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Abstract. A novel numerical predictive approach for steady-state response of thin orthotropic 
plate is presented based on wave-based method (WBM) that is applied in bending vibration 
prediction of thin and thick plate in mid-frequency range. The wavenumber parameters for 
orthotropic material and the particular solution of an infinite orthotropic plate with Fourier 
transform are derived. The proposed method is validated by numerical examples with simply 
supported boundary and clamped boundary. The compared result shows that the computational 
accuracy and efficiency of WBM is significantly higher than element based method, which is the 
ability of WBM for mid-frequency problems. The predictive ability of WBM is extended to 
process the dynamic response of orthotropic plate. 
Keywords: orthotropic plate, bending vibration, wave based method, particular solution. 

1. Introduction 

With the improvement of material technology and increase of demand for structure 
performance, more and more composite materials like honeycomb panels and fibre reinforced 
polymers are adopted to lower weight of the products in aerospace and automotive industry. 
Among which, thin orthotropic plate is the typical structure used in such transport production, and 
the bending vibration behavior of this class structure is the key factor to influence NVH 
performance of product. Thus, the response of orthotropic plate has been talked about by analytical 
or semi-analytical methods [1-4]. With the requirement of lowering the cost of time and 
computation, the CAE techniques based on numerical method is indispensable for engineers to 
predict the deterministic bending vibration response of such composite structure, especially in 
design and optimization process. 

Currently, the element based methods like Finite Element Method (FEM) [5] and Boundary 
Element Method (BEM) [6] are proverbially applied for vibration and acoustic prediction. They 
divide the problem domain into finite elements, in which the variables are approximated by a set 
of simple polynomial functions that is not exactly satisfy the physical governing equation and 
boundary conditions, which results interpolation error and pollution error [7]. For higher 
frequency problems, the element size need to be small enough to capture the property of short 
wavelength, which sharply increasing the computational cost and time. Therefore, the element 
based methods usually used in low frequency issues. On the other hand, the Statistical Energy 
Analysis (SEA) [8] divides the system into finite subsystem, and the dynamical response of system 
is calculated through the balance and exchange of different subsystems. However, such statistical 
method is merely available for higher frequency problems under the theoretical hypothesis that 
each subsystem has high modal density during concerning frequency range. In the frequency range 
between the low and high frequency, called mid-frequency, system contains long wavelength and 
short wavelength characteristic, so a high efficiency and high robustness numerical method is 
necessary for predicting the vibration feature of structure.  

Over the recent years, a variety of techniques have been proposed to deal with the 
mid-frequency problems. And the first idea is extending the frequency range of present methods, 
such the Galerkin least-squares FEM [9], the quasi-stabilized FEM [10], Statistical energy analysis 
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energy method [11], Energy-density field approach [12], Hybrid SE-FEM [13]. the other family 
of solution algorithms is based on Trefftz method [14] which describes the field variables with a 
combinations of basis functions that satisfy the governing equation. Such approaches include the 
ultra-weak variational method [15], the wave boundary element method [16], The variational 
theory of complex rays [17]. The Wave Based Method(WBM) which is addressed in this paper is 
belongs to this family of solutions. 

In the end of 20 centuries, W. Desmet proposed a novel numerical technique for mid-frequency 
vibro-acoustic problems [18], its advantages of high accuracy and convergence is revealed. Then 
WBM is widely applied for prediction of sound and vibration areas. For example, vibration of thin 
and thick plate [19, 20], analysis of vibro-acoustic radiation problems [21], modelling of 
Poroelastic Materials [22]. In order to break through the application limitation that WBM is only 
convergence in convex domain, many extending techniques are present, like multi-level wave 
based technique [23], Hybrid FEM-WBM [24], Hybrid BEM-WBM [25]. Therefore, the 
extending of this techniques is significant for engineering application.  

This study aims to propose a novel efficient numerical approach based on the theory of wave 
based method and the orthotropic plate. This paper is organized as follow. The vibration theory of 
orthotropic plate is reviewed in Section 2. The basic formulation of WBM for orthotropic plate is 
derived, and the particular solution of orthotropic plate resulted by concentrated force is obtained 
through Fourier transform in Section 3. The numerical examples are presented and the 
methodology is validated in Section 4. Finally, the conclusions are drawn in Section 5.  

