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Abstract. In order to raise the working reliability of rotating machinery in real applications and 
reduce the loss caused by unintended breakdowns, a new method based on improved ensemble 
empirical mode decomposition (EEMD) and envelope spectrum analysis is proposed for fault 
diagnosis in this paper. First, the collected vibration signals are decomposed into a series of 
intrinsic mode functions (IMFs) by the improved EEMD (IEEMD). Then, the envelope spectrums 
of the selected decompositions of IEEMD are analyzed to calculate the energy values within the 
frequency bands around speed and bearing fault characteristic frequencies (CDFs) as features for 
fault diagnosis based on support vector machine (SVM). Experiments are carried out to test the 
effectiveness of the proposed method. Experimental results show that the proposed method can 
effectively extract fault characteristics and accurately realize classification of bearing under 
normal, inner race fault, ball fault and outer race fault. 
Keywords: EEMD, envelope spectrum analysis, fault diagnosis, rotating machinery. 

1. Introduction 

Rotating machinery is a type of mechanical equipment that has been widely applied. As a key 
rotation part of rotating machinery, bearings will develop mechanical faults after continuous 
working under high load conditions after an extended period of time. When faults in the bearings 
occur, the bearings will produce abnormal mechanical vibration thereby influencing the ability of 
the rotating machinery and lead to degradation of the mechanical performance. Additionally, the 
undesired mechanical vibration will also cause significant potential security problems [1, 2]. In 
order to reduce the unscheduled downtime of the rotating machinery, it is necessary to propose an 
effective method to accurately diagnosis the bearing faults. 

For mechanical fault diagnosis methods, the key step is to extract the effective features from 
the collected original signals. To date, these applied signal processing methods can be divided into 
three types: time analysis, frequency analysis and time-frequency analysis [3]. Among them, time 
analysis is the simplest and easiest type for fault diagnosis; however, the test results are neither 
perfect nor reliable since statistic indicators such as kurtosis, root mean square and mean are used 
and can be disturbed by noise. Frequency analysis methods mainly use Fourier transform based 
algorithms to observe mechanical fault characteristic frequency compositions, such as fast Fourier 
transform (FFT) [4], interpolated FFT [5] and interpolated discrete Fourier transform [6]. 
However, these traditional frequency methods are based on an assumption that the processed 
signals are stationary and linear. Time-frequency analysis methods collect data on the details of a 
signal in both the time and frequency domain simultaneously allowing for obtaining more useful 
information for fault diagnosis. Therefore, the time-frequency methods are more popular in the 
field of mechanical fault diagnosis. 

In the early stages of time-frequency analysis, the short time Fourier transform (STFT) was 
used to diagnose the mechanical faults with spectral kurtosis [7]. Owing to the shortage of STFT 
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with fixed time and frequency resolutions, a new advanced method called the Wigner-Ville 
distribution (WVD) was used for mechanical fault diagnosis [8]. In addition, the discrete wavelet 
transform (DWT) and wavelet packet transform (WPT) methods have also been applied to 
mechanical fault diagnosis [9]. However, the wavelet based analysis methods are not self-adaptive 
when used to process complex signals [10]. According to published papers, vibration signal 
analysis is the most used signal processing method for fault diagnosis. However, the vibration 
signals of rotating machinery have strong nonlinear and unsteady characteristics due to the 
complex work conditions and the coupling of multi-components within rotating machinery. 
Therefore, traditional signal processing methods may not effectively extract appropriate features 
for mechanical fault diagnosis [3]. In the recent years, empirical mode decomposition (EMD), a 
self-adaptive, time-frequency analysis method has been presented and employed for mechanical 
fault diagnosis [11-13]. To solve the drawbacks of EMD, EEMD was proposed and also 
introduced to the field of mechanical fault diagnosis [14-16]. Although EEMD has been 
successfully used to diagnose mechanical faults, its non-IMF problem is a concern and needs to 
be considered. Therefore, several improved EEMD methods were proposed by Wu [17] and  
Jiang [18]. 

