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Abstract. This paper reports on the improvement of Craig-Bampton (CB) method for transient 
analysis of structures with large-scale plastic deformation. As is known, the CB method is 
effective and accurate in reduced order modeling for linear system. In contrast to this, an improved 
CB method using tangent modes for nonlinear dynamic analysis has been developed. To do this, 
the incremental governing equations of nonlinear system are linearized in each time step by using 
tangent stiffness matrix, and the corresponding tangent modes are proved to be orthogonal with 
respect to mass matrix as well as with respect to tangent stiffness matrix by incorporating the 
elastic-plastic material behavior. Thus, the tangent modes can be used to assemble the 
transformation matrix of CB method in nonlinear dynamic analysis. Using the proposed method, 
two elastic-plastic beams loaded impulsively are examined. Simulation results show that the 
improved CB method is valid and accurate for transient analysis of structures with large-scale 
plastic deformation and has lower computational cost compared with full order model. 
Keywords: Craig-Bampton method, component mode synthesis, plastic deformation, transient 
response, reduction method. 

1. Introduction 

The elastic-plastic dynamic analysis of structure is typically performed using finite element 
method (FEM), and has been remarked as a complicated and time-consuming work [1]. Because 
the plastic deformation is path dependent, the external load must be applied onto structure 
incrementally during the analysis and the time step size should be small enough to ensure the 
accuracy and reliability of solution. If plastic deformation occurs during the time step, further 
iterations are required to obtain convergent results. For large or complex structure, the 
computational cost of elastic-plastic dynamic analysis is substantially high. In order to mitigate 
this problem, model order reduction technique is performed [2-3]. 

Modal superposition is a classical method to reduce the model order for liner system. It can 
offer fairly accurate solution when only a few modes are considered. The first application of modal 
superposition method into nonlinear system is most probably from Nickell [4] in 1970s. 
Subsequently, the modal superposition method has been applied for various nonlinear problems. 
In the literatures, there are basically two strategies to apply this method into nonlinear problems 
[5-7]. In the first one, the governing equations of nonlinear problem are written in an incremental 
form, and are linearized over small time interval by using a tangent stiffness matrix. The 
eigenvalues and eigenvectors of the nonlinear system are updated at every time step. The works 
employed this method were proposed by Nickell [4], Morris [8] and Mohraz et al. [9], as well as 
some local nonlinear and entire nonlinear examples are examined to demonstrate the validity and 
accuracy of the proposed procedure.  

In the second strategy, the nonlinearities of system are approximated as an internal excited 
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load, which is placed on the right-hand side of the governing equations. This technique is the 
so-called pseudo-force method. Thus, the eigenvalues and eigenvectors of the initial state (elastic 
state) of structure are used throughout the entire analysis. Some nonlinear analyses with such 
approach were studied and introduced by Bathe [10], Kukreti [11], Muscolino [12], Villaverde 
[13], and Manoach et al. [14, 15].  

In general, the first strategy of applying modal superposition method is accurate, but requires 
a large computational effort for solving the instantaneous eigenvalue problem in each time step, 
and the efficiency of this method is questionable in practical analysis, especially for large 
problems. The advantage of the second approach is that the method avoids the recalculation of the 
eigenvalue problem in each time step and can be computationally more efficient than a direct 
integration method. However, this approach is probably best employed in the analysis of only 
slightly nonlinear systems or systems with only local nonlinearities [6, 7, 10].  

Another commonly used reduction method in linear system is component mode synthesis 
(CMS) technique, which is originally developed for modal analysis of large or complex structure. 
With this method, first the entire structure is partitioned into a number of substructures, a set of 
structure modes (e.g. exact eigenmodes, static modes, interface modes, etc.) called component 
modes were set up to represent the motion of substructures. These component modes then were 
assembled to get a reduced space. Finally, the entire system is reduced by projecting the governing 
equations into the reduced modal coordinate space.  

In 1960s, Hurty [16] first proposed the CMS technique. In his idea, three types of component 
modes were used: rigid body modes, constraint or attachment modes, and fixed-interface normal 
modes. Craig and Bampton [17], subsequently proved that it was not necessary to separate the 
constraint modes and rigid body modes, and suggested using only constraint modes and 
fixed-interface normal modes to generate the reduced modal space. The proposed method is 
referred as Craig-Bampton (CB) method. After that, various CMS methods have been developed 
[18-22]. However, the CB method is still the most popular and widely used CMS method in 
structural dynamics because of its simplicity and reliability. Some reviews of CMS method can 
be found in [23-25]. 

Although, the CB method has been widely used in structural dynamics, the applications for 
nonlinear system can be cited here are only a small number, and the literatures are mainly 
concentrated on local nonlinear or weak nonlinear problems. As nonlinear systems do not obey 
the principle of superposition, the applications of CB method in nonlinear system require certain 
techniques.  

The solutions of contact impact problems with CB method were firstly presented by Wu and 
Haug [26]. They avoided the contact nonlinearities by using constrain addition-deletion technique. 
The contact force is addressed as internal force of system. And more deep studies about contact 
impact problem then were developed [27-29] with this idea, including the elastic stress wave 
propagation, “succession collisions”, and dispersion of stress waves in rod.  

In many dynamic problems, the nonlinearity can be limited in a few regions of structure 
whereas the rest of structure remains linear. For this type of problems, the CB method is typically 
applied in conjunction with substructure technique. The entire structure is first partitioned into 
linear component and the other component with nonlinearity, then the linear component is 
modeled using CB method while the other component is modeled using physical coordinate, these 
components are finally coupled to dominate the motion of entire structure. This idea has been 
applied for some practical problems [30-32]. 

If the nature of nonlinearity in systems is weak, it is possible to approximate the nonlinear 
function by a simpler form, generally a combination of some linear functions. With the help of 
this idea, the CB method can be applied to certain weak nonlinear problems. Kuether and Allen 
[33] have calculated the response of a geometrical nonlinear beam with CB method. The 
nonlinearities are modeled using polynomials in modal coordinate and a series of unite static 
forces was applied to the full order model to interpolate the coefficients of the polynomial. Bond 
and Khraishi [34] have proposed an iterative algorithm to approximate the nonlinear material 
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effect as an internal modal force which is placed on the right hand side of governing equations, 
and used CB method in conjunction with rigid body solution to extend the useful range of rigid 
body design tools.  

