between aerodynamic center ܣ and mass ܯ ܩଵ Torque ܬ Airfoil moment of inertia ܫ Polar moment of inertia 
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F Aerodynamic force ݎ Distance between airfoil cross section and axis of rotation ܿ Airfoil chord length ݓ Blade cross section relative velocity ߩ Air density ܭ௦ Structural stiffness ܥ௦ Structural damping ܭ Aerodynamic stiffness ܥ Aerodynamic damping ߣ Poisson ratio Ω Blade wheel rotational velocity ߮ Inflow angle ݒ Velocity in wind wheel plane ݑஶ Wind velocity ܥ Lift coefficient ܥௗ Drag coefficient ߙ Attack angle ߛ Setting angle ܽ Axial inducible factor ܽᇱ Tangential inducible factor 

1. Introduction 

The wind turbine has long and narrow blades which vibrate under the influence of aerodynamic 
load, elastic force and inertial force. The most common and pernicious vibrations for large flexible 
blades are the aero-elastic coupling flutter and stall flutter [1]. Vibrations not only affect output 
power but also cause fatigue cracks and even damages on blades. Related scholars have made so 
many researches on the vibration phenomenon of wind turbine blades. Dossing proposes that the 
tuned vibration reducer is used to decrease vibration, which is difficult to implement. Murtagh, 
etc. raise that blades passive control is realized by the tuned mass damper to decrease the excitation 
force from the dynamic unbalance, but the tuned mass damper has poor adaptability. Thomas, etc. 
design an intelligent blade structure with variable trailing edges, but limited by the surface change 
rate of blade trailing edges, the effect of vibration suppression is not ideal. [2-4] John Montesanto 
[5], Stanciu Mariana Domnica, etc. [6]. set up a physical multi-scale progressive damage model 
to forecast the durability of blade structure and identify the risk areas of blade composite structures 
for material loading. They also studied the subcritical damage evolution and stiffness degradation 
of blade structures with finite-element analysis using computational micromechanics subroutines 
in continuum damage mechanics coupling framework to improve blade structure and lower 
production cost. It faces great innovations to improve blade structures, processing materials and 
modes [7, 8]. 

Bamboo possesses unique functional gradient structures to resist wind attacks. Domestic and 
foreign scholars have made so many researches on bamboo structures. Ma Jianfeng [9], etc. 
compare the anti-bending properties of the bionic bamboo structure with the traditional cylindrical 
shell by finite element simulation analysis. They draw a conclusion that the carrying capacity of 
the bionic bamboo structure is 1.25 times that of the traditional structure; T. Tan [10], etc. put 
forward a series of multi-scale experiments and numerical models to analyze the functional 
gradient structures of bamboo, and apply Yang modulus variation finite element model to analyze 
the mechanical property of bamboo in a fracture toughness experiment. Meisam K. Habibi [11], 
etc. study the asymmetric bending response of bamboo under different loading conditions by 
multiscale mechanical characteristics with a scanning electron microscope. The results show that 
bamboo fibers along the wall thickness of gradient distribution mainly affect the bamboo 
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mechanical property. So, based on the different mechanical properties of bamboo structural parts, 
this paper tries to apply the bamboo three-layer structure to wind turbine blades to verify whether 
the vibration performance of the blades with the bionic three-layer bamboo structure is 
significantly improved with the help of vibration differential equations, the models of airfoil flutter 
and damping flutter suppression and the numerical simulation. 

2. Materials and methods 

2.1. Bionic damping structure analysis 

Bamboo internal structure is shown in Fig. 1 [12]. Bamboo wall is composed of the outer skin, 
the middle and the inner skin. Their mechanical properties are closely related to their fiber volume 
fraction. The fiber volume fraction of the outer skin is the largest, the middle is less and the inner 
skin is least. It is true of their longitudinal elastic modulus and tensile strength. The reasons why 
bamboo has a superior ability to resist wind attacks are as follows: The outer skin has high elastic 
modulus and tensile strength, which can bear wind load in nature as a basic layer; Playing an 
important role in connecting the outer skin and the inner skin, the middle can dissipate part of the 
energy from wind load as a transitional layer; The inner skin can also dissipate part of the energy 
as a free damping layer. So, bamboo three-layer structure can be mimicked and applied to the 
wind turbine blade. 

