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Abstract. The variational mode decomposition (VMD) proposed recently is a kind of 
time-frequency signal analysis method. VMD has some advantages on signal decomposition such 
as high precision and noise robustness, but its serious shortcoming is that the number of modes 
 should be given in advance. And if the number is chosen inappropriately, VMD will lead to (ܭ)
larger decomposition error. In this paper, the VMD method is introduced and the over- and 
under-segment characters of VMD are discussed. The cross correlation coefficients can express 
the similarity between the two signals. Cross correlation coefficients among VMD components 
and the original signal are used to judge whether over-segment takes place. As a result, the 
estimation method of VMD parameter ܭ is proposed. Based on the method, the tri-harmonic 
signal and the vibration signals of ball bearings are analyzed in detail. The results show that the 
proposed method is feasible and effective. 
Keywords: variational mode decomposition (VMD), cross correlation coefficient, parameter 
estimation, rolling bearing. 

1. Introduction 

Time and frequency analysis of vibration signal is widely used in many fields [1-3]. 
Variational mode decomposition (VMD) is proposed by Dragomiretskiy et al. in 2014 [4], which 
is also a time-frequency analysis method in the area of signal processing. This method assumes 
the signal to be composed of some intrinsic mode functions. Each mode function is an amplitude-
modulated-frequency-modulated (AF-FM) signal with different center frequency. Center 
frequency and the relevant bandwidth of each mode function (component) are determined by 
recursively searching algorithm. VMD has solid theory foundation，showing better advantages 
in tone detection, tone separation and noise robustness. VMD has attracted wide attention of world 
scholars since it was put forward [5-9]. However, its serious shortcoming is that the modes number ܭ  of VMD must be given in advance before signal decomposition. And the result of the 
decomposition is sensitive to the modes number ܭ. How to accurately forecast the value of ܭ is a 
key problem in VMD signal decomposition [4]. Tang uses particle swarm optimization algorithm 
to get the best combination of the penalty parameter and number of components [5]. Most scholars 
give the empirical value through analyzing or observing the processed signal, which means if the 
number is not  
appropriate, some modification and retries will be indispensable [6-9]. In order to solve the 
problem, the characters and properties of VMD in over-segment and under-segment should be 
further researched and cross correlation coefficients among modes and original signal should be 
analyzed so that the relationship between correlation coefficients and over-segment can be built. 
The automatic estimation method of VMD Parameter ܭ is proposed based on cross correlation 
coefficients in this paper. The method is proved feasible and effective by analyzing simulation 
signals and extracting the fault feature of rolling bearing.  

The rest of this article is organized as follows: Section 2 introduces the VMD (Variational 
Mode Decomposition), observes the effect of over- and under-segmenting and evaluates the 
outcome of VMD using too few or too many modes, ܭ . Section 3 investigates relationship 
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between the over-segmentation and cross correlation coefficients, and presents the estimation 
method of VMD Parameter ܭ  in detail. Section 4 contains some experiments and results for 
non-noise signal, noisy signal and rolling bearing fault signals. Section 5 is the conclusion. 

2. Variational mode decomposition 

Intrinsic Mode Function (IMF) is originally defined in EMD (Empirical Mode Decomposition, 
proposed by N. E. Huang in 1998), and now in VMD, it is redefined as amplitude-modulated-
frequency-modulated (AF-FM) signal [4]: ݑ(ݐ) = ൯, (1)(ݐ)cos൫߶(ݐ)ܣ

where the phase ߶(ݐ) is a non-decreasing function, ߶ᇱ (ݐ) ≥ 0, the envelope is non-negative ܣ(ݐ) ≥ 0, and, both the envelope and the instantaneous frequency ߱(ݐ): = ߶ᇱ  vary much (ݐ)
slower than the phase ߶(ݐ). In other words, ݑ(ݐ) can be considered as a harmonic signal with 
amplitude ܣ(ݐ) and frequency ߱(ݐ), during the interval [ݐ − ,ߜ ݐ + ߜ)[ߜ = ᇱ߶/ߨ2  .((ݐ)