Here, we focus on the reduction of transient analysis of structure with large-scale plastic 
deformation. Which is a strong nonlinear dynamic problem, do not obey the principle of 
superposition, it is not possible to use the original CB method. In order to overcome this difficult, 
we learn from Nickell’s idea, which was originally proposed to explore the use of mode 
superposition method for nonlinear problems [4]. That is, the forced motion of nonlinear system 
over a small time interval can be represented with the nonlinear (tangent stiffness) frequency 
spectrum. With the help of this idea, the nonlinear frequency spectrum is used to generate the 
reduced modal space, and the original CB method is improved to be able to reduce the transient 
analysis of structure with large-scale plastic deformation.  

The process of this work can be summarized as follows: First, the incremental governing 
equations of elastic-plastic dynamic problem are linearized over a small time interval by using 
tangent stiffness matrix. The tangent modes of structure based on the nonlinear state at the 
beginning of the time interval are then proved to be able to control the forced motion of structure, 
by incorporating the elastic-plastic material behavior. Finally, the reduced modal space of CB 
method is constructed with the tangent modes of substructures.  

In the next section, the incremental governing equations of elastic-plastic dynamic problem 
and corresponding solution procedure are described. Following that, the formulations of improved 
CB method are presented, including the discussion of orthogonality of tangent modes for nonlinear 
system, basic procedure of the proposed method and some tips to improve the efficiency. Then, 
some numerical examples are provided to demonstrate the performance of the proposed method 
in accuracy, validity and efficiency. At the last, the paper is concluded.  

2. Equations of elastic-plastic dynamic problem 

Considering the small strain and deformation type of a motion of an elastic-plastic finite body Ω , by use of the nonlinear finite element theory, the governing equations for the general 
elastic-plastic structure during a small time interval (ݐ ∼ ݐ + Δݐ) can be expressed as [1]: ۻΔܝሷ + ۹௧Δܝ = ௧ା௧۾ − ൫ܝۻሷ ௧ + ൯(௧ܝ)۴ = Δ(1) ,ۿ

where ۻ is the constant, symmetric, positive-definite mass matrix. ۹௧  is the tangent stiffness 
matrix at time ݐ, is dependent on the nonlinear constitutive relation of material. ۾௧ା௧ is the excited 
force vector at time ݐ + Δ۴ .ݐ(ܝ௧) is the resisting force vector of structure at time ݐ, depends on 
the displacement field. The ܝሷ ௧,  ܝ௧,  Δܝሷ  and Δܝ  are the nodal acceleration vector, nodal 
displacement vector, nodal increment acceleration vector and nodal increment displacement 
vector, respectively. This equations, are the completely incremental form for elastic-plastic 
dynamic problem, and use the “residual force correction” [4]. The damping can be included in 
Eq. (1), but is not relevant to the following discussion, so it is neglected. 

The matrices in Eq. (1) are the sums of the corresponding quantities of every element, and are 
expressed as: 

ۻ =  ۵ఁ ۵ܕ =  ۵ఁ ቆන  ݒ݀ۼߩఁۼ
 ቇ, (2)

۹௧ =  ۵ఁ ௧۵ܓ =  ۵ఁ ቆන ۰ఁ۲(ݐ)ݒ۰݀ 
 ቇ ۵, (3)

௧۾ =  ۵ఁ ௧۵ܘ =  ۵ఁ ቆන  ݒ݀܂ఁۼ
ௌ ቇ , (4)
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where ܸ and ܵ denote the volume and surface of element, respectively. ۵ is a Boolean matrix 
that represents the transformation from the element coordinate to the physical coordinate. ۼ is the 
matrix of shape function of element, ۰ is strain-displacement matrix of element. ߩ is the mass 
density, ۲(ݐ) is the elastic-plastic matrix of material and ܂ is the boundary surface traction 
vector of an element. The elastic-plastic matrix ۲(ݐ) has explicit description in terms of yield 
function and hardening model, which can be found for more details elsewhere in [1].  

The Eq. (1) is usually solved by a step-by-step time integration method, and iterations are 
needed in the time step once the plastic deformation occurs. There are two basic iterative 
techniques for determining the plastic deformation in the iterations, which are the NR 
(Newton-Raphson) and MNR (Modified Newton Raphson) method. Here, we employed the 
Newmark-ߚ method in conjunction with MNR iterative technique for solving Eq. (1). By doing 
so, the Eq. (1) is linearized between time steps. The tangent stiffness matrix of structure at the 
beginning of each time step is used and kept unchanged in a time interval. The Newmark-ߚ 
method has some assumptions on velocity and displacement, which are: ܝሶ ௧ା௧ = ሶܝ ௧ + [(1 − ሷܝ(ߙ ௧ + ሷܝߙ ௧ା௧]Δܝ(5) ,ݐ௧ା௧ = ௧ܝ + ሶܝ ௧Δݐ + (1 2⁄ − ሷܝ(ߚ ௧Δݐଶ + ሷܝߚ ௧ା௧Δݐଶ, (6)

where ߙ  and ߚ  are integration parameter. Considering the relation of Δܝሷ = ሷܝ ௧ା௧ − ሷܝ ௧,  Δܝሶ = ሶܝ ௧ା௧ − ሶܝ ௧, Δܝ = ௧ା௧ܝ −  :௧ା௧, this yieldsܝ

Δܝሷ = ΔߚܝΔݐଶ − ሶܝ ௧ߚΔݐ − ሷܝ ௧2(7) ,ߚΔܝሶ = ሷܝ ௧Δݐ + ݐΔߚܝΔߙ − ሶܝߙ ௧ߚ − ሷܝݐΔߙ ௧2ߚ . (8)

Using Eq. (7-8) into Eq. (1), the corresponding effective static equilibrium equation of the 
nonlinear system is given by: (ۻ ⁄ଶݐΔߚ + ۹௧)Δܝ = ௧ା௧۾ − ൫ܝۻሷ ௧ + ൯(௧ܝ)۴ + ሶܝۻ ௧ߚΔݐ + ሷܝۻ ௧2ߚ . (9)