2. Vibration of orthotropic plate 

For plate vibration analysis, there are two main theories: The Kirchhoff and the Resissner 
Mindlin theory. Kirchhoff theory assumes that the shear deformation of plate is zero, or that the 
normal of the middle plane remain normal during deformation. The Kirchhoff assumption remains 
valid as long as the bending wavelength is approximately six times larger than the plate thickness. 
In view of the objective is thin plate, Kirchhoff theory is adopted for describing the vibration 
feature of orthotropic plate. For a thin orthotropic plate, when ݕ ,ݔ axis parallel to the elastic 
principal direction, its transversal displacement ݓ  is governed by the orthotropic Kirchhoff 
equation under external excitation ݂(ݔ, ,ݕ  :[1] (ݐ

ଵଵܦ ߲ସܹ(ݔ, ,ݕ ସݔ߲(ݐ + ଵଶܦ)2 + (ܦ2 ߲ସܹ(ݔ, ,ݕ ଶݕଶ߲ݔ߲(ݐ + ଶଶܦ ߲ସܹ(ݔ, ,ݕ ସݕ߲(ݐ ℎߩ−        ߲ଶܹ(ݔ, ,ݕ ଶݐ߲(ݐ = ,ݔ)݂ ,ݕ (1) ,(ݐ

where orthotropic plate parameters are given as: 

ଵଵܦ = ଵℎଷ12(1ܧ − ଶଶܦ     ,(ଶߥଵߥ = ଶℎଷ12(1ܧ − ଵଶܦ      ,(ଶߥଵߥ = ଵଵܦଶߥ = ܦ     ,ଶଶܦଵߥ = ℎଷ12ܩ , 
with Young’s modulus ܧଵ, ܧଶ and Poisson’s ratios ߥଵ, ߥଶ in the directions of the coordinate axes ݔ and ݕ respectively, ܩ the shear modulus in ݕݔ plane. ߩ the plate material density and ℎ the plate 
thickness. 

For a time harmonic load ݂(ݔ, ,ݕ (ݐ = ,ݔ)ܨ  ఠ௧ with circular frequency ߱, the steady-stateି݁(ݕ
response of orthotropic plate changed as: 

ଵଵܦ ߲ସݔ߲ݓସ + ଵଶܦ)2 + (ܦ2 ߲ସݔ߲ݓଶ߲ݕଶ + ଶଶܦ ߲ସݕ߲ݓସ − ݓℎ߱ଶߩ = (2) .ܨ

To solve the fourth-order equation and acquire the out-of-plate displacement ݓ, two structural 
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boundary conditions are required. The common boundary conditions at plate edges are defined as 
follow: 

Dynamical boundary: ܴ௪(ݎ௦) = (௦ݎ)ݓ − (௦ݎ)ഥݓ = 0,     ܴఏ(ݎ௦) = ((௦ݎ)ݓ)ఏܮ − (௦ݎ)ߠ̅ = ௦ݎ     ,0 ∈ Γ௪ఏ. (3)

Mechanical boundary: ܴெ(ݎ௦) = ((௦ݎ)ݓ)ெܮ − (௦ݎ)ഥܯ = 0,     ܴ(ݎ௦) = ((௦ݎ)ݓ)ܮ − തܸ(ݎ௦) = ௦ݎ   ,0 ∈ Γெ. (4)

Mix boundary: ܴ௪(ݎ௦) = (௦ݎ)ݓ − (௦ݎ)ഥݓ = 0,     ܴெ(ݎ௦) = ((௦ݎ)ݓ)ெܮ − (௦ݎ)ഥܯ = ௦ݎ     ,0 ∈ Γ௪ெ. (5)

With ݓഥ ߠ̅ , ഥܯ ,  and തܸ  the boundary value for respectively, the displacement, the rotational 
displacement, the bending moment and the equivalent shear force. ܮఏ ெܮ , ܮ ,  the differential 
operators for rotational displacement, bending moment, and the equivalent shear force. The 
corresponding variables in orthotropic material are defined as follow: 

Rotational displacement: 

௫ߠ = − ݔ߲ݓ߲ ௬ߠ     , = − ݕ߲ݓ߲ . (6)

Bending moment: 

