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Abstract. The phenomena of oscillations in sliding mode control system usually cause potential 
damage or danger in engineering applications. This paper focuses on the estimation and 
adjustment of oscillation parameters (frequency and amplitude) using an improved describing 
function method and the characterization of the influence of the reduced-order sliding surface 
coefficients on the performance of the nonlinear system. The model of series connection of the 
zero-order holder and switching function is established in frequency domain. The improved 
describing function method could intuitively estimate the number, stability and parameters of 
oscillations for the coupled nonlinear system by its amplitude-phase characteristics and pole 
placement. The stability, parameters and attraction zones of three oscillations in a fourth-order 
plant are analyzed and simulated. The analytical results show that the reduced-order sliding mode 
controller possesses complex and colorful nonlinear behaviors. Besides, a coefficient tuning 
method is presented to eliminate the undesired oscillation which may lead to poor precision or 
break the stability. The simulations demonstrate that appropriate tuning on sliding surface may 
greatly improve the efficiency and robustness of the sliding mode control system. 
Keywords: reduced-order sliding mode control, describing function approach, oscillation, local 
stability, attraction zones. 

1. Introduction 

Sliding mode (SM) control is one of the most common-used robust control algorithms in 
control system and nonlinear mechanics due to its prominent robust performance [1-3] and low 
cost [4]. It is also the important nonlinear algorithm in the neural network and machine learning 
[5, 6]. However, the undesired phenomenon of oscillations in SM system known as “chattering” 
or “limit cycle” hinders its applications in engineering since the mechanical wear and resonances 
caused by oscillations. Hence, previous studies [7-9] paid much attention on suppression or 
elimination of the oscillations in SM controller. Although the high order SM controller, such as 
the second-order SM [10] and the adaptive PID SM controller [11], would offer oscillation 
elimination because of the finite-time convergence, the popular high order SM algorithm [12] still 
exhibits oscillations in the presence of unmodeled dynamics such as parasitic dynamics, delays 
and hysteresis. Hence, the oscillation-free SM algorithms merely exist in the ideal system without 
unmodeled dynamic [13]. Hence, it is worthwhile to provide a methodology to assess and adjust 
the parameters of those hard-to-remove oscillations for practicing control engineers. 

Compared with the Lyapunov method and Poincare maps, the describing function (DF) 
method provides a relatively simple and efficient solution for the oscillation in the nonlinear 
control algorithm [14, 15]. For the SM algorithm, the DF method and Routh Criterion were 
employed to predict the stability of oscillations in the uncertain SM system [16]. Its robustness 
could be tuned by the intersection angle between the Nyquist plot of the plant and the negative 
reciprocal DF of controller. Besides, the influences of the delay, hysteresis and saturation on the 
chattering of SM controller were analyzed by the DF method and stability-equation method in 
frequency domain [17]. In addition, the oscillation in a second-order SM controller could be set 
by parameter tuning under the guidance of the DF method [12]. The traditional DF method is 
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effective for these uncoupled nonlinearities in [12, 16, 17], which only depends on the amplitude 
of oscillations. However, the SM algorithm may depend on both the amplitude and frequency of 
oscillations with the increase of complexity of controllers, and it is hard for the traditional DF 
method to analyze the coupled nonlinearity in SM controllers. 

On the other hand, the sliding surface is closely related to the stability of SM system and 
oscillation parameters. The most popular full-order sliding surface is a linear combination of all 
the state variables of the plant [18]. However, it is unpractical to obtain the accurate measurements 
of high-order state variables in engineering applications. In this case, the output feedback SM 
controller is a feasible choice, such as the twisting second-order SM [12, 19], when the relative 
degree is 2 or 3. However, it is challenging for the output feedback SM controller to provide 
sufficient robustness [20] because of low switching frequency of the signum function when the 
relative degree is ≥4. Therefore, the reduced-order sliding surface [21, 22] which is the linear 
combination of partial state variables is a convenient method to decrease the relative degree. Due 
to the independence of the sliding surface and the high order state variables, the fulfillment of the 
reachability and stability may become complicated. 

Most of the researches assume that the limit cycles in the SM system are always unique and 
globally stable. Nevertheless, the nonlinear system usually exhibits the local stability. A nonlinear 
absorber system in [23] demonstrated a complex dynamic of the bi-stable oscillation. The system 
could approach to the high-frequency oscillation from the low-frequency one after the perturbation 
of an excitation force. Similarly, the simulation in a PD fuzzy controller [24] illustrated the 
attraction basin of a limit cycle. When the state portrait started in the attraction basin, it converged 
to the origin; when the state portrait started out of the attraction basin, it diverged to infinite. A 
similar phenomenon that two limit cycles existed in a switching power converter was analyzed in 
[25]. The DF method is an effective tool for analyzing the complex dynamic behavior in the SM 
system. The existence of multiple limit cycles in a piecewise gain function was proved based on 
the DF method [26]. The system could switch from a small limit cycle to a large one when a 
sufficiently large step signal applied to the input. A generalized DF approach was proposed to 
estimate multiple limit cycles in a SM system [27, 28], and the relation among these limit cycles 
were revealed intuitively. Under the influence of the sampling interval, multiple limit cycles were 
found to coexist in a reduced-order SM system [22]. However, the stability of multiple limit cycles 
in [22, 26-28] was analyzed by using the graphical DF approach which is only fit for the minimum 
phase system. Hence, the analysis of the stability of limit cycles needs further perfection. 