For a simple description of Eq. (9): ۹ ௧Δܝ = Δۿ , (10)

where ۹ ௧ denotes the effective stiffness matrix, Δۿ  stands for the effective force.  
In MNR procedure, the iterations are governed by: ۹ ௧Δܝ = Δۿିଵ , (11)Δۿିଵ = ௧ା௧۾ − ൭ܝۻሷ ௧ା௧ିଵ +  න ۰ఁો௧ା௧ିଵ  ݒ݀

 ൱ + ሶܝۻ ௧ߚΔݐ + ሷܝۻ ௧2ߚ . (12)

The iterations start from: ܝ௧ା௧ = ሶܝ ,௧ܝ ௧ା௧ = ሶܝ ௧, ܝሷ ௧ା௧ = ሷܝ ௧, ો௧ା௧ = ો௧, and are needed 
until a predefined convergence criterion is achieved. There are many options in convergence 
checks that are based on the change in displacement, velocity, acceleration, or force. After the 
convergent incremental displacements are determined, the state variables can be updated as 
follows: ܝ௧ା௧ = ௧ܝ + Δܝ ,ܝሶ ௧ା௧ = ሶܝ ௧ + Δܝሶ ሷܝ , ௧ା௧ = ሷܝ ௧ + Δܝሷ .  

For solution of Eq. (1), the tangent stiffness matrix is calculated on the basis of the known 
nonlinear state at the beginning of a time interval (ݐ ∼ ݐ + Δݐ) and the incremental displacements 
are computed with many iterations. In order to reduce the computational effort of the analysis, we 
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consider using C-B method. 

3. Formulations of improved C-B method for elastic-plastic dynamic problem 

The C-B method is a modal-based reduction technique for linear system. Its essence is to 
generate a transformation matrix to reduce the size of original system. By partitioning the original 
system into several fixed-interface substructures, the lower normal modes and constrain modes of 
substructures are assembled to generate the transformation matrix, and then the equations of 
original system are projected into a reduced space obtained by transformation matrix. During this 
process, all the mode shapes used are actual modes of substructure, and the normal modes are 
orthogonal with respect to mass matrix as well as with respect to stiffness matrix of substructure.  

By using MNR iterative procedure, the governing equations expressed in Eq. (1) can be 
linearized during a time interval (ݐ ∼ ݐ + Δݐ), it seems involuntary to apply C-B method for 
elastic-plastic dynamic problem, directly. In actual, there is a fundamental issue for the application. 
The mode shapes deduced form Eq. (1) are not actual modes of structure, they are pseudo and be 
termed as tangent modes. Although, they are considered to be able to express small forced motion 
of nonlinear system [4]. The application means to utilize the pseudo modes to make reduction for 
elastic-plastic problem. To this end, it is necessary to deeply understand the property of tangent 
modes (e.g. orthogonality and linear independence) for elastic-plastic problem, and demonstrate 
the feasibility of application from mathematic view. 

3.1. Tangent modes and actual modes of structure with plastic deformation 

We will first distinguish the tangent modes and actual modes of structure with plastic 
deformation. The Eq. (1) dominates the motion of structure with plastic deformation in a small 
time interval (ݐ ∼ ݐ + Δݐ). It also constitutes a free vibration problem as the load is zero. The 
solution of the free vibration can be taken in the usual form: ܠ = ത ݁ఠ௧, (13)ܠ

where ݅ = √−1 is the imaginary unit, ߱  is a real number and ܠത  represents the amplitudes of 
generalized displacement. The substitution of Eq. (13) into the free vibration yields an eigenvalue 
problem: (۹௧ − (ۻଶݓ = Φ, (14)

where ݓଶ is eigenvalues and Φ  is the corresponding eigenvectors, they are termed as tangent 
(instantaneous) modes. Otherwise, the actual modes of structure with plastic deformation are 
identical to the frequency spectrum of an elastic structure, which is obtained by completely 
unloading the structure at time ݐ. A clearer explanation is shown in Fig. 1. The tangent modes are 
completely dependent on the state of nonlinear system at time ݐ (as point D), and actual modes 
are dependent only on the irreversible deformation (as point B).  

 
Fig. 1. The difference of tangent modes and actual modes of structure with plastic deformation 
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3.2. Properties of tangent modes for elastic-plastic dynamic problem 

In this section, we will further discuss the property of tangent modes by incorporating the 
elastic-plastic material behavior. As was noted in Eq. (1), ۻ is real symmetric and positive definite 
for elastic-plastic dynamic problem, the solutions of tangent eigenvalue problem in Eq. (14) are 
sensitive to ۹௧ from matrix-algebra theory. Generally, the eigenvalue problem of elastic-plastic 
system can be classified into two conditions. The first, elastic loading or unloading condition, the 
eigenvalue problem is identical with linear system. Secondly, plastic loading condition, the system 
performs nonlinear behavior and the solution of eigenvalue problem is controlled by tangent 
stiffness matrix ۹௧. According to Eq. (3), ۹௧ is completely dependent on the elastic-plastic matrix ۲(ݐ), which is a function of plastic law and plastic deformation.  

The expression of ۲(ݐ) can be given explicitly in terms of yield function, hardening model 
and plastic flow rules. In this paper, the study is subjected to the scope of classical plasticity theory. 
The plastic deformation is volume incompressible, irreversible, and independent of loading rate. 
We utilize Von Mises yield function to determine whether the plastic deformation is occurring 
and Prandtl-Reuss rule to restrict the flow of plastic deformation. The plastic potential function of 
the material will be same as subsequent yield function, is known as associative plasticity. The 
subsequent yield function of material is obtained by adopting the isotropic hardening assumption. 
Thus, the elastic-plastic matrix of material is defined as [1]: 

(ݐ)۲݁ = ۲݁ − ۲݁ ൬ ߲݂߲ો(ݐ)൰ ൬ ߲݂߲ો(ݐ)൰ߒ ۲݁൬ ߲݂߲ો(ݐ)൰ߒ ۲݁ ൬ ߲݂߲ો(ݐ)൰ + ܥ = ۲݁ − ܪ1 (15) ,۲݁ߒ(ݐ)܁(ݐ)܁۲݁

where ۲ denotes the elastic matrix of material, and is real symmetric. ݂ and ો(ݐ) are the yield 
function of material and component of stress vector, respectively. (ݐ)܁ is defined as the deviatoric 
stress vector. ܥ  stands for the hardening modulus of the material as a result of the plastic 
deformation. Herein, it defines an isotropic hardening modulus. For ideal plastic material, ܥ is 
equal to zero. ܪ is a scalar term.  