௫ܯ = − ቆ(ܦଵଵ ߲ଶݔ߲ݓଶ + ଵଶܦ ߲ଶݕ߲ݓଶ ቇ,     ܯ௬ = − ቆ(ܦଶଶ ߲ଶݕ߲ݓଶ + ଵଶܦ ߲ଶݔ߲ݓଶ ቇ. (7)

Equivalent shear force: 

௫ܸ = − ቈܦଵଵ ߲ଷݔ߲ݓଷ + ଵଶܦ) + (ܦ4 ߲ଷݕ߲ݔ߲ݓଶ,     ௬ܸ = − ቈܦଶଶ ߲ଷݕ߲ݓଷ + ଵଶܦ) + (ܦ4 ߲ଷݔ߲ݓଶ߲ݕ. (8)

3. Wave based method 

Wave based method that belongs to indirect Treffz method is a deterministic numerical 
technique, in which the field variables are expressed as a combination of set of wave functions 
that satisfy the governing equation exactly. On the use of weighted residual formulation, the 
boundary errors are enforced to zeros and the contribution factors of wave functions are 
determined. Subsequently, the approximation of out-of-plate displacement is obtained. 

3.1. Field variable expansion 

On the basic methodology of wave based method, the dynamic response of plate ݓ  is 
approximated by the serials of wave functions ߰: 

,ݔ)ݓ (ݕ ≈  ,ݔ)߰ݓ (ݕ + ,ݔ)ෝிݓ ್(ݕ
ୀଵ = Ψ܅ + ,ݔ)ෝிݓ (9) .(ݕ

Where Ψ is the structure wave functions that satisfy the homogeneous governing equation, ܅ 
is the contribution factors of wave functions. ݓෝி(ݔ,  represents the particular solution resulted (ݕ
by external load, which will be discussed in the next section. 
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For isotropic plate, Desmet proposed the set of wave function defined as follow [19]: 

൝Ψଵ＝ cos൫݇௦భ,௫ݔ൯݁൫ିೞభ,௬൯ ଵݏ      , = 0,1,2, … , ݊௦ଵ,Ψଶ = ݁൫ିೞమ,ೣ௫൯cos൫݇௦మ,௬ݕ൯,      ݏଶ = 0,1,2, … , ݊௦ଶ. (10)

݊ = 4(݊௦ଵ + 1) + 4(݊௦ଶ + 1)  is defined the degree of model which decides the 
computational cost. Substituting set of wave functions in Eq. (10) into the homogeneous governing 
equation of orthotropic plate as Eq. (2), yields the equations containing wavenumber parameters 
for orthotropic plate: ܦଵଵ݇௦భ,௫ସ + ଵଶܦ)2 + )݇௦భ,௫ଶܦ2 ݇௦భ,௬ଶ + ଶଶ݇௦భ,௬ସܦ = ଵଵ݇௦మ,௫ସܦℎ߱ଶ, (11)ߩ + ଵଶܦ)2 + )݇௦మ,௫ଶܦ2 ݇௦మ,௬ଶ + ଶଶ݇௦మ,௬ସܦ = ℎ߱ଶ. (12)ߩ

Similarly, the ݇ = ඥߩℎ߱ଶర  is the structural wave number. Combining the above equations, 
the new wavenumber parameters for orthotropic material is derived: 

݇௦భ,௫ = ௫ܮߨଵݏ ,     ݇௦భ௬ =
ەۖۖ
۔ۖ
ۓۖ ±ඩටܦଶଶ݇ସ + ଵଶܦ)) + )ଶܦ2 − ଶଶ)݇௦భ,௫ସܦଵଵܦ − ଵଶܦ) + ଶଶܦ)݇௦భ,௫ଶܦ2

±݅ඩටܦଶଶ݇ସ + ଵଶܦ)) + )ଶܦ2 − ଶଶ)݇௦భ,௫ସܦଵଵܦ + ଵଶܦ) + ଶଶܦ)݇௦భ,௫ଶܦ2 ,
 (13)

݇௦మ,௬ = ௬ܮߨଶݏ ,    ݇௦మ,௫ =
ەۖۖ
۔ۖ
ۓۖ ±ඩටܦଵଵ݇ସ + ଵଶܦ)) + )ଶܦ2 − ଶଶ)݇௦మ,௬ସܦଵଵܦ − ଵଶܦ) + ଵଵܦ)݇௦మ,௬ଶܦ2