In order to obtain the components, the steps are given as followed: (1) for each mode function ݑ(ݐ), assess the associated analytic signal using Hilbert transform to obtain a unilateral frequency 
spectrum; (2) for each mode, transform the mode’s frequency spectrum to ‘baseband’, through 
mixing with an exponential tuned to the respective estimated centre frequency; (3) use Gaussian 
smoothness of the demodulated signal to estimate the bandwidth. The constrained variational 
problem is given as follows: 

min{௨ೖ},{ఠೖ} ቐ ฯ߲௧ ൬(ݐ)ߜ + ൰ݐߨ݆ ∗ ൨(ݐ)ݑ ݁ିఠೖ௧ฯ ଶ
ଶቑ, 

.ݏ .ݐ  ݑ = ݂, (2)

where {ݑ} = ,ଵݑ} ,ଶݑ … , {ݑ  and{߱} = {߱ଵ, ߱ଶ, … , ߱}  represent all modes and their center 
frequencies, respectively. Equally, ∑   = ∑ୀଵ  is understood as the summation over all modes. 

To get the optimal solution of constraint variational problem, a quadratic penalty parameter ߙ 
and the Lagrangian multipliers, ߣ, are used. The constructed augmented Lagrangian function is 
given as follows: 

,{ݑ})ܮ {߱}, (ߣ = ߙ  ฯ߲௧ ൬(ݐ)ߜ + ൰ݐߨ݆ ∗ ൨(ݐ)ݑ ݁ିఠೖ௧ฯ ଶ
ଶ 

      + ะ݂(ݐ) −  (ݐ)ݑ ะଶ
ଶ + ൽ(ݐ)ߣ, (ݐ)݂ −  (ݐ)ݑ ඁ. (3)

Eq. (3) is then solved with the alternate direction method of multipliers(ADMM), shown in 
Table 1. All the modes gained from solutions in spectral domain are written as: 

(߱)ොାଵݑ = መ݂(߱) − ∑ (߱)ොݑ + መ(߱)2ஷ1ߣ + ߱)ߙ2 − ߱)ଶ , (4)

߱ାଵ =  ො(߱)|ଶ݀߱ஶݑ|߱ ො(߱)|ଶஶݑ| ݀߱ , (5)
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where the ߱ is computed at the center of gravity of the corresponding mode’s power spectrum. 
The ݑ(߱) is the mode in Fourier domain.  

Table 1. ADMM optimization for VMD 
Initialize {ݑොଵ}, { ෝ߱ଵ}, ߣመଵ,݊ ← 0; 
Repeat ݊ ← ݊ + 1, 
for ݇ = 1:  do   ܭ
update ݑො, according to Eq. (4) 
update ߱, according to Eq. (5) 
end for  
Dual ascent for all ߱ ≥ (߱)መାଵߣ :0 = (߱)መߣ + ߬൫ መ݂(߱) − ∑ ොାଵݑ (߱)൯  
Until convergence: ∑ ฮݑොାଵ − ොฮݑ ଶଶ ො‖ଶଶݑ‖/ <   .ߝ

 

 
a) VMD ܭ ,(ݐ)ݑ = 10 

 
b) |ݑො |(߱), ܭ = 10 

Fig. 1. Too many modes (ܭ = 10) lead to over-segmentation of the signal 
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From this algorithm, it’s clear that the mode number ܭ needs to be given in advance. In order 
to study the effect of the ܭ, we construct a tri-harmonic signal expressed in Eq. (6), which is 
composed of three different, pure harmonics, whose frequency is 3 Hz, 26 Hz and 150 Hz, 
respectively: ݂ = cos(2ݐ3ߨ) + 0.3cos(2ݐ26ߨ) + 0.02cos(2ݐ150ߨ). (6)