The elastic matrix ۲ is real symmetric, the ۲(ݐ)܁(ݐ)܁ఁ۲ and ۲(ݐ) are real symmetric, 
correspondingly. We use ۲(ݐ) into Eq. (3) and can be proved that the ۹௧ is also a real symmetric 
matrix: 

۹௧் =  ۵ఁ ቆන ۰ఁ۲(ݐ)ݒ۰݀ 
 ቇ ۵൩ఁ =  ۵ఁ ቆන ۰ఁ۲(ݐ)ఁ۰݀ݒ 

 ቇ ۵ = ۹௧. (16)

When the structure is upon plastic loading, the following conditions will hold true for any point 
within the structure: 

• For hardening material: ݀ߪ(ݐ)݀ߝ(ݐ) > 0, (17)

• For ideal plastic material: ݀ߪ(ݐ)݀ߝ(ݐ) = 0. (18)

We consolidate the two formulas and make a simple presentation with matrix form. Let: ݀ો(ݐ)ఁ݀ઽ(ݐ) ≥ 0. (19)
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According to plastic theory, ݀ો(ݐ) = ۲(ݐ)݀ઽ(ݐ), the Eq. (19) can be rewritten as: ݀ો(ݐ)ఁ݀ઽ(ݐ) = ݀ઽ(ݐ)ఁ۲(ݐ)݀ઽ(ݐ) ≥ 0. (20)

In an element, the strain increment of any point can be calculated from ݀ઽ(ݐ) =  this ,(ݐ)ܝ۰݀
yields: ݀ો(ݐ)ఁ݀ઽ(ݐ) = ݀ઽ(ݐ)ఁ۲(ݐ)݀ઽ(ݐ) = ൫݀ܝ(ݐ)൯ఁ۰ఁ۲(ݐ)ܝ۰݀(ݐ) ≥ 0, (21)

where ݀ܝ(ݐ) is a vector containing the incremental displacements of all DOFs in an element. We 
integrate Eq. (21) in the region of an element: 

න ݀ો(ݐ)݀ߒઽ(ݐ)݀ݒ 
ܸ݁ = ൫݀(ݐ)݁ܝ൯ߒ ቆන  ݒ۰݀(ݐ)۲݁ߒ۰

ܸ݁ ቇ =        (ݐ)݁ܝ݀ ൫݀ܝ(ݐ)൯ఁܓ௧݀ܝ(ݐ) ≥ 0. (22)

And assemble all elements within the structure. The result will take the form: 

 ቆන ݀ો(ݐ)݀ߒઽ(ݐ)݀ݒ 
ܸ݁ ቇ 

݁ = [݀ݐ݁ܓ۵ܶܶ(ݐ)ܝ  [(ݐ)ܝ۵݀
݁        = ((ݐ)ܝ۵݀)ݐ۹ܶ((ݐ)ܝ۵݀) ≥ 0, (23)

where ݀(ݐ)ܝ is the displacement increment vector of structure. Considering the arbitrariness of 
vector ݀(ݐ)ܝ, the ۹ݐ is proved to be semi-positive.  

From matrix-algebra theory, it is easy known that all roots of Eq. (14) are real and  
non-negative, the corresponding eigenvectors (tangent modes vectors) hold linear independent. 
More importantly, these eigenvectors can be proved to be orthogonal with respect to mass matrix 
as well as with respect to the tangent stiffness matrix. Using this property, the incremental 
governing equations can be decoupled.  

3.3. Procedure of the improved CB method 

Referencing the application of CB method in linear system, the basic procedure of improved 
CB method for elastic-plastic dynamic problem can be summarized in Fig. 2. 

 
a) 

 
b) 

 
c) 

 
d) 

Fig. 2. The basic procedure of C-B method for elastic-plastic dynamic problem: a) full discretized model, 
b) substructures Ω݅ = 1,2, … , ௦ܰ (, where ௦ܰ stands for the number of substructures) and boundary Γ,  

c) fixed interface boundary treatment, d) reduced order model  

3.3.1. Modal analysis of substructure 

The original structure (discretized model) is first partitioned into ௦ܰ substructures, which are 
connected with fixed interface at the boundary (Γ) between each other. On the basis of Eq. (1), the 
un-damped incremental governing equations of an elastic-plastic substructure during the time 
interval (ݐ~ݐ + Δݐ) can be written in the partitioned form: 
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൬ݏ݅݅ܕ ݏܾ݅ܕݏܾ݅ܕ ݏܾܾܕ ൰ ൬Δܝሷ ሷܝΔݏ݅ ݏܾ ൰ + ቆ(ݏܜܓ)݅݅ ܾ݅(ݏݐܓ)ܾ݅(ݏݐܓ) ቇܾܾ(ݏݐܓ) ൬Δݏ݅ܝΔݏܾܝ ൰ = ൬ 0Δݏܾܙ ൰, (24)

where the subscript ݅ indicates the interior degrees of freedom (DOF), the subscript ܾ indicates 
the boundary DOF. The superscript s denotes the serial number of the substructure. 