 
Fig. 1. Bamboo internal structure. Note: 1 – outer skin, 2– middle, 3 – inner skin  

2.2. Model analysis of the new damping structure 

Mimicking the three-layer structure of bamboo, with the blade as a basic layer, one transitional 
layer and one free damping layer are added to form the new damping structure to suppress the 
blade vibration. The new damping structure is shown in Fig. 2. 

 

Fig. 2. New damping structure 

Bamboo wall thickness is far less than its length, and blade shell thickness is also far less than 
its wingspan length. So, the blade structure can be abstracted as a beam and its bending vibration 
theory can be adopted to analyze the blade dynamics performance. Fig. 3 is the bending vibration 
parameter specification for the new damping beam [13].  
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Fig. 3. Bending vibration parameter specification for the new damping beam. Note: ݒ is transverse 
vibration velocity; ߠ is bending angle displacement; ܲ is transverse force; ܯ is bending moment 

In order to determine the composite bending stiffness ܤത  of the new damping beam, the center 
line of the barycenter should be determined first (as is shown in Fig. 4). 

When the damping structural beam is bending, the elongation ߝ of the basic, transitional and 
free damping layers along the longitudinal direction varies with ݕ in a linear fashion: 

ߝ = ݔ݀ߠ݀ݕ = ߱݅ݕ ݔ߲߲߱ . (1)

The normal tensile and compressive stress in ܺ direction is as follows: ߪ = , (2)ߝܧ

where ݊ = 1, 2, 3 represent the basic layer, the transitional layer and the free damping layer 
respectively. The following formula can be gained by plugging Eq. (1) into (2): 

ߪ = ݅߱ܧ ݕ ݔ߲߲߱ . (3)

Under pure bending, the force acting on the beam cross section along ܺ direction is equal to 
zero, that is: 

න ுమାுయାݕ݀ߪ
ିሺுభିሻ = 0. (4)

 
Fig. 4. Cross-section of the new damping structure: ܪଵ, ܪଶ, ܪଷ are the thickness of the basic layer, 

transitional layer and the free damping layer, and ߞ is the distance between the center line  
of the barycenter of the damping beam and the basic layer surface 

The curvature ଵఠ ⋅ డఠడ௫  is a constant. If the above formula is equal to zero, then: 
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න ுమାுయାݕ݀ݕܧ
ିሺுభିሻ = 0. (5)

By Eq. (2), ߞ can be expressed as: 

ߞ = 12 ଵଶܪଵܧ − ଶଶܪଶܧ − ଷଶܪଷܧ − ଵܪଵܧଷܪଶܪଷܧ + ଶܪଶܧ + ଷܪଷܧ . (6)

After ߞ is determined, bending moment ܯ can be expressed as: 

ܯ = න ுమାுయାݕ݀ߪݕ
ିሺுభିሻ . (7)

Plugging formula ܯ = തఠ ⋅ డఠడ௫  and Eq. (3) into (7), the following can be gained: 

തܤ = න ுమାுయାݕଶ݀ݕܧ
ିሺுభିሻ      = ଵଷ3ܪଵܧ ቈ݁̅ଶ ቆ3ℎଵଶℎଶ + ℎଶଷ + 3ℎଶ ଵଶܪଶߞ + 3ℎଵℎଶଶ + 6ℎଵℎଶ ଵܪߞ + 3ℎଶଶ ଵቇ       +݁̅ଵܪߞ ቆℎଵଷ + 3ℎଵଶ ଵܪߞ + 3ℎଵ ଵଶቇܪଶߞ + 1 − 3 ଵܪߞ + 3 ,ଵଶܪଶߞ

(8)

where ݁̅ଵ = തଶܧ ⁄ଵܧ , ݁̅ଶ = തଷܧ ⁄ଵܧ , ℎଵ = ଶܪ ⁄ଵܪ , ℎଶ = ଷܪ ⁄ଵܪ . 
Eq. (6) can also be expressed as: 