The main contribution of this paper is the prediction of multiple oscillations in the sampling 
reduced-order SM system by an improved DF method. The characteristic equation of the nonlinear 
SM system is established and its pole locations are used as the criterion to determine the stability 
of oscillations. The criterion is valid even the poles located in the right hand ݏ-plane (RHP), hence, 
the improved DF method is applicable to the minimum and non-minimum phase system. In 
addition, the parameter tuning method is also introduced to eliminate the undesired oscillation 
guided by the existence condition of oscillations. In this way, a locally stable system can be tuned 
as a globally stable one, and the performance of the system can be improved by sufficient gain. 
The simulations show the existence of three limit cycles which confirms the predictions, and 
demonstrate the benefit of the parameter tuning method. 

The paper is organized as follows. Firstly, the reduced-order sampling SM system is 
considered. Then the frequency-domain model of the controller is calculated and the improved 
DF method is derived. In the following section, the complex dynamics including multiple 
oscillations and their start-oscillation conditions are estimated and simulated. Finally, the 
coefficient tuning method for eliminating undesired oscillations is presented. 

2. Design of the control system 

Consider a plant given by the following equation: 
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ቄݔሶ = ݔܣ + ߪ,ݑܤ = ,ݔܥ  (1)

where ݔ ∈ ܴ, ݑ ∈ ܴଵ, ܣ ∈ ܴ×, ܤ ∈ ܴ×ଵ; ߪ is the SM surface and ܥ ∈ ܴଵ× is the vector of 
the sliding surface coefficients, and the control ݑ generated by the SM controller is defined as: (ݐ)ݑ = [(ݐ)ߪ−]݂ = ݇)ߪ−]signܯ ܶ)], 
where gain ܯ is a positive constant; ݇ is a sampling counter; ܶ is a sampling period. 

Assume that the high-order state-variables are immeasurable, which means that the 
coefficients ܿ  corresponding to the immeasurable state-variables equal to zero, then a  
reduced-order sliding surface could be designed to reduce the complexity of the system. However, 
the controller may lead to complex dynamic and stability. The following sections will focus on 
the prediction and adjustment of the multiple oscillations in the reduced-order SM controller. 

3. Model of the SM control system in frequency domain 

The system can be divided into linear and nonlinear elements. The output of the linear element (ݐ)ߪ is the input to the nonlinear element, and the output of the nonlinear element (ݐ)ݑ is also the 
input to the linear element. The linear element is the composition of the plant ݔሶ = ݔܣ +  and ݑܤ
the sliding surface ߪ = .ݔܥ  Hence, the transfer function of the linear element is ܹ(ݏ) = ܫݏ)ܥ − ,ܤଵି(ܣ  which can also be written as the ration of two polynomials  ܹ(ݏ) = (ݏ)ܲ ⁄(ݏ)ܳ . 

To model the nonlinear element (ݐ)ݑ = [(ݐ)ߪ−]݂ , its DF should be calculated. Firstly, 
suppose that a sinusoidal signal −(ݐ)ߪ = ܣ) (ݐ߱)sinܣ > 0) is applied to the input of ܯ sign [−ߪ(݇ ܶ)], where ܣ and ߱  denote the amplitude and angular frequency (For simplicity, ߱  is 
called the frequency in this paper), respectively. And then, the waveforms of −(ݐ)ߪ and (ݐ)ݑ are 
plotted in Fig. 1. The signal −(ݐ)ߪ is the excitation of ܯ sign [−ߪ(݇ ܶ)] and (ݐ)ݑ is its response. 
Finally, the nonlinear element ݂[−(ݐ)ߪ] can be approximated as a describing function as shown 
in Eq. (2): 

,ܣ)ܰ ߱) = ܣ1 [ܾଵ(߱) + ݆ܽଵ(߱)], (2)

where ܽଵ(߱) and ܾଵ(߱) are fundamental harmonic Fourier Series which can be obtained by the 
integral in a period of (ݐ)ߪ: 