We set the value of ܭ from 1 to 10 to observe decomposition results of the signal. When the 
preset component number is greater than the actual harmonic number, over-segment of VMD will 
take place. Fig. 1 illustrates the result of VMD with ܭ = 10. Fig. 1(a) shows ten modes in time 
domain and frequency spectrum of these modes are illustrated in the Fig. 1(b). We can learn from 
Fig. 1(a) that the mode (component) 1, 4, 5 and 9 are incomplete harmonic, which is the result of 
over-segment. From Fig. 1(b), the center frequency of component 1, 2, 3 are 3 Hz, and the center 
frequency of mode component 6-8 are 26 Hz, which means that over-decomposition of signal 
occurs. 

When the preset component number is fewer than the actual harmonic number, VMD method 
will lead to under-segment. The VMD decomposition with ܭ ܭ) 2 = < 3) is shown in Fig. 2. 
From Fig. 2(b), VMD separates 150 Hz harmonic signal into two parts, which are added to the 
signal of 3 Hz and 26 Hz respectively. Too few modes will lead to under-segmentation. Some 
components are separated and contained in other components, or discarded as “noise”. 

 
a) VMD ܭ ,(ݐ)ݑ = 2 

 
b) |ݑො |(߱), ܭ = 2 

Fig. 2. Too few modes (ܭ = 2) lead to under-segmentation of the signal 

When the preset modes number is the same as the actual component number, VMD of signal 
can achieve exact tones. Fig. 3 is the decomposition result with ܭ = 3, and three components are 
recovered almost flawlessly. Fig. 3(b) are frequency expression of original signal and three 
components. We can learn from Fig. 3, the center frequency of each component (3 Hz, 26 Hz and 
150 Hz) is the same as the center frequency of original signal components, respectively. The 
amplitude of each component is 1, 0.3 and 0.02, which are consistent with the original signal 
components. 

We can learn from the results of simulation: the value ܭ  makes a great influence on 
decomposition, only when ܭ is chosen properly. We can get more accurate components from the 
original signal, without mode overlap and mode duplication. Because number ܭ must be given in 
advance, reasonable pre-estimation of the parameter ܭ of VMD is rather important and is of 
practical significance. An adaptive estimation method will be proposed in the following text. 
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a) VMD ܭ ,(ݐ)ݑ = 3 

 
b) |ݑො |(߱), ܭ = 3 

Fig. 3. Appropriate modes (ܭ = 3) lead to correct segmentation of the signal 

3. Adaptive ࡷ estimation method of VMD based on cross correlation coefficient 

The cross correlation coefficient is used as the statistical indicators of the affinity degree 
among the different variables [10, 11]. The cross correlation coefficient is calculated by 
covariance method. Similarly, according to two variables and their average deviation, multiply 
two average deviations are multiplied to show the relevant degree of two variables. The calculation 
formula [10] of the cross correlation coefficient between two sequence ݔ(݊) and ݕ(݊) is written 
as: 

௫௬ߩ = ∑ ∑ஶୀඥ(݊)ݕ(݊)ݔ ଶ(݊)ஶୀݔ ∑ ଶ(݊)ஶୀݕ . (7)

According to the properties of cross correlation coefficient, if signals ݔ(݊)  and ݕ(݊)  are 
periodic signal with same frequency or contain periodic components of the same frequency, cross 
correlation coefficient will be larger. If ݔ(݊)  and ݕ(݊)  have periodic signals with different 
frequencies, cross correlation coefficient will be smaller. Large amounts of experiments are 
conducted with ߩ௫௬ from 0.5 to 1.5, When ߩ௫௬ is equal about to 0.1, the effect is most stable, and 
the result is more consistent with what we have expected. So, we recommend 0.1 as threshold 
value to judge whether two signals are relevant. In VMD, if cross correlation coefficient between 
two components is larger than 0.1, we judge that over-segmentation occurs. 