ߞ = ଵܪ − ݁̅ଵℎଵܪଶ − ݁̅ଶℎଶሺܪଷ + ଶሻ2ሺ1ܪ + ݁̅ଵℎଵ + ݁̅ଶℎଶሻ . (9)

Plugging Eq. (9) into (8), the following can be gained: 

തܤ = ଵ1ܤ + ݁̅ଵℎଵ + ݁̅ଶℎଶ ሾ1 + 2݁̅ଵሺ2ℎଵ + 3ℎଵଶ + 2ℎଵଷሻ + 2݁̅ଶሺ2ℎଶ + 6ℎଵଶℎଶ + 2ℎଶଷ + 6ℎଵℎଶଶ     +6ℎଵℎଶ+3ℎଶଶሻ + 4݁̅ଵଶℎଵସ + 12݁̅ଶଶሺℎଵଶℎଶଶ + ℎଵℎଶଷሻ + 4݁̅ଵ݁̅ଶሺ4ℎଵଷℎଶ + ℎଵℎଶଷ + ℎଶସ + 3ℎଵଶℎଶଶሻሿ, (10)

where ܤത  is the composite bending stiffness of the damping structural beam. ܤଵ is the bending 
stiffness of the ordinary beam. 

Compared with the loss factor ߚଶ  and ߚଷ  of the viscoelastic damping materials on the 
transitional layer and free damping layer, the loss factor ߚଵ of the basic layer is so small that it can 
be ignored. Also, ܤത = ሺ1ܤ + ሻ, ݁̅ଵߟ݅ = ݁ሺ1 + ଶሻ, ݁̅ଶߚ݅ = ݁ሺ1 +  is the loss factor of ߟ ଷሻ, andߚ݅
the new damping structure. So, the following can be gained: ܤܤଵ ሺ1 + ሻߟ݅ = 11 + ݁ଵሺ1 + ଶሻℎଵߚ݅ + ݁ଶሺ1 + ଷሻℎଶߚ݅ ሾ1 + 2݁ଵሺ1 + ଶሻܽߚ݅ + 2݁ଶሺ1 + ଷሻܾ       +4݁ଵଶሺ1ߚ݅ + ଶሻଶℎଵସ+12݁ଶଶሺ1ߚ݅ + ଷሻଶܿߚ݅ + 4݁ଵሺ1 + ଶሻ݁ଶሺ1ߚ݅ + ,ଷሻ݀ሿߚ݅ (11)

where ܽ, ܾ, ܿ and ݀: ܽ = 2ℎଵ + 3ℎଵଶ + 2ℎଵଷ, ܾ = 2ℎଶ + 6ℎଵଶℎଶ + 2ℎଶଷ + 6ℎଵℎଶଶ + 6ℎଵℎଶ + 3ℎଶଶ,ܿ = ℎଵଶℎଶଶ + ℎଵℎଶଷ,    ݀ = 4ℎଵଷℎଶ + ℎଵℎଶଷ + ℎଶସ + 3ℎଵଶℎଶଶ.
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Omitting ߚଶߚଷ, ߚଶଶ and ߚଶଶ, the real component can be expressed as: ܤܤଵ = 1ሺ1 + ݁`ଵℎଵ + ݁ଶℎଶሻଶ ሾ1 + ݁ଵሺ2ܽ + 1ሻ + ݁ଶሺ2ܾ + 1ሻ + 2݁ଵଶሺ2ℎଵସ + ܽ + 2݁ଵℎଵସሻ       +2݁ଶଶሺ6ܿ+ܾ + 6݁ଶܿ + 2݁ଵ݁ଶሺ2݀ + ܽ + ܾ + 2݁ଶ݀ + 6݁ଶܿሻ + 4݁ଵଶ݁ଶሺ1 + ଶ݀ߚ + ℎଵସሻሿ. (12)