ܽଵ(߱) = ߨ1 න ଶగ[(ݐ߱)cos(ݐ)ݑ]
  (ݐ߱)݀

    = ߨ1  න ఠ[(ݐ߱)cosܯ−] భ்
 (ݐ߱)݀ + න గାఠ[(ݐ߱)cosܯ] మ்

ఠ భ் (ݐ߱)݀ + න ଶగ[(ݐ߱)cosܯ−]
గାఠ మ்  ,(ݐ߱)݀

ܾଵ(߱) = ߨ1 න ଶగ[(ݐ߱)sin(ݐ)ݑ]
  (ݐ߱)݀

      = ߨ1  න ఠ[(ݐ߱)sinܯ−] భ்
 (ݐ߱)݀ + න గାఠ[(ݐ߱)sinܯ] మ்

ఠ భ் (ݐ߱)݀ + න ଶగ[(ݐ߱)sinܯ−]
గାఠ మ்  .(ݐ߱)݀

According to the waveforms in Fig. 1, (ݐ)ݑ  lags behind −(ݐ)ߪ  with uncertain interval  
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Δ ଵܶ ∈ [0, ܶ]  and Δ ଶܶ ∈ [0, ܶ] . For simplicity, let Δ ଵܶ = Δ ଶܶ = ܶ  and thus the fundamental 
harmonic Fourier Series can be written as: 

ܽଵ(߱) = − ߨܯ4 sin(߱ ܶ),     ܾଵ(߱) = ߨܯ4 cos(߱ ܶ). (3)

Compared with the uncoupled nonlinearities ܰ(ܣ) which only depends on the amplitude,  
Eq. (2) is a more complex coupled nonlinearity ܰ(ܣ, ߱) which is closely related to the frequency 
and amplitude. Hence, it is difficult for the traditional DF method to estimate the periodic motion 
in the coupled nonlinearity. For a simpler analysis procedure, the following section will discuss 
an improved DF method. 

 
Fig. 1. Waveforms of the sinusoidal excitation and response 

4. Improved DF method 

To estimate the oscillation parameters, the system is presented as a basic feedback structure 
which consists of the nonlinear element ܰ(ܣ, ߱) described by Eq. (2) and the linear element as 
follows: 

(ݏ)ܹ = (ݏ)ܳ(ݏ)ܲ = ܾݏିଵ + ܾିଵݏିଶ + ⋯ + ܾଶݏ + ܾଵݏ + ܽݏିଵ + ⋯ + ܽଶݏ + ܽଵ , ݊ − ݉ ≥ 1. (4)

Assume that the sliding surface (ݐ)ߪ  moves on the oscillation with frequency ߱  and 
amplitude ܣ ; hence, (ݐ)ߪ = ݐsin(߱)ܣ , and the negative of (ݐ)ߪ  can be written as  −(ݐ)ߪ = ݐsin(߱ܣ −  After pass through the sampling term and switching function, the .(ߨ
signal (ݐ)ݑ is changed in both the magnitude and phase as follows: (ݐ)ݑ = ,ܣ)ܰ|ܣ ߱)|sin[߱ݐ − ߨ + ே(߱)], (5)ߠ

where |ܰ(ܣ, ߱)| and ߠே(߱) are the magnitude and phase angle of ܰ(ܣ, ߱), respectively. 
When (ݐ)ݑ goes through the linear plant ܹ(ݏ), it becomes: (ݐ)ߪ = ,ܣ)ܰ|ܣ ߱)||ܹ(݆߱)|sin[߱ݐ − ߨ + ே(߱)ߠ + ௐ(߱)], (6a)ߠ

where |ܹ(݆߱)| and ߠௐ(߱) are the magnitude and phase angle of ܹ(ݏ), respectively, at the 
frequency ߱. Substitute: 

,ܣ)ܰ| ߱)| = ே(߱)ߠ     ,ߨܣܯ4 = tgିଵ ቈܾଵ(߱)ܽଵ(߱) = −߱ ܶ, 

( ) sin( )t A t  

( )ekT
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into Eq. (6a), (ݐ)ߪ can be rewritten as: 

(ݐ)ߪ = ߨܯ4 |ܹ(݆߱)|sin[߱ݐ + ௐ(߱)ߠ − ܶ߱ − (6b) .[ߨ

Hence, the amplitude ܣ  and frequency ߱  can be estimated according the following 
equations: ߠௐ(߱) − ߱ ܶ = (−2݇ + ݇)     ,ߨ(1 = 1,2, … , ݊), (7a)ܣ = ߨܯ4 |ܹ(݆߱)|. (7b)

However, Eq. (7a) cannot be solved straightforward for a high-order plant. Therefore, the 
interative operations or function plot can be used to estimate ߱ . It proposes that the  
phase-frequency characteristic ߮(߱) = (߱)ௐߠ − ߱ ܶ  can be plotted in the frequency  0 ≤ ߱ ≤ ߨ ܶ⁄  to find the ߱ such that ߮(߱) = (−2݇ + ݇) ,ߨ(1 = 1,…, ݊). 