The CB method uses two sets of substructure modes to generate transformation matrix. The 
two sets are named as the fixed-interface normal modes Φ௦ ∈ ℝ×  and constrain modes  Ψ௦ ∈ ℝ×ೕ (where ݊ and ݊ stand for the number of interior DOFs and the number of boundary 
DOFs). The fixed-interface normal modes are defined as the free vibration modes of the 
constrained substructure, whose interfacial DOFs are set to have zero displacement, i.e., Δܝ௦ = . 
In Eq. (24), this leads to a tangent eigenvalue problem of substructure: ൫(ݏݐܓ)݅݅ − ݏ݅݅ܕ2݆ݓ ൯ૐ݆ݏ = , ݆ = 1,2 … ݊݅. (25)

The constraint modes are the static deflections of substructure which are obtained by imposing 
successive unit displacement at each boundary DOF: Ψݏ = (26) .ܾ݅(ݏݐܓ)1−݅݅(ݏݐܓ)−

So, the displacement vector Δܝ ௦ can be projected into a new space defined by Φ௦ and Ψ௦: 

Δܝ ௦ = ൬Δܝ௦Δܝ௦ ൰ = ቀΦ௦ Ψ௦ ۷ ቁ ൬Δ܉௦Δܝ௦ ൰. (27)

We partition Φ௦ into dominate modes Φௗ௦  and high order modes Φ௦ . In order to reduce the 
size of governing equations, the high normal modes will be neglected in Eq. (27). Then, the 
physical displacement vector Δܝ ௦ is approximated by the dominated modes: 

Δܝ ௦ = ቀΦௗ௦ Φ௦ Ψ௦  ۷ ቁ ቌΔ܉ௗ௦Δ܉௦Δܝ௦ ቍ ≅ ቀΦௗ௦ Ψ௦ ۷ ቁ ൬Δ܉ௗ௦Δܝ௦ ൰ = ௦܂ Δ܉ ௦. (28)

This is the transformation of displacement vector from physical coordinate to modal  
coordinate. The vector Δ܉ ௦ is denoted as the modal displacement, its number equals to ݇ + ݊ (݇ ≪ ݊), where ݇ is the number of retained fixed-interface normal modes.  

Using ܂௦  in Eq. (24) and left multiplying ܂௦  on the two sides of the equations, the reduced 
governing equations of substructure s can be cast in a modal space: 

൬ ۷ௗ௦ ഥܕ ௗ௦ܕഥ ௗ௦ ഥܕ ௦ ൰ ൬Δ܉ሷ ௗ௦Δܝሷ ௦ ൰ + ൬(Λ௧௦)ௗ  ൰(௧௦ܓ̅) ൬Δ܉ௗ௦Δܝ௦ ൰ = ௦܂) )் ൬ 0Δq௦ ൰, (29)

where ۷ௗ௦ ∈ ℝ× is an identity matrix, (Λ௧௦)ௗ ∈ ℝ× is a diagonal matrix, if Φௗ௦  is normalized. 
The coupling item ܕഥ ௗ௦ = (Φௗ௦ ௦ܕ்( Ψ௦ + (Φௗ௦ ௦ܕ்( .  

3.3.2. Assembling equations for whole system 

Finally, all the substructures are assembled to form the full system expressed by modal 
coordinates. The process of assembling is similar to finite element analysis. With the consideration 
of displacement compatibility and force equilibrium of the interface DOFs at the conjunction 
region of substructures, and eliminating repeated interfacial DOFs, the dynamic equilibrium 
equations of full system can be expressed as follows: 
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ഥۻ Δ܉ሷ + ۹ഥ ௧Δ܉ = ୲ା୲۾ − ൫ܝۻሷ ௧ + ൯(௧ܝ)۴ = Φ்Δۿ = Δۿഥ, (30)

where Φ  is the transformation matrix of full system assembled from all substructures. The  ۻഥ = Φ்MΦ, ۹ഥ ௧ = Φ்۹௧Φ and Δۿഥ are modal mass matrix, modal tangent stiffness matrix and 
modal external force vector of full system, respectively. 

The motion of original system can be dominated by Eq. (30) in a reduced modal space, the 
modal mass and stiffness matrices are not diagonal, the equations are coupled yet. Converting 
Eq. (30) to a decoupled system will decrease the condition number of equations and offer 
substantial computational saving in the solution of the equations. By using eigenvectors of the 
eigenvalue problem generated from Eq. (30), the coupled equations will become: ۷Δિሷ + Λഥ௧Δિ = Φ்Δۿഥ, (31)

where ۷ = Φ்ۻഥ Φ  and Λഥ௧ = Φ்۹ഥ ௧Φ  are diagonal matrix. Φ  and િ are projection matrix 
assembled from all eigenvectors and new displacement vector. It can be proved that the projection 
will not decrease the accuracy of solutions, as it is an equal-space transformation for Eq. (30). And 
the computational cost of decoupling is sufficiently small attribute to the application of reduced 
model.  

The focus now is turned to the solution of reduced order dynamic equations expressed in 
Eq. (31). It can be solved by a step-by-step time integration method discussed in Section 2.2. 
Comparing with Eq. (1), the Eq. (31) has a much smaller order, which is more efficient in 
numerical computation. 

3.4. Some tips to improve efficiency of improved C-B method 

From a simple perspective, the application CB method is regarded as coordinate 
transformation of governing equations. When it is adopted for elastic-plastic dynamic problem, 
the operations of generating transformation matrix will be performed at each time step. The basic 
premise of the application for elastic-plastic dynamic analysis is that the transformation matrix is 
computationally efficient. For this purpose, we will introduce some tips to improve the efficiency 
of updating transformation matrix.  

• Considering the truncation of fixed-interface normal modes, an algorithm was required that 
would only need to calculate a few lower normal modes of substructure. It seems that a type of 
iterative method (e.g. subspace iteration method) is a good choose for solving eigenvalue  
problem [4].  

• When solving Eq. (1), one major purpose of updating tangent stiffness matrix is to speed up 
the convergence of the iterations. In practical analysis, the tangent stiffness matrix can be updated 
conditionally. An effective strategy for controlling the tangent stiffness matrix updating is based 
on maintaining the residual norm of the original system with in a prescribed tolerance all along 
the time history [6]. Therefore, the transformation matrix of C-B method for elastic-plastic 
problem can be updated according to residual norm value conditionally. The weighted residual 
norm is evaluated as [6]: 

ߝ = 1ܰ ௧‖ଶ۾‖)௧‖ଶ܀‖ + ሷܝۻ‖ ௧‖ଶ), (32)

where ܴ௧ = ௧ܲ − (௧ݑ)ܨ − ሷݑܯ ௧ is residual force, ߝ is the predefined tolerance and ܰ is the DOFs 
number of original system.  