Omitting ߚଶߚଷ, ߚଶଶ and ߚଶଶ, the imaginary component can be expressed as: ݅ ଵܤܤ ߟ = ݅ሺ1 + ݁`ଵℎଵ + ݁ଶℎଶሻଶ ሼ݁ଵߚଶሺ2ܽ − 1ሻ + ݁ଶߚଷሺ2ܾ − 1ሻ + 36݁ଶଶߚଷܿ + 12݁ଵଶℎଵସߚଶ +2݁ଵ݁ଶሾ2ሺߚଶ + ଷሻ݀ߚ + ሺܽ − ܾሻሺߚଶ − ଷሻሿߚ + 4݁ଵଶ݁ଶሾߚଷ݀ + ℎଵସሺ2ߚଶ − ଷܿߚଷሻሿ+4݁ଵ݁ଶଶሺ6ߚ + ଶ݀ߚ − .ଶܿሻሽߚ3 (13)

Plugging Eq. (12) into (13) and omitting the higher-order item, the formula for ߟ  can be 
expressed as: 

ߟ = ݁ଵߚଶሺ2ܽ − 1ሻ + ݁ଶߚଷሺ2ܾ − 1ሻ1 + ݁ଵሺ2ܽ + 1ሻ + ݁ଶሺ2ܾ + 1ሻ . (14)

From Eqs. (12) and (14), if the material elastic modulus of the new damping structure  
(݁ଵ = ଶܧ ⁄ଵܧ  and ݁ଶ = ଷܧ ⁄ଵܧ ), the thickness ratios (ℎଵ = ଶܪ ⁄ଵܪ  and ℎଶ = ଷܪ ⁄ଵܪ ), the loss 
factors (ߚଶ and ߚଷ), the bending stiffness of the basic layer without the damping structure (ܤଵ) are 
known, the composite bending stiffness of the new damping structure (ܤ) and the loss factor ߟ 
can be calculated. 

2.3. Models of airfoil flutter and damping vibration suppression 

This study sets up the two degrees of freedom airfoil vibration dynamic model based on typical 
sections. Fig. 5 is the two degrees of freedom airfoil model and its coordinates. 

 
Fig. 5. Airfoil elastic supporting structure and coordinate system. Note: ݔ stands for the vertical axis  

and the displacement of blade section. y stands for the horizontal axis. ߠଵ stands for the torsional  
angle of blade section. ܮ stands the lift force. ܦ stands for the drag force. The blade is supported  
by a twist spring ݇ఏ and a pull-press spring ݇௫ at the center of torsion ܧ. The center of mass is ܩ.  

The center of torsion is ݁. The aerodynamic center is ܣ .ܣ and ܩ are ߜ apart 

The classic vibration of blades is a sort of strong aeroelastic unstable phenomenon. Its main 
element is the blade torsion-bending-coupled vibration [14]. The two degrees of freedom airfoil 
dynamic Eq. (15) is deduced by Lagrange equation: ቂீܬ 00 ݉ቃ ൜ߠሷଵݔሷ ൠ + ݇ఏ + ݁ଶ݇௫ −݁݇௫−݁݇௫ ݇௫ ൨ ቄߠଵݔ ቅ = ቄܯଵܨ ቅ, (15)
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where ீܬ  is the airfoil moment of inertia about ܩ ଵܯ ,  is the torque acted on ܩ , and ܨ  is the 
aerodynamic force acted on ܩ. ݁ is the distance between ܩ and ܧ. ݉ is the mass of airfoil cross 
section. ݇௫ = ఎܫଵܧ3 ⁄ଷݎ  and ݇ఏ = ܫଶܧ ⁄ݎ  are calculated by blade material stiffness and airfoil 
parameters [15]. (ܧଵ and ܧଶ are blade material shear modulus and elastic modulus. ܫ is the airfoil 
polar moment of inertia relative to ܩ  is the airfoil polar moment of inertia relative to the ߟܫ .
centroidal axis. ݎ is the distance between the airfoil cross section and the axis of rotation). 