The analysis above is helpful for to determine the possible oscillations. However, the stability 
of the oscillations needs to be further determined. To analyze the stability of the system, the 
transfer function of the closed-loop system can be written as: 

Φ(ݏ) = ,ܣ)ܰ(ݏ)ܹ ߱)1 + ,ܣ)ܰ(ݏ)ܹ ߱). (8)

The characteristic equation (ݏ)ܦ = 1 + ,ܣ)ܰ(ݏ)ܹ ߱) = (ݏ)ܳ + ,ܣ)ܰ(ݏ)ܲ ߱) determines its 
stability. Replacing the term ݆ܣଵ by (ܣଵ ߱⁄ (ݏ)ܦ :can be represented as (ݏ)ܦ then ,ݏ( = (ݏ)ܳ + ,ܣ)ܰ(ݏ)ܲ ߱)      = ݏ + ܽݏିଵ + ⋯ + ܽଶݏ + ܽଵ + ܣ1 ଵܤ) + ିଵݏଵ)(ܿܣ݆ + ܿିଵݏିଶ + ⋯ + ܿଵ)      = ܽᇱ ݏ + ܽିଵᇱ ିଵݏ + ⋯ + ܽଵᇱ ݏ + ܽᇱ =  ܽᇱୀ ,ݏ  (9)

where ܽᇱ  is the function of ܣ and ߱ . According to the small amplitude perturbation analysis 
method, we get the following stability criterion. 

Criterion I: The closed-loop system has a stable oscillation with parameters ܣ and ߱ if 
there exists an arbitrarily small positive number ∆ܣ  such that the characteristic equation  (ݏ)ܦ = (ݏ)ܳ + ܣ)ܰ(ݏ)ܲ + ,ܣ∆ ߱)  is stable and (ݏ)ܦ = (ݏ)ܳ + ܣ)ܰ(ݏ)ܲ − ,ܣ∆ ߱)  is 
unstable; otherwise the oscillation is unstable. 

Based on the criterion, the stability of an oscillation can be predicted via the following two 
steps. 

Step 1: If there exists an arbitrarily small positive number ∆ܣ  such that all the roots of  (ݏ)ܦ = (ݏ)ܳ + ܣ)ܰ(ݏ)ܲ + ,ܣ∆ ߱) are in the left hand ݏ-plane (LHP) and any of the roots of (ݏ)ܦ = (ݏ)ܳ + ܣ)ܰ(ݏ)ܲ − ,ܣ∆ ߱) is in the RHP, then the oscillation (ܣ, ߱) is stable. 
Step 2: If there exists an arbitrarily small positive number ∆ܣ such that any of the roots of (ݏ)ܦ = (ݏ)ܳ + ܣ)ܰ(ݏ)ܲ + ,ܣ∆ ߱)  are in the RHP or all the roots of  (ݏ)ܦ = (ݏ)ܳ + ܣ)ܰ(ݏ)ܲ − ,ܣ∆ ߱) is in the LHP, then the oscillation (ܣ, ߱) is unstable. 
The improved DF method could intuitively predict multiple oscillations by the curve ߮(߱). It 

also gives us a guidance to adjust the oscillation amplitude and frequency by analyzing the 
variation of ߮(߱)  when coefficients are tuned. Compared with the method in [27, 28], the 
improved DF method is valid for the minimum and non-minimum phase system. In addition, the 
roots of (ݏ)ܦ can be calculated by the computer software. 
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5. Analysis of multiple oscillations 

The main task of this section is to evaluate the accuracy of the improved DF method and to 
demonstrate the behavior of multiple oscillations. Firstly, consider a fourth-order canonical form 
plant: 

൞ݔሶଵ = ሶଶݔ,ଶݔ = ሶଷݔ,ଷݔ = ሶସݔ,ସݔ = −ܽଵݔଵ − ܽଶݔଶ − ܽଷݔଷ − ܽସݔସ + (10) ,(ݐ)ݑ

where ܽଵ =  2, ܽଶ =  5, ܽଷ =  12, ܽସ =  7. Assume that high-order state-variable ݔସ  is 
immeasurable, hence, the sliding surface coefficient is designed as a reduced-order one  ܥ = [ܿଵ, ܿଶ, ܿଷ, ܿସ] = [4, 1, 0.5, 0], and the controller is set as ܶ = 10 ms and ܯ = 1. Hence, the 
transfer function of the linear element can be written as: 

(ݏ)ܹ = (ݏ)ܳ(ݏ)ܲ = ଶݏ0.5 + ݏ + ସݏ4 + ଷݏ7 + ଶݏ12 + ݏ5 + 2. (11)

According to Eq. (2) and (3), the describing function of the SM controller can be written as: 

,ܣ)ܰ ߱) = ߨܣ4 [cos(0.01߱) − ݆sin(0.01߱)]. (12)

Next, Eqs. (11) and (12) will be substituted into the improved DF method to estimate the 
periodic motions. 