4. Numerical results and discussion 

The procedures of the improved C-B method and full order model are available in a numerical 
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program written in Microsoft Visual C++ 6.0. Two examples are simulated to demonstrate the 
validity, and accuracy of CB method for transient analysis with large-scale plastic deformation. 
The integration parameters of the Newmark method with the values of ߙ ߚ ,0.29 = = 0.56, and 
were used for all solutions. All computations were carried out on an Intel(R) Core(TM)  
i3-2350M @ 3.2 GHz and 4 GB RAM personal computer. 

4.1. Model description and response evaluation tool 

4.1.1. Beam models 

The first example is a simply supported beam with perfect plastic material, the beam is 
subjected to a uniform distributed load (ݐ) applied instantaneously and decayed exponentially. 
The configuration of this example is shown in Fig. 3. The time variation of the exponentially 
decaying load is given as (ݐ) =   is static collapse load defined as the Where .(ܶ/ݐ2−) exp݊
load causing a plastic hinge to occur at the midpoint of the beam, ݊ = 1.5 and ܶ is the fundamental 
time period of the beam. 

 
a) 

 
b) 

 
c) 

Fig. 3. Problem descriptions of simply supported beam, a) beam element model  
and substructures, b) material constitutive relation, c) load type 

a) 
 

b) 
 

c) 
Fig. 4. Problem descriptions of fixed beam, a) beam element model and substructures,  

b) material constitutive relation, c) load type 

In second example, considering a fixed beam is subjected to a concentrated pulsing load ݂(ݐ) 
at the midpoint of beam, the material of beam is assumed to be bilinear isotropic plastic. Fig. 4 
shows the configuration, material constitutive relation and load type of this example. The time 
variation of the pulsing load can be given from a piecewise function. Table 1 lists the beam 
characteristics of the two examples.  

Table 1. Beams characteristics 
Example ܮ (cm) ܹ (cm) ܪ (cm) ߩ (kg/m3) ܧ (GPa) ܧ௧  (GPa) ߪ௬ (MPa) Material 

Example 1 76.2 2.54 5.08 7800 206.8 – 344.74 Perfect plastic 
Example 2 300 15 7.5 7800 200 50 235 Bilinear plastic 

4.1.2. Response evaluation tool 

In the numerical study, the full order model solutions are used as the reference for all cases. 
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The accuracy of full order model solutions is sensitive to mesh density of structure and time step, 
it will be poor if the mesh is too course or the time step is too large. In order to get a relatively 
credible solution, many times calculation with slightly finer mesh or smaller time step, and 
comparison between the current results and previous results, are needed until the change occurs 
in results is small enough. Then, the mesh density and time step is probably acceptable for the 
dynamic problem.  

In order to quantitatively compare the solutions of the two methods, a relative approximate 
ratio is introduced: 

ܴ = ൭1 − ฮܠ(ݐ) − ଶ‖(ݐ)ோܠ‖ฮଶ(ݐ)ோܠ ൱ × 100 %, (33)

where ܠ is the variable vector (e.g. deformation, stress, velocity etc.) computed from improved 
C-B method and ܠோ is the variable vector computed form full model order. The value of ܴ 
close to 1.0 indicates strong similarity between the two methods, where value far away from 1 
indicates non similarity. 

4.2. A simply supported beam 

This example is similar to the problem previously investigated by many researchers [35-37]. 
With many times calculation, the beam is meshed using 40 beam elements, the time step equals 
1.0e-5 sec, and the full order model solutions will be used as reference. For the application of the 
improve CB method, the original finite element model of beam is partitioned into 2 substructures 
uniformly. The deflection, velocity and stress responses of beam are simulated. All the analysis 
are carried for 0.02 sec. 

4.2.1. Convergence and accuracy 

It is known that stress calculation is complicated and needing more DOFs compared with 
displacement calculation. The stress response of this beam can be adopted to evaluate the 
convergence of the proposed method. 

 
a) Stress response 

 
b) Statistical result of ܴ 

Fig. 5. Convergence study of CB method for example 1 

For this example, the stress response of midpoint at bottom surface is employed. It is obvious 
that the results from improved CB method and full order model differ very slightly, the differences 
only occure at the inflection point of the time history plot in Fig. 5(a). The increase of the number 
of fixed-interface normal modes can reduce the differences to a certain extent. To quantify the 
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influence of normal modes, the relative approximate ratio is calculated in accordance with Eq. (33) 
and shown in Fig. 5(b). As the number of fixed-interface normal modes is increased, the relative 
approximate ratio is close to 1.0. This means that the solution of proposed method is convergent 
to the solution from full order model. And a relatively fast speed of convergence can also be found 
from Fig. 5(b), the solution from the improved CB method with > 98 % relative approximate ratio 
is obtained when the fixed-interface normal mode of substructure retains 2. For the succeeding 
simulations of this example, the division strategy of 2 substructures with 2 fixed-interface normal 
modes will be used always.  

The midpoint deflection response and midpoint velocity response of the beam are shown in 
Fig. 6. Further, the full order model solutions are also given for comparison. It is obviously that 
the solutions of proposed method agree well with that of full order model. There is a strong 
similarity between the two methods for this example.  

  
a) Deflection response (ܴ = 99.4 %) 

 
b) Velocity response (ܴ = 99.2 %) 

Fig. 6. Responses of the simply supported beam 

4.2.2. Plastic deformation analysis  

It is known that the plastic deformation will weaken the stiffness of structure. Accordingly, the 
tangent frequencies will change, and the more large-scale plastic deformation occurs, the more 
severely the tangent frequencies vary. Fig. 7 shows the variation of the first-order frequency and 
the second-order frequency of the simply supported beam during the forced motion. In this 
example, the first-order frequency has once decreased to 41 Hz at time 3.14 ms, only 3 % of 
fundamental frequency of the beam. This indicates that the beam has undergone large-scale plastic 
deformation at time 3.14 ms. 

 
a) First-order frequency 

 
b) Second-order frequency 

Fig. 7. Variation of tangent frequencies of simply supported beam. 
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In order to estimate the plastic deformation at time 3.14 ms, the stress distribution of beam is 
calculated using the proposed method, shown in Fig. 8. For a clear description, the ratio of height 
and length of beam is expanded 5 times. The points where the normal stress exceeds 340 MPa are 
filled with grey grids. The filled regions will be considered as occurrence of plastic deformation, 
the area of these regions accounts for 19.5 % of the entire beam. Thus, the simply supported beam 
can be proved with lager-scale plastic deformation at time 3.14 ms, and will show strong nonlinear 
behaviors during the forced motion.  