From the aerodynamic theory: 

൜ܯଵ = ߙcosܥሺߜଶܿݓߩ0.5 + ܨ,ሻߙௗsinܥ = ߙcosܥଶܿሺݓߩ0.5 + ,ሻߙௗsinܥ (16)

where ܿ is the airfoil chord length, ݓ is the blade cross section relative velocity, and ߩ is the air 
density. Eq. (16) can be also expressed as: ቄܯଵܨ ቅ = ቂݏଵଵ ଶଵݏଵଶݏ ଶଶቃݏ ቄߠଵݔ ቅ − ݀ଵଵ ݀ଵଶ݀ଶଵ ݀ଶଶ൨ ൜ߠሶଵݔሶ ൠ, (17)

where ܭ = ቂݏଵଵ ଶଵݏଵଶݏ ଶଶቃݏ ܥ , = ݀ଵଵ ݀ଵଶ݀ଶଵ ݀ଶଶ൨  are the aerodynamic stiffness and damping of 

aerodynamic center. 
Blades don’t vibrate under steady flow. Suppose blade cross section relative velocity is ݓ, 

attack angle is ߙ, and setting angle is ߛ at the steady-state moment. Take the airfoil at the distance 
of r away from the blade root as the research object. The following formula is derived from the 
airfoil velocity at the steady-state moment: 

ݓ = ටݒଶ + ሺΩݎሻଶሺ1 + ܽ′ሻଶ. (18)

Among them, ݒ is velocity in wind wheel plane, ݒ = ஶሺ1ݑ + ܽሻ, and ݑஶ is wind velocity, ܽ is axial inducible factor, Ω is blade wheel rotational velocity, ܽ′ is tangential inducible factor 
When the wind velocity changes, blades vibrate, the tangential velocity increment is −ݔሶsinߛ, 

and the axial velocity increment is ݔሶcosߛ, and the torsional angle of blade section is –ߠଵ, the blade 
cross section relative velocity is as follows: ݓ = ඥሺݒ + ሶcosγሻଶݔ + ሺΩݎ − ሶsinγሻଶሺ1ݔ + ܽ′ሻଶ. (19)

Then, the attack angle ߙ = ߙ − ߮ ଵ, the inflow angleߠ = ߙ +  and its tangent function is as ,ߛ
follows: 

tan߮ = ݒ + ݎሺΩߛሶcosݔ − ሻሺ1ߛሶsinݔ + ܽ′ሻ. (20)

As both ݔ and ߠሶଵ have no relation with aerodynamic [16], so ܭ = ݏଵଵ ଶଵݏ0 0൨, ܥ = 0 ݀ଵଶ0 ݀ଶଶ൨. 

Plugging ܭ and ܥ, the airfoil flutter equation is expressed as: ܲ ሷܺ + ܥ ሶܺ + ܺܭ = 0, (21)

where ܲ = ቂீܬ 00 ݉ቃ ܥ , = ܥ + ௌܥ ܭ , = ܭ + ௌܭ ௦ܭ .  and ܥ௦  are the structural stiffness and 
structural damping: 
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ௌܭ = ݇ఏ + ݁ଶ݇௫ −݁݇௫−݁݇௫ ݇௫ ൨, ௌܥ = ቂܿ௦ଵଵ ܿ௦ଵଶܿ௦ଶଵ ܿ௦ଶଶቃ, ܭ = ݏଵଵ ଶଵݏ0 0൨, ܥ = 0 ݀ଵଶ0 ݀ଶଶ൨. 
where: 