5.1. Prediction of multiple oscillations 

In accordance with Eq. (7a), the oscillation frequency ߱ satisfies the following equation: 

tgିଵ ߱4 − 0.5߱ଶ + tgିଵ 7߱ଷ − 5߱߱ସ − 12߱ଶ + 2 − 0.01߱ = (−2݇ +  .ߨ(1
By plotting the phase-frequency characteristic: 

߮(߱) = tgିଵ ߱4 − 0.5߱ଶ + tgିଵ 7߱ଷ − 5߱߱ସ − 12߱ଶ + 2 − 0.01߱, (13)

As shown in Fig. 2, we can get ߱ directly according to the condition ߮(߱) = (−2݇ +  .ߨ(1
In Fig. 2, three oscillation frequencies are estimated as ߱ଵ = 1.06 rad/s, ߱ଶ = 2.54 rad/s and ߱ଷ = 22.12  rad/s. Hence, three oscillations may exist in the system. By substituting the 
frequencies ߱ଵ , ߱ଶ  and ߱ଷ  into Eq. (7b), the corresponding amplitudes are calculated as ܣଵ = ଶܣ ,10-1×4.30  =  3.14×10-2 and ܣଷ =  1.25×10-3. Finally, the stability of the three 
oscillations needs to be determined. The characteristic equation (ݏ)ܦ can be written as: (ݏ)ܦ = (ݏ)ܳ + ,ܣ)ܰ(ݏ)ܲ ߱)        = ସݏ + ܽସݏଷ + ܽଷݏଶ + ܽଶݏ + ܽଵ + ߨܣܯ4 (cos(߱ ܶ) − ݆sin(߱ ܶ))(ܿଷݏଶ + ܿଶݏ + ܿଵ)        = ܽସᇱ ସݏ + ܽଷᇱ ଷݏ + ܽଶᇱ ଶݏ + ܽଵᇱ ݏ + ܽᇱ . (14)

where: 
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ܽସᇱ = 1,      ܽଷᇱ = ܽସ − sin(߱ ܶ) ܿଷ߱ ,       ܽଶᇱܣߨܯ4 = ܽଷ − sin(߱ ܶ) ܿଶ߱ ܣߨܯ4 + cos(߱ ܶ)ܿଷ , ܽଵᇱܣߨܯ4 = ܽଶ − sin(߱ ܶ) ܿଵ߱ ܣߨܯ4 + cos(߱ ܶ)ܿଶ ܣߨܯ4 ,     ܽᇱ = ܽଵ + cos(߱ ܶ)ܿଵ  .ܣߨܯ4

 
Fig. 2. Diagram of ߮(߱) with three oscillations 

Table 1. Variation of the roots of polynomial (ݏ)ܦ with the small perturbation on oscillation amplitudes 
Oscillation Characteristic equations (ݏ)ܦ Root 1 Root 2 Root 3 Root 4 ߱ = ߱ଵ =  
1.06 rad/s ܣ = ଵܣ + ܣ∆ = 0.4343 