In VMD, each component ݑ is a part of original signal (݂). If the cross correlation coefficient ߩ between component ݑ and original signal is less than the coefficient ߩ between component ݑ and another component ݑ, we can say that the component ݑ is much closer to the component ݑ than to the original signal. If that situation happens, we also consider that over-segmentation 
occurs. 

Synthetic signal as Eq. (6), is operated by VMD with ܭ = 10, the cross correlation coefficients 
among components and the original signal are mentioned in Table 2. From Table 2, the cross 
correlation coefficients among components 1-3 (ߩଵଶ, ߩଵଷ, ߩଶଷ) are 0.75, 0.52 and 0.9, so 1-3 
should be one component. The cross correlation coefficients among components 5-8 (ߩହ, ߩହ, ߩହ଼, ߩ, ߩ଼, ߩ଼) are 0.51, 0.67, 0.73, 0.75, 0.94, 0.87, so 5-8 should be one component. Over 
segmentation occurs when synthetic signal is operated by VMD with ܭ = 10. The conclusion is 
consistent with the fore graphic analysis results in Section 2. From Table 2, because ߩସହ >  ସߩ
and ߩସହ =  0.17 > 0.1, component 4 is also the product of over-segmentation, which is also 
consistent with the situation of component 4 shown in Fig. 1(a). 
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Table 2. The cross correlation coefficient among VMD components and original signal (10 = ܭ) 
 IMF 1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 IMF9 IMF10 Original signal 

IMF1 1 0.75  0.52  0.02  0.01  0.00  0.00  0.00  0.01  0.00  0.60  
IMF2  1 0.90  0.03  0.02  0.00  0.01  0.01  0.01  0.00  0.96  
IMF3   1 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.02  
IMF4    1 0.17  0.02  0.06  0.06  0.04  0.00  0.01  
IMF5     1 0.51  0.67  0.73  0.11  0.00  0.22  
IMF6      1 0.75  0.94  0.02  0.00  0.29  
IMF7       1 0.87  0.08  0.00  0.28  
IMF8        1 0.08  0.00  0.12  
IMF9         1 0.00  0.01  
IMF10          1 0.02  

Original signal 0.60  0.96  0.02  0.01  0.22  0.29  0.28  0.12  0.01  0.02   

Then, we focus on the characters of cross correlation coefficient in under-segmentation. After 
VMD operation of signal as Eq. (7) with ܭ = 2, the cross correlation coefficients among 
components and the original signal are shown in Table 3. From Table 3, we can learn that cross 
correlation coefficient between component 1 and 2 is 0, over-segmentation doesn’t happen, and 
there are no characters about under-segmentation. How can we judge a suitable ܭ? We can use ܭ + 1 to operate VMD, then observe whether there exists over-segmentation. If there exists 
over-segmentation with ܭ + 1, the value of ܭ is the appropriate estimation. If not, continue to add 
1 until the over-segmentation occurs. 

 
Fig. 4. flow chart of ܭ adaptive estimation 

Table 3. The cross correlation coefficient among VMD components and original signal (ܭ = 2) 
 IMF1 IMF2 Original signal 

IMF1 1 0.00  0.96  
IMF2 0 1 0.29  

Original signal 0.96  0.29   
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Thus, the estimation algorithm of ܭ can be designed as Fig. 4. Firstly, set ܭ =  , operateܭ
VMD, calculate the cross correlation coefficients among components and the original signal, and 
judge whether it is over-segmented. If it is over-segmented, calculate the numbers of 
over-segmentation, subtract the numbers, reset the value of ܭ and return to VMD. Otherwise, 
judge whether ܭ + 1 is over-segmented. If ܭ + 1 is over-segmented, the value ܭ  is what we  
want. 