ଵଵݏ = 12 ߙሻcosߙᇱሺܥ−ଶܿሾݓߩߜ + ߙሻsinߙሺܥ − ௗᇱܥ ሺߙሻsinߙ + ଵଵݏ,ሿߙሻcosߙௗሺܥ = 12 ߙሻcosߙᇱሺܥ−ଶܿሾݓߩߜ + ߙሻsinߙሺܥ − ௗᇱܥ ሺߙሻcosߙ + ሿ, ݀ଵଶߙሻsinߙௗሺܥ = ߙcosܥሺߜܿߩ + ߚcosݒሻሾߙௗsinܥ − Ωݎሺ1 + ܽ′ሻଶsinߛሿ       + 12 ሺ1ܿߜߩ + ܽ′ሻሺߛݏܿݎߗ + ሻߛsinݒ ቈ݀ܥሺ߮ − ሻ݀߮ߛ cosሺߜ − ሻߛ − ሺ߮ܥ − ሻsinሺ߮ߛ − +       ሻߛ ௗሺ߮ܥ݀ − ሻ݀߮ߛ sinሺ߮ − ሻߛ + ௗሺ߮ܥ − ሻcosሺ߮ߛ − ሻ, ݀ଶଶߛ = ߙcosܥሺߜܿߩ + ߛcosݒሻሾߙௗsinܥ − Ωݎሺ1 + ܽ′ሻଶsinߛሿ       + 12 ሺ1ܿߩ + ܽ′ሻሺΩݎcosߛ + ሻߛsinݒ ቈ݀ܥሺ߮ − ሻ݀߮ߛ cosሺߜ − ሻߛ − ሺ߮ܥ − ሻsinሺ߮ߛ − +       ሻߛ ௗሺ߮ܥ݀ − ሻ݀߮ߛ sinሺ߮ − ሻߛ + ௗሺ߮ܥ − ሻcosሺ߮ߛ − .ሻߛ
If the material is assumed to be isotropic, the equivalent complex elastic stiffness of the 

structure can be expressed as: ܧത = ᇱܧ + ᇱᇱܧ݅ . (22)

As ܤത =  ௭, the real and imaginary parts at both sides of the equation are equal. So, theܫതܧ
following formulas can be deduced as: ܤ = ᇱܧ ߟܤ௭, (23)ܫ = ᇱᇱܧ ௭. (24)ܫ

Among them, ܫ௭ is the moment of inertia of the damping structure to the neutral axis. The 
equivalent storage modulus ܧᇱ  and loss modulus ܧᇱᇱ  can be calculated by Eqs. (23) and (24). So, 
with the damping material, the damping matrix in Eq. (21) can be expressed as: 

௦ܥ = ێێۏ
௭ܫߟܤߦۍ 00 ௭ܫߟܤ ۑۑے

(25) .ې

In the matrix, ߦ = 0.5 ( 1 + ߣ ), where ߣ  is Poisson ratio. The analysis of the vibration 
suppression property of blades with the new damping structure can be done by plugging Eqs. (25) 
in (21). 

3. Results and discussion 

3.1. Numerical simulation experiment 

A 600 kw wind turbine is selected in this simulation experiment, the blade shape of which 
adopts FX-77-153 aeronautics airfoil and the material is fiberglass. The main design parameters 
are shown in Table 1[17]. The airfoil section main design parameters are shown in Table 2 [18]. 
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The lift and drag coefficient functions are obtained through polynomial fitting within the scope of 
the designed attack angle: ܥሺߙሻ = ߙ0.1043 − 0.0116, ሻߙௗሺܥ(26) = 0.57 × 10ହߙଷ + 0.13 × 10ଷߙଶ − 0.23 × 10ଷߙ + 0.0085, (27)

where ܥ is the lift coefficient, ܥௗ is the drag coefficient. The designed attack angle ߙ = 10°, so ܥሺߙሻ = ሻߙௗሺܥ ,1.0314  = ሻߙᇱሺܥ ,0.0248  = ௗᇱܥ ,0.1043  ሺߙሻ =  0.0028. The blade section 
parameters at the radius of 20 % to 30 % from the wing root was selected as the two degrees of 
freedom airfoil parameters, so ݎ = 5 m, ܽ = 0.38, ܽ′ = 0.1128 [19] based on empirical models.  

The matrixes of Eqs. (21) are calculated by the parameters in Table 1 and 2 and the related 
formulas: ܲ = ቂ10.40 00 185.83ቃ, ܭ = ቂ −22 0−130 0ቃ, ܥ = ቂ0 1.40 8.1ቃ,ݏܭ = ቂ 5.53 × 10 −0.617 × 10ଷ−0.617 × 10ଷ 0.0115 × 10 ቃ