±݅ඩටܦଵଵ݇ସ + ଵଶܦ)) + )ଶܦ2 − ଶଶ)݇௦మ,௬ସܦଵଵܦ + ଵଶܦ) + ଵଵܦ)݇௦మ,௬ଶܦ2 .
 (14)

With ܮ௫, ܮ௬ the outside dimension of plate in the direction of ݔ and ݕ respectively. 
The type of solution in Eq. (9) converges towards the exact solution for infinite number of 

wave functions, so a truncation of wave functions is required for practical implementation. The 
adopted truncation rule is frequency dependent and links the wavenumber of the highest 
oscillating wave function to the physical wavenumber of the considered problem. This infinite 
series is truncated by selecting a value for the truncation parameter ܶ(≥ 2), which satisfies follow 
rule: 

ܶ ݇ߨ ≥ ݊௦ଵ ඥܦଵଵర ௫ܮ  ≈ ݊௦ଶ ඥܦଶଶర ௬ܮ  . (15)

3.2. Particular solution  ݓෝி(ݔ,  in Eq. (9), which is the particular solution of Eq. (2), denotes the dynamic response (ݕ
of infinite plate by external load. In this paper, a concentrated point force in consider. For a time 
harmonic point force in the ݖ-direction at (ݔ, ,ݔ)݂ :), the load expressed asݕ ,ݕ (ݐ = ݔ)ߜఠ௧ି݁ܨ − ݕ)ߜ(ݔ − ). (16)ݕ
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So, the Eq. (2) changed as: 

ଵଵܦ ߲ସݔ߲ݓସ + ଵଶܦ)2 + (ܦ2 ߲ସݔ߲ݓଶ߲ݕଶ + ଶଶܦ ߲ସݕ߲ݓସ − ݓℎ߱ଶߩ = ݔ)ߜܨ − ݕ)ߜ(ݔ − ). (17)ݕ

Transforming ݓෝி(ݔ, (ݕ  into wavenumber domain ൫݇௫, ݇௬൯  by Fourier Transform, the 
displacement response is expressed as: 

,൫݇௫ݓ ݇௬൯ = ඵ ,ݔ)ݓ ஶݕ݀ݔி݁ି൫ೣ௫ା௬൯݀(ݕ
ିஶ ,ݔ)ிݓ(18) , (ݕ = ଶ(ߨ2)1 ඵ ,൫݇௫ݓ ݇௬൯݁ି൫ೣ௫ା௬൯݀݇௫݀݇௬ஶ

ିஶ . (19)

So, the Eq. (17) is transformed in the same way and the integration variables are changed from ൫݇௫, ݇௬൯  to (݇, ܽ)  with ݇௫ = ݇cos(ܽ) ,  ݇௬ = ݇sin(ܽ) .  And the rectangular coordinate is 
transformed into cylindrical coordinate by ݔ = ݕ ,(ߠ)cosݎ = ߠ Integrating Eq. (20) form .(ߠ)sinݎ − ߠ to 2/ߨ +  yields the approximation of particular solution for an infinite orthotropic ,2/ߨ3
plate [26]: 

,ݔ)ிݓ (ݕ ≈ ଶ(ߨ2)ܨ݅ න exp ቀ݅݇(ܽ)ݎcos(ܽ − (ܽ)ܩ(ܽ)ቁ4݇ଶ(ߠ ݀ܽఏାగଶఏିగଶ , (20)

where: 

݇(ߙ) = ቆ߱ଶߩℎܩ(ܽ) ቇଵ/ସ, (21)ܩ(ܽ) = ଵଵܦ cos(ܽ)ସ + ଵଶܦ)2 + )cos (ܽ)ଶsin (ܽ)ଶܦ2 + ଶଶsin (ܽ)ସ. (22)ܦ

To reveal the feature of particular solution for orthotropic plate, the displacement of a square 
Graphite–epoxy plate with size (0.2 m×0.2 m) that is excited by a unit force in the center is 
calculated with the proposed approach. The material parameters of plate including: fiber  
angle = 0, ܧଵଵ =  138 GPa, ܧଶଶ =  8.9 GPa, ܩଵଶ =  5.176 GPa, ߥଵଶ = ߩ ,0.3  =  1600 kg/m3,  ℎ = 0.005 m. The result shown in Fig. 1 is the real part and imaginary part of displacement of the 
orthotropic plate respectively. Comparing with isotropic plate, the propagation of wave is no 
longer axisymmetric but varies with the modulus of each principal direction.  