The variational mode decomposition (VMD) proposed recently has obvious advantages on 
signal decomposition such as high precision and noise robustness, but its number of modes (ܭ) 
must be given in advance. Now, the mode number ܭ can only be estimated by prior knowledge. 
And if chosen inappropriately, it will lead to larger decomposition error. As a result, we focus on 
the research of the over- and under-segment characters of VMD. The estimation method of VMD 
parameter ܭ is proposed based on cross correlation coefficients among VMD components and the 
original signal. The method is proved feasible and effective through analyzing simulation signals 
and extracting the fault feature of rolling bearing. 

The Hilbert-Huang transform (HHT) is an adaptive time-frequency method which was 
developed by Huang in 1998. The HHT method has two steps, empirical mode decomposition 
(EMD) and Hilbert spectral analysis (HSA) [11-14]. The EMD, the first step, is to decompose the 
data into finite different intrinsic mode function (IMF) components, which represents different 
oscillatory modes and acts as a pre-processor for HSA. Based on the local extrema, the EMD 
method provides an adaptive method for decomposition of signals. Because the IMF components 
are decomposed adaptively, its number is associated with real modes of signal and can be used as 
the initial ܭ (ܭ), thus avoiding giving an initial value blindly. 

4. Adaptive ࡷ estimation of simulation signal  

4.1. Adaptive ࡷ estimation of non-noise simulation signal  

Now, we estimate the value of ܭ for non-noise simulation signal like Eq. (6). According to 
Fig. 4, firstly, operate EMD and we can get 3 IMFs. So, we set ܭ = 3, then operate VMD with ܭ = ܭ = 3 and calculate the cross correlation coefficients shown in Table 4, from which we can 
know it isn’t over-segmented. As a result, we set ܭ = ܭ + 1 = 4 and go back to the VMD. 
Similarly, calculate again the cross correlation coefficients shown in Table 5. Obviously, 
over-segmentation appears, so the value 3 is the last output of algorithm. Compared to the actual 
signal, the estimated value (ܭ = 3) is suitable. 

Table 4. The cross correlation coefficients for tri-harmonic signal (ܭ = 3) 
 IMF1 IMF2 IMF3 Original signal 

IMF1 1 0.00 0.00 0.96 
IMF2 0 1 0.00 0.29 
IMF3 0 0 1 0.0200 

Original signal 0.96 0.29 0.02  

Table 5. The cross correlation coefficients for tri-harmonic signal (ܭ = 4) 
 IMF1 IMF2 IMF3 IMF4 Original signal 

IMF1 1 0.00 0.00 0.00 0.96 
IMF2 0 1 1.00 1.00 0.29 
IMF3 0 0 1 1.00 0.29 
IMF4 0 0 0 1 0.29 

Original signal 0.96 0.29 0.29 0.29  

4.2. Adaptive ࡷ estimation of noise simulation signal  

To estimate the value ܭ with noise signal, we use the following tri-harmonic signal affected 
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by noise: ݂ = cos(2ݐ3ߨ) + 0.3cos(2ݐ26ߨ) + 0.02cos(2ݐ150ߨ) + (8) ,ߟ

where 0)ܰ~ߟ,  controls the noise level (standard ߪ represents the Gaussian additive noise, and (ߪ
deviation). Here we pick ߪ = 0.1. 

According to our algorithm shown in Fig. 4, perform EMD operation first and 5 IMFs are 
obtained, so ܭ = 5. The all cross correlation coefficients after VMD operation with ܭ = 5 are 
shown in Table 6. The coefficient between component 4 and 5 is higher than the one between 
component 5 and the original signal. So there exists one over-decomposition and ܭ is set to be 4 
ܭ) = ܭ − 1). So, we continue to operate VMD with ܭ = 4 and the cross correlation coefficients 
are shown in Table 7. Every coefficient is less than 0.1, so over-segmentation doesn’t appear. And 
we know, when ܭ + 1 = 5, the decomposition is over-segmented, so the final output is ܭ = 4. 