The improved EEMD is combined EMD with EEMD, which can solve the non-IMF problem 
when processing complex signals. Multiple fault characteristic frequency energy values are 
computed as features to design SVM model to obtain a satisfactory fault diagnosis of rotating 
machinery. Finally, experiments were carried out to test the effectiveness of the proposed method 
and the results indicated that the proposed method can effectively extract the fault characteristic 
information of rotating machinery and accurately realize classification of a bearing under normal, 
inner race fault, ball fault and outer race fault conditions. 

2. Methodology  

2.1. Improved EEMD 

EMD was first designed by Huang et al. to decompose a complex signal into a series of IMF 
decompositions [19]. Before using EMD to process signals, three assumptions are considered: 
(1) the signal must have at least two extreme points, i.e., one maximum and one minimum; (2) the 
characteristic time scale is defined by the time lapse between extreme points and (3) if the data 
are totally devoid of extrema but contain only inflection points, then they can be differentiated 
one or more times to reveal the extrema.  

From the EMD method, a complex signal (ݐ)ݔ can be composed into the following form: 

(ݐ)ݔ =  ܿ
ୀଵ (ݐ) + (1) ,(ݐ)ݎ

where ܿ(ݐ) is the ݅th IMF composition and ݎ(ݐ) is the residue. 
For these IMF compositions of the EMD, they are all nearly orthogonal functions and each 

one represents a simple oscillation mode with physical meaning. Concurrently, the IMF also 
satisfies two conditions:  

(1) For the whole data series, the number of extrema and zero crossings should be equal or 
differ at most by one. 

(2) At any data point, the mean value of envelopes defined by local maxima and minima of 
original signal should be zero. 

However, EMD has a major drawback of mode mixing, which means that a single IMF 
composition contains oscillations with observably disparate scales or the oscillations in a similar 
scale appearing in several IMFs at the same time [3]. To solve this problem, a new signal 
processing method named EEMD was proposed by Wu and Huang [20]. In this new signal 
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processing method, white noise-added technology is employed and the mean values of these 
decomposition results of traditional EMD trials are treated as the final IMF compositions. 
Therefore, the complex signal (ݐ)ݔ can be decomposed into the following form: 

(ݐ)ݔ =  ܿ̅
ୀଵ (ݐ) + (2) ,(ݐ)ݎ̅

where ܿ̅(ݐ)  and ̅ݎ(ݐ) is the ensemble means of the corresponding IMF decompositions and 
residues in a series decomposition EMD trials.  

Although EEMD can assist in resolving the mode mixing problem of EMD and obtain more 
meaningful components, the non-IMF problem is still a major drawback when attempting to 
develop accurate decomposition effects. Based on this issue, Huang and Wu [20] provide guidance 
towards eliminating these imperfections involving another round of sifting on the IMFs produced 
by EEMD. All decomposition that results from traditional EMD can be regarded as well-IMFs. 
Therefore, EEMD and EMD can be combined to resolve the non-IMF problem to develop 
meaningful components for effective feature extraction based on the methods introduced in the 
literature [17, 18]. According to the decomposition theory of EEMD, the main frequency 
components in IMFs are lined from high to low, that is to say, the frequency of front IMF is higher 
than that of latter one. Different IMFs include various degree information indicating mechanical 
faults. At the same time, several new IMFs will also be obtained when using EMD to process the 
selected decomposition results of EEMD. Therefore, it is necessary to select an appropriate IMF 
to extract effective features.  

According to above analysis, a new IEEMD, consuming less time than these methods in [17] 
and [18], is proposed for fault diagnosis of the bearings discussed in this paper. This method 
mainly includes two steps: processing the original vibration signals with traditional EEMD, and 
using EMD to resolve the decomposition results of EEMD where each step has an IMF selection 
task. In the first step, the appropriate IMF is selected processing by an EMD. For the second step, 
the IMF is selected for features. Except when the selected IMF is implemented, the remaining 
decomposition components are summed as the equivalent residue, which is then removed as noise. 
By utilizing the improved EEMD, we can cancel noise components from the original vibration 
signals. The procedure is shown as follows.  