 
Fig. 8. Plastic deformation of simply supported beam at time 3.14 ms 

4.3. A fixed beam 

In second example, the time variation of the concentrated pulsing load is given from a 
piecewise function. The values of parameters in the piecewise function are: ݐଵ = 2 ms,  ݐଶ = 12 ms, ݐଷ = 14 ms, ܨ = 4 ௦݂. Where ௦݂ is the static collapse load defined as the concentrated 
load causing a plastic hinge to occur at the midpoint of the beam. By some numerical tests, the 
fixed beam is discretized into 120 beam elements, and time step equals 1.0e-4 sec. Then, the finite 
element model is partitioned into 2 substructures uniformly, the response of deflection, velocity 
and stress are simulated with the presented method. All the solutions are carried out for 0.1 sec 
and compared with the full order model results.  

4.3.1. Convergence and accuracy 

We still choose the stress response of midpoint at bottom surface of beam to evaluate the 
convergence of the improved CB method. As expected, the solution of CB method is convergent 
quickly to that from full order model, and is shown in Fig. 9. When the fixed-interface normal 
modes retain 4, the solution of CB method has a high relative approximate ratio over than 98 %. 
Thus, the division strategy of 2 substructures with 4 fixed-interface normal modes will be used for 
the succeeding simulation. 

 
a) Stress response b) Statistical result of ܴ 

Fig. 9. Convergence study of CB method for example 2 
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Fig. 10 shows the predicted deflection and velocity response of the fixed beam. The overall 
solutions of proposed method have a quite accurate as full order model as expected, the average 
approximate ratio between the two method is close to 99 %.  

 
a) Deflection response (Ra = 99.2 %) 

 
b) Velocity response (Ra = 99.0 %) 

Fig. 10. Responses of the fixed beam 

4.3.2. Calculation of plastic deformation 

The variations of first-order and second-order tangent frequencies are shown in Fig. 11, which 
are similar in shape to the variation plot of example 1 (in Fig. 7). The Fig. 11 also shows the 
variation scope, at time 12.1 ms, the first-order frequency is decreased to the minimum 160 Hz 
(about 59 % of fundamental frequency of the fixed beam). According, the stress distribution of 
fixed beam at time 12.1 ms is shown in Fig. 12 (the ratio of height and length is expanded  
10 times). The region filled with grey grid stands for where the normal stress exceeds 235 MPa. 
The area of these regions is 26.7 % of the entire beam. 

 
a) First-order frequency 

 
b) Second-order frequency 

Fig. 11. Variation of tangent frequencies of fixed beam 

 
Fig. 12. Plastic deformation of fixed beam at time 12.1 ms 

It can be concluded that by the responses and comparison study, the fixed beam has gone 
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through large-scale plastic deformation under the pulsing load, the improved CB method is valid 
for this problem, and the responses obtained from proposed method have the same accuracy as 
that obtained from full order model. 

4.4. Computational efficiency study 

In this section, we aim at the two examples to study the computational efficiency of the 
proposed method. Although, the examples are simple beam structure, the results still show some 
intrinsic properties of the proposed method. In the whole simulation, the eigenvalue problems of 
substructure are solved with subspace iteration method. 

4.4.1. The impact of application of reduced model in iterations  

For the proposed method (even the original CB method), only internal DOFs of 
substructure are reduced, all boundary DOFs are kept completely. This is typically a 
disadvantage of the method if the original structure is partitioned into too many substructures, this 
will lead to a relative large-order reduced model. From this point of view, the number of 
substructures should be minimized. However, fewer divisions in original structure may result in 
non-significant degradation of size for eigenvalue problem, and more normal modes may be 
retained for the accuracy solution. Such divisions whether will bring computational benefit is 
uncertain. In practical application of original CB method, the divisions can be in conjunction with 
some mode selection technique to improve the accuracy and efficiency.  

In order to evaluate the efficiency of the improved CB method in the analysis of elastic-plastic 
dynamic problem, many different substructure divisions are designed for the two examples. Four 
kinds of substructure division designated as case A-D are used in the first example. Five other 
divisions designated as case E-I are used in the second example. These division strategies are 
listed in Table 2. The comparisons of the computational time (the central processing unit (CPU) 
time) and obtained benefit in different analysis are listed in Table 3 and Table 4.  

Table 2. Substructure divisions for the two examples 
Cases Case A Case B Case C Case D Case E Case F Case G Case H Case I 

Division 
 strategy 

௦ܰ = 2; ݇ = 2 
௦ܰ = 4; ݇ = 1 

௦ܰ = 5; ݇ = 1 
௦ܰ = 8; ݇ = 1 

௦ܰ = 2; ݇ = 4 
௦ܰ = 3; ݇ = 5 

௦ܰ = 4; ݇ = 2 
௦ܰ = 6; ݇ = 1 

௦ܰ = 8; ݇ = 1 
Example Simply supported beam Fixed beam 

Table 3. Comparisons for example 1 with different division strategies 
Cases Updating cost (ms) CPU time (s) Time ratio ܴ 

Ref (FEM) 4.34 63.5 1.00 100 % 
Case A 7.00 29.1 0.458 98.6 % 
Case B 5.16 23.8 0.375 99.5 % 
Case C 5.16 25.3 0.398 99.5 % 
Case D 5.31 26.7 0.420 99.7 % 

Table 4. Comparisons for example 2 with different division strategies 
Cases Updating cost (ms) CPU time (s) Time ratio ܴ 

Ref (FEM) 13.27 153.8 1.00 100 % 
Case E 62.89 70.0 0.455 98.4 % 
Case F 46.6 54.9 0.357 98.2 % 
Case G 27.45 34.5 0.224 98.9 % 
Case H 18.01 26.8 0.174 99.2 % 
Case I 15.85 24.9 0.162 99.6 % 

The updating cost is the average time cost of updating stiffness matrix in simulation with full 
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order model, or of updating transformation matrix in CB method, in each time step. The time ratio 
is defined as ܶ ிܶாெ⁄ , where ܶ is the CPU time consumed for simulating with improved CB 
method, and ிܶாெ is the CPU time while simulating with the full order model. All the analysis 
results are ensured to have greater than 98 % relative approximate ratio compared with full order 
model, the relative approximate ratio is calculated based on stress response. From these two tables 
we can make the following observation: 

• The numerical tests show that proposed method is more efficient than full order model for 
the elastic-plastic dynamic problem, and the solution of both method have a high similarity. The 
computational time cost of proposed method is only about 0.16~0.45 times as the full order model.  