Table 6. The cross correlation coefficients for noisy tri-harmonic signal (ܭ = 5) 
 IMF1 IMF2 IMF3 IMF4 IMF5 Original signal 

IMF1 1 0.00  0.00  0.00  0.00  0.95 
IMF2  1 0.00  0.00  0.00  0.29 
IMF3   1 0.02  0.01  0.07 
IMF4    1 0.08  0.06 
IMF5     1 0.06 

Original signal 0.95 0.29 0.07 0.06 0.06  

Table 7. The cross correlation coefficients for noisy tri-harmonic signal (ܭ = 4) 
 IMF1 IMF2 IMF3 IMF4 original signal 

IMF1 1 0.00  0.00  0.00  0.96  
IMF2  1 0.00  0.00  0.29  
IMF3   1 0.02  0.04  
IMF4    1 0.03  

original signal 0.96 0.29 0.04 0.03  

However, we know that this signal contains tri-harmonic. Let’s observe what will happen with ܭ = 3. Perform VMD with ܭ = 3, then calculate all the cross correlation coefficients shown in 
Table 8. According to the data, the decomposition can be judged not over-segmented. However, 
when ܭ = 3, the three extracted frequency centers are 3 Hz, 26 Hz and 359 Hz. The original 
harmonic of 150 Hz is not drawn out and is combined with the noise.  

When ܭ = 4, the four extracted frequency centres are 3 Hz, 26 Hz, 150 Hz, 318 Hz. The three 
original harmonics of 3 Hz, 26 Hz and 150 Hz are all drawn out and the rest component of 318 Hz 
can be considered as noise. ܭ = 4 is more reasonable. 

Table 8. The cross correlation coefficients for noisy tri-harmonic signal (ܭ = 3) 
 IMF1 IMF2 IMF3 Original signal 

IMF1 1 0.00  0.00  0.95  
IMF2 0 1 0.00  0.30  
IMF3 0 0 1 0.06  

Original signal 0.95 0.30 0.06  

4.3. Adaptive ࡷ estimation for rolling bearing fault signal 

Rolling element bearing fault data is obtained from the Case Western Reserve University 
Bearing Data Centre. The experimented bearing is 6205-2RS JEM SKF, deep groove ball bearing. 
The rotating speed is 1730 rpm and the sampling frequency is 12 kHz. Three experiments 
conducted are inner raceway, ball and outer raceway fault signal decomposition, respectively. 
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Now we only discuss the inner raceway fault signal decomposition in detail. The theoretical fault 
feature frequency of inner raceway is 156.1 Hz. 

First, perform EMD operation to get the initial ܭ (ܭ). After EMD operation, 12 IMFs can be 
obtained. The initial value of ܭ is 12 and the cross correlation coefficients after VMD operation 
with ܭ = 12 are shown in the Table 9. There are 6 cross correlation coefficients higher than or 
equal to 0.1, so ܭ is reset as 6 (ܭ = 12 − 6 = 6). 

Then operate VMD with ܭ = 6 and the cross correlation coefficients are shown in the Table 10. 
There is 1 cross correlation coefficient between 5 and 6 greater than 0.1, so ܭ is reset as 5 (ܭ ܭ= − 1 = 6–1 = 5). Then, operate VMD with ܭ = 5 and cross correlation coefficients shown in 
Table 11 are obtained. From Table 11, we can know that one over-segmentation occurs. Set ܭ ܭ= − 1 = 4 and operate VMD again. The cross correlation coefficients with ܭ = 4 shown in 
Table 12 are obtained. Consequently, there is no over-segmentation. Because the decomposition 
with ܭ + 1 = 5 is over-segmented, the output is ܭ = 4. 

To verify whether the value is reasonable, a contrastive analysis study is given. The envelop 
spectrum is often used in rolling bearing fault analysis. Fig. 5 and Fig. 6 illustrate the envelop 
spectrum of VMD operation with ܭ = 4 and ܭ = 5 respectively. The practical fault feature 
frequency (155.3 Hz) and its double-frequency (310.5 Hz) both appear.  