Material parameters for the transitional layer is as follows: ߚଶ ଶܧ ,0.5 = = 2.9×108 Pa,  ߣ = 0.32; Material parameters for the free damping layer is as follows: ߚଷ ଷܧ  ,1.2 = = 1.14×108 Pa, ߣ = 0.5 .Without considering the temperature efficiency effect of damping 
materials, the structural damping ݏܥ = ቂ5145000 00 1710000ቃ. The properties of blade vibration 
and damping suppression are numerically simulated based on Eq. (21) by building simulation 
models in software Matlab/Simulink. Based on the ONERA non-linear aerodynamic model, the 
numerical simulations for the ordinary blade and the blade with the new damping structure are 
done under four different velocities: start-up wind velocity ଵܸ = 4 m/s, rated wind velocity  ଶܸ = 15 m/s, machine halt wind velocity ଷܸ = 25 m/s and dangerous wind velocity ସܸ = 45 m/s. 
Fig. 6 and 7 show the swing and wave velocity responses and displacement responses of the two 
blades under four different wind velocities. 

Table 1. Wind turbine main design parameters 
Designed 

item 
Output 

power / kW
Power 

coefficient 
Rotor velocity 

/ rad·s-1 
Rotor 

diameter / m
Designed attack 

angle / (°) 
Setting 

angle / (°) 
Value 600 0.4 7 40 10 1.63 

Table 2. Foil section main design parameters 
Airfoil 

parameters 
Chord 

length / m
Cross section mass 

per unit / kg 
Moment of 

inertia / Kg·m-2 
Axial moment of 

inertia / cm4 
Polar moment of 

inertia / cm4 

Value 1.073 185.83 10.4 17364 673110 

3.2. Analysis 

From Fig. 6 and 7, as the wind velocity increases, the ordinary blade swing and wave 
amplitudes are increasing, and the wave displacement increases obviously; When the start-up 
velocity is rising to the machine halt velocity, the blade swing and wave amplitude are increasing 
slowly; When it is over the machine halt velocity, the blade vibration amplitude are increasing 
rapidly and significantly; When it reaches to the dangerous velocity, the blade cracks and even 
ruptures because the vibration amplitude exceeds the permitted value. For the damping blade, As 
the wind velocity increases, its swing and wave amplitude are also increasing, and the wave 
displacement increases within a small range; When the start-up velocity is rising to the machine 
halt velocity, its swing and wave amplitude are also increasing slowly; When it is over the machine 
halt velocity, the blade vibration amplitude increasement slows down significantly; When it 
reaches to the dangerous velocity, the blade doesn’t crack and rupture because the vibration 
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amplitude is within the permitted value. 

 
a) Ordinary blade swing velocity 

 
b) Damping blade swing velocity 

 
c) Ordinary blade wave velocity 

 
d) Damping blade wave velocity 

Fig. 6. Ordinary and damping blades velocity responses. Note: compared with the ordinary blade, the 
standard deviation of the damping blade swing velocity decreases by 37.9 %, 35.0 %, 30.8 %, 25.0 % 
respectively; those of the wave velocity decreases by 51.1 %, 47.9 %, 43.7 % and 37.1 % respectively 

Four structural loss factors (ߟଵ ଶߟ ,0.335 = ଷߟ ,0.323 = ସߟ ,0.289 = = 0.241) of the damping 
blade under four different velocities are calculated by the swing and wave data. From Table 3, 
compared with the ordinary blade, the standard deviation of the damping blade swing velocity 
decreases by 37.9 %, 35.0 %, 30.8 %, 25.0 % respectively; those of the swing displacement 
decreases by 37.9 %, 34.8 %, 30.8 % and 25.2 % respectively; those of the wave velocity decreases 
by 51.1 %, 47.9 %, 43.7 % and 37.1 % respectively; those of the wave displacement decreases by 
51.1 %, 48.1 %, 43.6 % and 37.1 % respectively. With the transitional and free damping layers on 
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the blade, the damping blade vibration amplitude is smaller than the ordinary blade because of its 
lower natural frequency and higher structural loss factor. The damping blade vibration amplitude 
decreases more quickly than the ordinary within the same period because the transitional and free 
damping layers turn part of the vibration energy into heat energy. Through the numerical 
simulation experiment, it can be concluded that the vibration amplitude of the damping blade 
decreases sharply within a number of vibration periods, which can delay the fatigue damage 
process effectively, and the property of blade vibration suppression with the new damping 
structure can be improved significantly. 