• As expected, the time cost of updating transformation matrix in improved CB method is a 
little more than the time cost of updating stiffness matrix in full order model, provided that an 
appropriate division strategy is applied (e.g. case B, C and D for example 1, case I for example 2). 
This can be attributed to two reasons. First, the eigenvalue problems are all small-scale by dividing 
the original structure into many substructures. Then, considering the modal truncation, there are 
only a few lower normal modes are needed to be calculated. After the application of reduced model 
in iterations in a time step, the computational time cost of solving governing equations has reduced 
obviously compared with full model analysis. The larger the structural system is, the more likely 
it is.  

• It can also be known that an appropriate substructure division of the original structure will 
improve computational efficiency significantly on the premise of maintaining same accuracy, e.g., 
using the division of case I is more than tripled efficient compared with the division of case E for 
example 2.  

Updating the transformation matrix conditionally may be an effective technique to improve 
the efficiency of the proposed method. To demonstrate this, we choose the most efficient division 
strategies in Table 3 and Table 4 (they are case B for example 1 and case I for example 2), and 
update the transformation matrix conditionally in accordance with Eq. (33). The predefined 
tolerance ε is going to set to 0.05, 0.02 and 0.01.  

Table 5 shows the loss of accuracy and saving of computational time for these analyses. With 
the loose of prescribed tolerance ߝ, the computational efficiency is improved further, as expected. 
And, the accuracy of solution only degrades slightly. For example 2, the improvement is 
remarkable especially. 

Table 5. Validity verification of update strategy 
Cases Update strategy Update times CPU time (s) Time ratio ܴ 

Case B 

Unconditionally 1000 23.8 0.375 99.5 % ߝ ߝ % 98.0 0.356 22.6 843 0.01 = ߝ % 94.0 0.350 22.2 769 0.02 = = 0.05 721 22.0 0.346 93.4 % 

Case I 

Unconditionally 1000 24.9 0.162 99.6 % ߝ ߝ % 97.8 0.149 23.1 864 0.01 = ߝ % 97.6 0.148 22.7 859 0.02 = = 0.05 42 13.5 0.088 96.7 % 

4.4.2. The impact of time step 

The use of reduced model can have larger time step than use of full order model. On the 
premise of maintaining an acceptable accuracy of solutions, the larger time step may result in a 
shorter computational time and high efficiency. Here, we still choose the most efficient division 
strategies (case B for example 1 and case I for example 2) to calculate stress responses of structure 
with relative larger time step. And the accuracy of solution will be compared with that obtained 
from full order model at the same time step.  

Table 6 and Table 7 have recorded the computational time for the two methods with relative 
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larger time step. In general, the improved CB method has the same numerical accuracy as full 
order model when the time step getting greater. Meanwhile, we also have found that the time cost 
of solving equations increases dramatically in full order moder simulation with the increase of 
time step. This may be due to the stability of equations in physical coordinate is sensitive to time 
step and worsen quickly when greater time step is used. This leads to a considerable computational 
cost for gaining convergent results in each times step. However, the improved CB method can 
overcome this disadvantage because it converts the equations into modal coordinate to make 
equations more stable. In our numerical test, the time cost of solving equations for improved CB 
method almost maintains a constant value with different time step. So, the efficiency of the 
proposed method for the examples is obvious compared with full order model. 

Table 6. Comparisons of the computational time for example 1 with different time step 
Method Δݐ (s) CPU time (s) Time ratio ܴ 

Ref (FEM) 1.0e-5 63.5 1.0 100 % 
FEM 5.0e-5 18.4 0.290 92.7 % 
CB 5.0e-5 4.8 0.075 92.1 % 

FEM 1.0e-4 21.6 0.340 72.5 % 
CB 1.0e-4 2.4 0.038 69.5 % 

Table 7. Comparisons of the computational time for example 2 with different time step 
Method Δݐ (s) CPU time (s) Time ratio ܴ 

Ref (FEM) 1.0e-4 153.8 1.00 100 % 
FEM 2.5e-4 86.7 0.564 91.1 % 
CB 2.5e-4 13.88 0.09 90.1 % 

FEM 5.0e-4 134.6 0.875 85.18 % 
CB 5.0e-4 7.10 0.046 82.28 % 

In conclusion, the causes of good efficiency of proposed method can be summarized into two. 
First of all, if the time step required for the proposed method and full order model is same, the 
computational efforts of iterations are reduced when the presented method is utilized. The second 
cause is that the reduced order model is more stable for using greater time step compared with the 
full order finite element model. Generally, both causes of efficiency usually go together.  

5. Conclusions 

For strong nonlinear problem, the transient analysis of structures with large-scale plastic 
deformation, an improved CB method is proposed. Unlike the original CB method, the 
transformation matrix of the improved CB method is constructed with a type of nonlinear modes 
of structure (tangent modes). To do this, the nonlinear problem is linearized over a small time 
interval, the tangent modes of structure based on the nonlinear state at the beginning of the time 
interval are proved to be orthogonal with respect to mass matrix as well as with respect to tangent 
stiffness matrix from mathematic view, by incorporating the elastic-plastic material behavior.  

Using the improved CB method, the response solutions of structure with large-scale plastic 
deformation are accurate as the solutions obtained from FEM, and the computational time is 
reduced substantially. The good performance of the improved CB method is demonstrated through 
two examples of simply supported beam and fixed beam loaded impulsively.  

Moreover, the proposed method can be easily extended to the case of large of more complex 
structure and offer an alternative tool to aid in the dynamic design of structure with the 
consideration of large-scale plastic deformation. 
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