Table 9. The cross correlation coefficients for rolling bearing fault signal (ܭ = 12) 
 IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 IMF9 IMF10 IMF11 IMF12 Original signal 

IMF1 1.00  0.16  0.04  0.01  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.12  
IMF2  1.00  0.03  0.01  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.20  
IMF3   1.00  0.13  0.01  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.26  
IMF4    1.00  0.01  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.31  
IMF5     1.00  0.06  0.01  0.00  0.00  0.00  0.01  0.01  0.36  
IMF6      1.00  0.03  0.01  0.01  0.01  0.01  0.01  0.36  
IMF7       1.00  0.13  0.04  0.03  0.03  0.01  0.34  
IMF8        1.00  0.22  0.06  0.03  0.01  0.47  
IMF9         1.00  0.10  0.03  0.01  0.51  

IMF10          1.00  0.11  0.01  0.39  
IMF11           1.00  0.04  0.20  
IMF12            1.00  0.08  

Original signal 0.12  0.20  0.26  0.31  0.36  0.36  0.34  0.47  0.51  0.39  0.20  0.08   

Table 10. The cross correlation coefficients for rolling bearing fault signal (ܭ = 6) 
 IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 Original signal 

IMF1 1 0.08  0.02  0.01  0.00  0.00  0.23  
IMF2  1 0.07  0.01  0.00  0.00  0.37  
IMF3   1 0.03  0.00  0.00  0.37  
IMF4    1 0.00  0.00  0.37  
IMF5     1 0.11  0.48  
IMF6      1 0.66  

Original signal 0.23  0.37  0.37  0.37  0.48  0.66   

Table 11. The cross correlation coefficients for rolling bearing fault signal (ܭ = 5) 
 IMF1 IMF2 IMF3 IMF4 IMF5 Original signal 

IMF1 1 0.04 0.01 0.00 0.00 0.23 
IMF2 0 1 0.17 0.01 0.00 0.38 
IMF3 0 0 1 0.06 0.02 0.46 
IMF4 0 0 0 1 0.02 0.49 
IMF5 0 0 0 0 1 0.68 

Original signal 0.23  0.38  0.46  0.49  0.68   
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Table 12. The cross correlation coefficients for rolling bearing fault signal (ܭ = 4) 
 IMF1 IMF2 IMF3 IMF4 Original signal 

IMF1 1 0.04  0.01  0.00  0.24  
IMF2  1 0.02  0.01  0.38  
IMF3   1 0.04  0.50  
IMF4    1 0.74  

Original signal 0.24  0.38  0.50  0.74   

 
Fig. 5. Envelop spectrums of each component after VMD operation with ܭ = 4 

 
Fig. 6. Envelop spectrums of each component after VMD operation with ܭ = 5 
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In both pictures (Figs. 5, 6), all the 155.3 Hz character frequency are prominent. Double-
frequency amplitudes of component 4 and 5 in Fig. 6 are similar to the ones of component 3 and 
4 in Fig. 5. Also, double-frequency amplitude of component 2 in Fig.6 is very weak, only 0.006. 
And from Table 11, the cross correlation coefficient between component 2 and 3 is 0.17, which is 
higher than 0.1. Thus, the component 2 in Fig. 6 can be considered as over-segmented from 
component 3. Therefore, ܭ = 4 is more suitable than ܭ = 5. 

5. Conclusions 

As a newly proposed time-frequency analysis method, VMD performs better performance in 
tone detection, tone separation and noise robustness. However, the result of the VMD is sensitive 
to the modes number ܭ. VMD over-segment and under-segment have been discussed, and cross 
correlation coefficients among modes and original signal have been analyzed. We build a 
relationship between the over-segmentation and cross correlation coefficients, on which the 
proposed estimation method of VMD Parameter ܭ is based. In the algorithm, the initial value of ܭ is determined by the numbers of IMFs by EMD. The method is proved feasible and effective 
by analyzing simulation signals and extracting the fault feature of rolling bearing.  
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