 
a) Ordinary blade swing displacement 

 
b) Damping blade swing displacement 

 
c) Ordinary blade wave displacement 

 
d) Damping blade wave displacement 

Fig. 7. Ordinary and damping blades displacement responses. Note: compared with the ordinary blade, 
those of the swing displacement decreases by 37.9 %, 34.8 %, 30.8 % and 25.2 % respectively;  
those of the wave displacement decreases by 51.1 %, 48.1 %, 43.6 % and 37.1 % respectively 
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Table 3. Simulation results 

Operating 
conditions 

Evaluation 
index 

Swing Wave 
Ordinary Damping Ordinary Damping 2-10×ܦ ܸ×10-2 2-10×ܦ ܸ×10-2 1-10×ܸ 1-10×ܦ  1-10×ܸ 1-10×ܦ

Set-up wind 
Max. 0.00 0.20 0.00 0.20 0.60 0.18 0.60 0.18 
Min. –0.41 –0.21 –0.40 –0.20 0.00 –0.19 0.00 –0.17 
SD. 0.09 0.09 0.07 0.07 0.17 0.103 0.14 0.08 

Rated 
wind 

Max. 0.00 0.23 0.00 0.22 0.79 0.21 0.78 0.20 
Min. –0.54 –0.24 –0.53 –0.23 0.00 –0.21 0.00 –0.19 
SD. 0.13 0.18 0.10 0.09 0.22 0.12 0.19 0.09 

Machine halt 
wind 

Max. 0.00 0.28 0.00 0.27 1.15 0.25 1.13 0.25 
Min. –0.78 –0.29 –0.77 –0.29 0.00 –0.24 0.00 –0.23 
SD. 0.20 0.15 0.16 0.11 0.34 0.15 0.29 0.13 

Dangerous 
wind 

Max. 0.00 0.37 0.00 0.36 2.00 0.34 1.99 0.33 
Min. –1.36 –0.39 –1.34 –0.38 0.00 –0.33 0.00 –0.32 
SD. 0.38 0.21 0.31 0.17 0.62 0.21 0.54 0.18 

Note: ܦ stands for displacement (m); ܸ stands for velocity (m/s). SD stands for standard deviation 

4. Conclusions 

Mimicking the three-layer bamboo structure (the outer skin, the middle, the inner skin), this 
paper puts forward a new structure (a basic layer, a transitional layer and a free damping layer) 
applied on wind turbine blades. It deduces the formula for ߞ that is the distance between the center 
line of the barycenter of the damping beam and the basic layer surface, the formula for the 
composite bending stiffness of the damping beam by vibration differential equations, and the 
formula for structural loss factor ߟ. Based on the models of airfoil flutter and damping vibration 
suppression, the numerical simulation experiment on a 600 kw wind turbine is done using 
Matlab/Simulink Software. Consequently, the comparison diagrams of swing and wave velocity 
responses and their displacement responses between conditions with and without the new damping 
structure are gained. From the diagrams, as the wind velocity increases, both the ordinary blade 
and the damping blade swing and wave amplitudes are increasing, but the ordinary blade waving 
displacement increases obviously, and the damping blade increases within a small range; When 
the start-up velocity is rising to the machine halt velocity, both the blades swing and wave 
amplitude are increasing slowly; When it is over the machine halt velocity, the ordinary blade 
vibration amplitude are increasing rapidly and significantly, but the damping blade vibration 
amplitude increasement slows down significantly; When it reaches to the dangerous velocity, the 
ordinary blade cracks and even ruptures because its vibration amplitude exceeds the permitted 
value, but the damping blade doesn’t crack or rupture because its vibration amplitude is within the 
permitted value. All the above indicate that the vibration amplitude of the damping blade decreases 
sharply within a number of vibration periods, which can delay the fatigue damage process 
effectively and the property of vibration suppression of wind turbine blades with the new damping 
structure is significantly improved. 
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