(ݏ)ܦ = ସݏ + ଶݏଷ +13.4365ݏ6.9853 +  13.7262+ ݏ7.8143

–3.4916 
+ j0.3393 

–3.4916  
– j0.3393 

–0.0010 
+ j1.0561 

–0.0010 
– j1.0561 ߱ = ߱ଵ =  

1.06 rad/s ܣ = ଵܣ − Δܣ = 
0.4257 

(ݏ)ܦ = ସݏ + ଶݏଷ +13.4655ݏ6.9850 +  13.9631+ ݏ7.8711

–3.4937 
+ j0.3811 

–3.4937 
– j0.3811 

0.0011 
+ j1.0633 

0.0011 
– j1.0633 ߱ = ߱ଶ =  

2.54 rad/s ܣ = ଶܣ + Δܣ = 
0.0317 

(ݏ)ܦ = ସݏ + ଶݏଷ +31.6659ݏ6.7993 +  162.5384+ ݏ43.5289

–3.4038 
+ j3.7029 

–3.4038 
- j3.7029 

0.0042 
+ j2.5348 

0.0042 
– j2.5348 ߱ = ߱ଶ =  

2.54 rad/s ܣ = ଶܣ − Δܣ = 
0.0311 

(ݏ)ܦ = ସݏ + ଶݏଷ +32.0632ݏ6.7952 +  165.7816+ ݏ44.3072

–3.3937 
+ j3.7409 

–3.3937 
– j3.7409 

–0.0039 
+ j2.5492 

–0.0039 
– j2.5492 ߱ = ߱ଷ = 22.12 rad/s ܣ = ଷܣ + Δܣ = 

0.0013 

(ݏ)ܦ = ସݏ + ଷݏ2 + ݏଶ +948.9ݏ494 + 3937.7 
–0.0229 

+ j22.0401 
–0.0229  

– j22.0401 
–0.9763 

+ j2.6745 
–0.9763 

– j2.6745 ߱ = ߱ଷ = 22.12 rad/s ܣ = ଷܣ − Δܣ = 
0.0012 

(ݏ)ܦ = ସݏ + ଶݏଷ +503.7ݏ1.9 +  4017.2+ ݏ968

0.0281 + 
j22.2644 

0.0281  
– j22.2644 

–0.9768 
+ j2.6739 

–0.9768 
– j2.6739 

For simplicity, ∆ܣ is considered as a hundredth of ܣ. By using the numerical software, the 
roots of six characteristic equations are listed in Table 1 in accordance with Step 1 and Step 2. 
Table 1 shows that oscillation 1 (ܣଵ, ߱ଵ) = (4.30×10-1, 1.06 rad/s) is stable because four roots 
are located in LHP when ܣ = ଵܣ + ܣ∆ , and root 3 and root 4 are located in RHP when  ܣ = ଵܣ − ,ଶܣ) It also shows that oscillation 2 .ܣ∆ ߱ଶ) = (3.14×10-2, 2.54 rad/s) is unstable 
because root 3 and root 4 are located in RHP when ܣ = ଶܣ + ܣ∆ . Similarly, oscillation 3 
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,ଷܣ) ߱ଷ) = (1.25×10-3, 22.12 rad/s) is stable. The improved DF method predicts that the system 
has two stable oscillations and one unstable oscillation. 

5.2. Simulation of multiple oscillations 

Simulation I is carried out to verify the three oscillations and their stability by using the 
numerical software. The state space in Eq. (10) is discretized by ܩ = ܫ + ܣ × ܶ and ܪ = ܤ × ܶ. 
The controller updates its output (ݐ)ݑ once in every ܶ. The limit cycles and frequency spectrums 
can be plotted by using the data (ݐ)ߪ in the steady-state process. The time series, phase portraits 
and frequency spectrums of ߪ  are plotted in Fig. 3(a), (b) and (c), in which the oscillation 
amplitudes and frequencies can be measured directly.  

 
a) 

 
b) 

 
c) 

 
d) 

Fig. 3. a) Three types of motions in time domain, b) the phase portraits of the steady state of three 
oscillations, c) spectrum analysis of the steady state of three oscillations, d) stability of oscillation 2 

Firstly, three sets of initial conditions (ݔଵ, ,ଶݔ ,ଷݔ (ସݔ ,ଵݔ)  ,(0,0 ,0.008 ,0.1) = ,ଶݔ ,ଷݔ (ସݔ ,ଵݔ) ,(0,0 ,0.008 ,0.01) = ,ଶݔ ,ଷݔ (ସݔ = (0.01, 0.006, 0,0) are selected to generate 
the three kinds of distinctly different motions in time domain (as shown in Fig. 3(a) and in phase 
plane ߪ − ሶߪ  (as shown in Fig. 3(b). After the transient processes, the three motions approach their 
respective periodic oscillations. The measured amplitudes of the three oscillations are  ܣଵ ଶܣ ,10-1×4.12 = = 3.18×10-2) and ܣଷ = 1.32×10-3. The frequency spectrum analysis is also 
made as shown in Fig. 3(c), by which we obtain spectrum components for each oscillation and 
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measure the frequencies of the three oscillations: ߱ଵ = 1.09 rad/s, ߱ଶ = 2.49 rad/s and  ߱ଷ = 21.09 rad/s. Figs. 3(a), (b) and (c) demonstrate that the system exists three oscillations and 
it convergences to which oscillation depends on the initial conditions. 

Next, the stability of the three oscillations needs to be verified. Obviously, oscillations 1 and 
3 are locally stable. But the stability of oscillation 2 is not clear according to the above simulations. 
Fig. 3(d) shows the stability of oscillation 2 when disturbance is applied to the controller. Affected 
by external disturbances, the system is driven to escape oscillation 2 and approaches to 
oscillation 1 or 3.  