 
a) Real part 

 
b) Imaginary part 

Fig. 1. Displacement response of an infinite orthotropic plate  
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3.3. Boundary weighted residual formulation  

The field variables are approximated by exact wave functions, so the errors of WBM are barely 
generated on boundary. Therefore, the contribution factor of each wave function is obtained 
through enforce the boundary errors to be zeros. To minimize the errors, Galerkin method that 
belongs to weighted residual method is adopted: න ௪ܴ(ᇱݓ)ܮ ݀Γ 

ೢഇ∪ೢಾ + න ఏܴ(ᇱݓ)ெܮ ݀Γ 
ೢഇ        − න ெܴ(ᇱݓ)ఏܮ ݀Γ 

ಾೇ∪ೢಾ − න ᇱܴݓ ݀Γ 
ಾೇ = 0, (23)

where ݓᇱ = ∑ ௦ᇱ್௦ୀଵݓ ߰௦ is the weighted function which is the set of structure wave functions. 
Substituting the boundary residual ܴ௪, ܴఏ, ܴெ, ܴ into Eq. (23), yields the ill-conditioning 

system matrix containing contribution factors ܅. Solving Eq. (24), the dynamic displacement 
response of orthotropic plate is acquired: ሾۯሿሼ܅ሽ = ሼሽ, (24)

where: ۯ = න  ሾΨሿΨ݀Γܮ
ೢഇ∪ೢಾ + න  ఏሾΨሿ݀ΓܮெሾΨሿܮ

ೢഇ        − න  ெሾΨሿ݀ΓܮఏሾΨሿܮ
ಾೇ∪ೢಾ − න ΨܮሾΨሿ݀Γ 

ಾೇ , (25)

 = න ഥݓ)ሾΨሿܮ −  ෝி)݀Γݓ
ೢഇ∪ೢಾ + න ߠ̅)ெሾΨሿܮ −  ෝிሿ)݀Γݓఏሾܮ

ೢഇ        − න ഥܯ)ఏሾΨሿܮ −  ෝிሿ)݀Γݓெሾܮ
ಾೇ∪ೢಾ − න Ψ( തܸ −  ෝிሿ)݀Γݓሾܮ

ೇ . (26)

4. Numerical validation and discussion 

To validate the proposed methodology, a rectangular orthotropic plate is introduced. The 
problem geometry is depicted in Fig. 2 and is same for all the case. The plate is made of a 
unidirectional fibre reinforced polymer whose material parameters is presented in Table 1. The 
plate has a thickness of 0.001 m and a unit normal force is applied at ൫ݔ, ൯ݕ = (0.16 m, 0.14 m). 
A response point ܴ that is selected for surveying its frequency response located at (0.46 m, 0.3 m). 
The simply supported and clamped boundary condition will be considered. And there are two key 
points to be validated: the one is the accuracy which is illustrated in Section 4.1 and 4.2, another 
is the efficiency that is specified in Section 4.3. 

Table 1. Mechanical properties of orthotropic materials. ܧଵଵ ܧଶଶ ߥଵ ߩ ܩ 
120 GPa 10 GPa 0.3 4.9 GPa 1510 kg/m3 

WBM is implemented in MATLAB with truncation coefficient ܶ = 6. With the purpose of 
validation of WBM for predicting the bending vibration of orthotropic plate, WBM predictions 
are compared with those obtained by FEM. FEM is realized by MSC/Nastran2012 in this study. 
In order to ensure the accuracy of calculation, FE model is fine meshed with eight-node 
quadrilateral shell element and is consisted of degrees of freedom 45501. All FE models are solved 
by using the direct solution method. 
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Fig. 2. Problem geometry 

4.1. Simply supported plate 

In this validation example, all the boundaries of orthotropic plate are simply supported. Fig. 3 
shows the compared contour of displacement with both WBM and FEM at 200 Hz. The 
displacement response obtained by WBM is considerable agree with those obtained by FEM. 

 
Fig. 3. Displacement of orthotropic plate with simply supported boundary at 200 Hz 

In consideration of four simply supported boundary, the doubly infinite series type of solution 
for such orthotropic plate is available [27]. So, the series solution is introduced to demonstrate the 
validity of WBM: 

ݓ ≈   ܦ sin ൬݉ܮݔߨ௫ ൰ஶ
ୀଵ

ஶ
ୀଵ sin ቆ݊ܮݕߨ௬ ቇ, (27)

where: 

ܦ = ଵଶܦ)ସߨߚߙ4 + ௬ܮ௫ܮ(ܦ2 ቈቀ݉ܮ௫ቁସ + ߛ2 ቀ݉ܮ௫ቁଶ ൬݊ܮ௬൰ଶ + ൬݊ܮ௬൰ସ − ସߨߛ sin ൬݉ݔߨܮ௫ ൰ sin ቆ݊ݕߨܮ௬ ቇ, (28)

with ߙ = ඥܦଵଵ ଵଶܦ + ⁄రܦ2 ߚ , = ඥܦଶଶ ଵଶܦ + ⁄రܦ2 ߛ , = ℎ߱ଶߩ ଵଶܦ + ⁄ܦ2 , ݉, ݊ is the wave 
number of half-sinusoid in ݕ ,ݔ direction separately, and ݉ = ݊ = 50 in this study. 

Fig. 6 shows the predictive displacement response of selected point ܴ within 1-1000 Hz. in 
order to reflect the nuance of three plot obtained by different approaches, the compared results are 
presented in the form of logarithm. Form the plots, the results by using the WBM based approach 
is in good agreement with the results calculated by FEM and series method, which verifies that 
WBM is applied to predict the bending vibration of orthotropic plate with simply supported edges. 
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Fig. 4. Frequency response of response point ܴ with simply supported boundary 

4.2. Clamped plate 

In this section, the example with all boundaries clamped is discussed. Similar to the  
Section 4.1, this section is to validate the accuracy of WBM for orthotropic plate with clamped 
boundary. The displacement contours at 150 Hz predicted by WBM and FEM are depicted in 
Fig. 5, in which we can see the predictions with WBM are fit well with the FEM analysis. 
Additionally, the logarithmic frequency responses of selected point ܴ in 1-1000 Hz shown in 
Fig. 6 similarly certifies that the proposed approach based on WBM is available for predicting the 
bending vibration of orthotropic plate precisely. 

 
Fig. 5. Displacement of orthotropic plate with clamped boundary at 150 Hz 

 
Fig. 6. Frequency response of response point ܴ with clamped boundary 
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4.3. Convergence 

As mentioned above, the aim of numerical examples is to validate the method in both accuracy 
and efficiency. And the proposed approach based on WBM is validated that this method is 
precisely available for prediction of translational displacement of thin orthotropic plate. Then, the 
efficiency of WBM is illustrated in this section via the convergence analysis. 

The accuracy of WBM and FEM are ensured by number of truncation parameters and by the 
number of element respectively. And the number of wave function in WBM and number of node 
in FEM is the decision of computational cost and corresponding computing precision. To find the 
computational efficiency of WBM, the relative prediction error defined in Eq. (29) is introduced. 
The convergence analysis of numerical predictive technique is to find out the relation between 
predictive precision and the computational cost. The predictive displacement amplitudes of point ܴ with two boundaries at 500 Hz are selected as the objectives for convergence analysis in this 
study: 

ߝ = ฮݓ − ฮݓฮฮݓ . (29)

With ݓ the referenced prediction obtained by fine meshed FE model. 
Fig. 7 presents the convergence curves containing relative error and degree of freedom of both 

WBM and FEM. The compared result shows that the convergence rate of WBM is dramatically 
higher than FEM, which validates the higher computational efficiency of WBM. At this point, 
WBM is more available for mid-frequency problems contrasted with element based method. 

 
a) Simply supported boundary 

 
b) Clamped boundary 

Fig. 7. Comparison of the convergence of FEM and WBM 

5. Conclusions 

A novel prediction technique based on WBM for steady-state response of orthotropic plate is 
proposed. The new wavenumber parameters of wave function are derived and the particular 
solution for infinite orthotropic plate is introduced. The methodology of presented approach is 
validated by numerical examples with different boundary conditions. The outstanding 
computational accuracy and efficiency of WBM is verified by the comparison with FEM. And the 
vibro-acoustic prediction of complex geometry with orthotropic material based on wave based 
technique is to be studied on next stage. 
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