Table 2. Comparison of parameters of multiple oscillations estimated  
by DF method with the results of simulation I 

Plant and sliding 
mode surface 
coefficients 

Oscillations Stability 
Amplitude ܣ  Frequency ߱ (rad/s) 

Theory 
predict 

Simulation 
I result 

Theory 
predict 

Simulation I 
result [ܽଵ , ܽଶ , ܽଷ , ܽସ ]  = 

[2, 5, 12, 7] [ܿଵ , ܿଶ , ܿଷ , ܿସ ] = 
[4, 1, 0.5, 0] 

1 Locally  
stable 4.30×10-1 4.12×10-1 1.06 1.09 

2 Unstable 3.14×10-2 3.18×10-2 2.54 2.49 

3 Locally  
stable 1.25×10-3 1.32×10-3 22.12 21.09 ܯ = 1; ܶ = 10 ms 

Hence, it shows that oscillation 2 is unstable. Finally, the estimated and simulated parameters 
of the three oscillations are listed in Table 2, and the theoretical results and the simulations are in 
good agreement. However, the errors between the theory predictions and simulations may mostly 
originate from the fundamental harmonic approximation of the DF method. In fact, the third and 
fifth harmonic which is approximately assumed to have been completely suppressed by the 
low-pass performance of ܹ(ݏ) may affect the phase angle of the closed loop. Hence, the accuracy 
of predictions depends on the intensity of residual high-order harmonics in (ݐ)ߪ. 

 
a) 

 
b) 

Fig. 4. a) Attraction zones for each oscillation in ݔଵ-ݔଶ plane,  
b) the relation between the attraction zones and the oscillation 1 and 3 

The simulation indicates that the system converges to which oscillation depends on the initial 
conditions located in which region. In another word, each stable limit cycle has its own attraction 
region. However, predicting the attraction basin is difficult. The attraction region in the fuzzy 
system was plotted using simulations [24]. For simplicity, we only consider the influence of two 
state-variables ݔଵ  and ݔଶ  on the dynamic of the system. Equally spaced initial conditions are 
picked in the region ܴ: ሼ−0.02 ≤ ଵݔ ≤ 0.02, −0.04 ≤ ଶݔ ≤ 0.04, ଷݔ = 0, ସݔ = 0ሽ , and the 
steady-state processes corresponding to each point are simulated. We classified the processes as 
oscillation 1 or 2 or 3 based on their spectrum components. Subsequently, the region R can be 
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divided into three attraction zones as shown in Fig. 4(a). The domain outside of the blue curve is 
the attraction zone of oscillation 1, and the domain in the blue curve is the attraction zone of 
oscillation 3. In addition, the attraction zone of oscillation 2 is very small which is represented as 
the only two red points. 

The phenomenon of multiple oscillations can be interpreted as the inconsistent stability of the 
system, which is the significant difference compared with the linear system. The equivalent gain 
of the switching function ܯ sign [−(ݐ)ߪ] can be regarded as ݇ = ܯ2 ⁄[20]ܣߨ . ݇  changes 
along with the oscillation amplitude. Suppose that the system starts from point A as shown in 
Fig. 4(b), then the system is unstable and its trajectory is called the unstable spiral. In the motion, 
the gain ݇ continues to reduce when ܣ is less than ܣଵ until ܣ equals ܣଵ. Similarly, when the 
system starts from point B as shown in Fig. 4(b), then the gain ݇ continues to increase when  ܣ >  ଷ until it converges to oscillation 3. Hence, the blue curve in Fig. 4(b) is similar with theܣ
watershed. 

6. Elimination of undesired oscillation 

According to the analysis above, the system may switch between oscillations 1 and 3 with the 
variation of external conditions. We hope to eliminate oscillation 1 due to its small equivalent gain 
which may lead to poor precision and weak robustness. Furthermore, the system could become 
the globally stable one if oscillation 1 can be eliminated. 

6.1. Coefficient tuning method 

The fact that ߮(߱) crosses the line ߮ =  (߱)߮ .three times leads to multiple oscillations ߨ−
can be rewritten as: 

߮(߱) = ∠ܲ(݆߱) + ∠ 1ܳ(݆߱) + ,ܣ)ܰ∠ ߱), (15)

where: 

∠ܲ(݆߱) = tgିଵ ቆܿଶ߱ − ܿସ߱ଷܿଵ − ܿଷ߱ଶ ቇ ,     ∠ 1ܳ(݆߱) = tgିଵ ܽସ߱ଷ − ܽଶ߱߱ସ − ܽଷ߱ଶ + ܽଵ ,ܣ)ܰ∠     , ߱) = ߱ ܶ. 
Assuming that the plant (as shown in Eq. (10) and sampling period are invariant, tuning the 

sliding surface is a feasible method to eliminate the undesired oscillation. In the following, we 
will discuss the influence of the sliding surface on ߮(߱), and eliminate oscillation 1 by tuning the 
coefficients ܥ = [ܿଵ, ܿଶ, ܿଷ, ܿସ] . As shown in Fig. 2, if the minimum value of ߮(߱)  in the 
low-frequency band can be increased to more than – ߨ , then there is only one intersection 
corresponding to oscillation 3. Increasing ܿଷ or ܿଶ, or decreasing ܿଵ or ܿସ will make ߮(߱) rise 
faster in the low-frequency band. Hence, such tuning method could achieve the purpose. For 
simplicity, we only consider ܿଷ as an adjustable coefficient and also set ܿଵ = 4, ܿଶ = 1, ܿସ = 0, ܽଵ = 2, ܽଶ = 5, ܽଷ = 12, ܽସ = 7 and ܶ = 10 ms. 

As shown in Fig. 5, the minimum value of ߮(߱) in the low-frequency band increases with the 
variation of ܿଷ from 0.5 to 2. When ܿଷ = 0.5 and ܿଷ = 0.8, there exists three intersections between ߮(߱) and the straight line ߮ =– When ܿଷ .ߨ ≥ 1.1, there remains only one intersection in the 
high-frequency band, and the system becomes a globally stable one. Table 3 also shows the 
relation among the parameters of oscillations, coefficient ܿଷ and zero placement. It is found that 
oscillation 1 is eliminated and there is little variation in the frequency of oscillation 3 when ܿଷ 
increases.  

From the perspective of the phase-frequency characteristic of the sliding surface, we find the 
relations between ∠ܲ(݆߱) and the number of oscillations. According to the zero placement, the 
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damping coefficient is increased and the natural frequency is reduced with the increase of ܿଷ. 
Hence, ∠ܲ(݆߱) could provide greater increase rate for ߮(߱) at the lower frequency band with the 
increase of ܿଷ . Therefore, ߮(߱)  can be uplifted in the low-frequency band. The undesired 
oscillation 1 can be eliminated when the minimum value of ߮(߱) is greater than –  .ߨ

 
Fig. 5. Variation of curves ߮(߱) with ܿଷ 

Table 3. The relation among the coefficient c3, parameters of oscillations and zero placement ܿଷ ߱ଵ (rad/s) ܣଵ ߱ଷ (rad/s) ܣଷ zero placement 
0.5 1.06 4.30×10-1 22.12 1.25×10-3 –1.0000 ± j2.6458 
0.8 1.11 3.45×10-1 23.80 1.70×10-3 –0.6250 ± j2.1469 
1.1 – – 24.52 2.30×10-3 –0.4545 ± j1.8520 
1.4 – – 24.88 2.80×10-3 –0.3571 ± j1.6521 
1.7 – – 25.20 3.30×10-3 –0.2941 ± j1.5055 
2.0 – – 25.36 3.90×10-3 –0.2500 ± j1.3919 

6.2. Verification for tuning method 

Simulation II is carried out to verify the stability of the tuned system when the initial condition 
is set as (ݔଵ, ,ଶݔ ,ଷݔ (ସݔ = (0.1, 0.7, 0, 0) and ܿଷ is set as a number of different values. Fig. 6 shows 
the system responses in time series when ܿଷ equals to 0.5, 0.8, 1.1, 1.4, 1.7, 2.0, 3.0 and 5.0. When ܿଷ = 0.5 and ܿଷ = 0.8, the system convergences to oscillation 1 which is a large and slow periodic 
motion. When ܿଷ ≥ 1.1, the system convergences to oscillation 3 since oscillation 1 has been 
eliminated, and oscillation 3 becomes a globally stable oscillation. 

 
a) 

 
b) 

Fig. 6. a) System responses when ܿଷ equals 0.5, 0.8, 1.1 and 1.4,  
b) system responses when ܿଷ equals 1.7, 2.0, 3.0 and 5.0 
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In addition, the comparison of these responses in Fig. 6 shows that sufficient large ܿଷ can also 
improve system performances in overshoot and settling time. The results of the two performances 
are given in Table 4. 

Table 4. Overshoot and settling time ܿଷ 1.1 1.4 1.7 2.0 3.0 5.0 
Overshoot 3.935 3.830 3.725 3.622 3.284 2.649 

Settling time (s) 42.1 29.73 24.69 22.01 18.91 16.58 

7. Conclusions 

This paper has presented a frequency-domain approach to analyze the stability, oscillation 
frequency and amplitude, and attraction zone of the reduced-order SM system by using an 
improved DF method. The method allows for the predictions of oscillation parameters in the 
coupled nonlinearities. The stability of oscillations can be determined by the pole placement; 
hence, the method is suitable for the minimum and non-minimum phase system. The analysis 
focuses on the multiple oscillations in a fourth-order system in which there exists one unstable 
and two locally stable oscillations. More specifically, the reduced-order SM controller and 
zero-order holder are the major cause of multiple periodic motions. Here, it should be pointed out 
that the system converges to which oscillations depends on the location of its initial condition, and 
a method to eliminate the undesirable oscillation by tuning coefficients is presented. The 
simulations in time domain support the prediction of multiple oscillations and their parameters. 
Although the inaccuracy of the estimation of oscillations cannot be neglected due to the inherent 
approximation of the DF approach, this study provides guidance for the design of the SM system. 
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