(1) Process the original vibration signal (ݐ)ݔ with standard EEMD and develop a series of IMF 
components. In this step, the two parameters of EEMD are set as follows: the ensemble number 
is 100 and the appropriate amplitude of added white noise is 0.2 times the standard deviation of 
the signal. 

(2) Calculate the energy values of these IMFs whose main frequency information is not less 
than rotating frequency. The IMF with the largest energy value is selected as useful information 
for further processing. At the same time, the other components are regarded as noise and cancel 
directly.  

(3) Then the selected IMF is processed by traditional EMD, and a serious of new IMFs also 
can be obtained. 

(4) The IMF calculated in step (3), having the largest energy values, is selected as the final 
IMF to calculate features by envelope spectrum analysis using a Hilbert transform. 

2.2. Simulation analysis 

To test the effectiveness of the proposed method for processing of complex signals, a number 
simulation experiment is carried out. In this simulation, each IMF of the EEMD is processed with 
the traditional EMD to show the improvement. The simulated digital signals are as follows: 
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۔ۖەۖ
ଵݕۓ = 2 sin(10ݐߨ) ଶݕ, = 1.5 cos(80ݐߨ) ଷݕ, =  sin (2000ݐߨ)݁൫ି భ்(௧ି మ்)మ൯ ݕ, = ଵݕ ଶݕ + ଷݕ + + ,(ݐ)݁  (3)

where ଵܶ = 1000, ଶܶ = 0.25݅ and ݅   .is noise (ݐ)݁ ;3 ,2 ,1 =

 
Fig. 1. The time domain waves of simulation signals  

The time domain waves of simulation signals, as determined by Eq. (3), are plotted in Fig. 1. 
There are four types of compositions in the final simulation signal: (1) one sinusoidal signal, 
(2) one cosine signal, (3) one impulse signal and (4) noise. The primary frequencies are 5 Hz, 
40 Hz and 100 Hz, which can be observed in Fig. 2. From this figure, we can see that the impulse 
signal is relative weaker than the sinusoidal and cosine signals. Concurrently, there are many other 
compositions with small amplitude distributed frequencies that are produced by noise. 

 
Fig. 2. The frequency domain waves of simulation signals 
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Fig. 3 shows the decomposition information of the traditional EMD. Directly observing the 
plots in Fig. 3, it can be concluded that the signal ݕଵ is able to decompose into ܿହ. Most of the 
components in ݕଶ are decomposed into ܿସ; however, ܿଷ not only includes much of the information 
contained in ݕଷ, but also has significant noise interference and part of the information contained 
in ݕଶ. For this type of phenomenon, a signal appears in two or more IMF components, and is the 
so-called mode mixing of EMD. Therefore, the traditional EMD cannot effectively resolve a 
complex signal. 

 
Fig. 3. The decomposition information of traditional EMD, in which  

the components ܿଵ to ܿ are IMFs and ݎ is residual signal 

 
Fig. 4. The decomposition information of traditional EEMD, in which the components ܿ1 to ܿ6  

are the first six IMFs and the other decomposition information is not showed 
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Fig. 4 shows the decomposition results of the EEMD process. According to this figure, we can 
see the main components of ݕଷ ଶݕ ,  and ݕଵ  are decomposed into ܿଷ , ܿସ and ܿହ , respectively. 
Although ܿଷ includes some information regarding ݕଷ and ܿହ also has some information regarding ݕଵ, the decomposition results of EEMD are better than that of traditional EMD. 

Fig. 5 shows the decomposed results of IEEMD. Per the operating procedure of IEEMD, the 
well-IMFs are handled from these decomposition components of traditional EEMD. In fact, it can 
be regarded as a denoising process. From these plots in Fig. 5, we can see that these singles are 
clearer than those in Fig. 4. At the same time, the signal components belonging to simulation 
signals contain more energy values than those of other IMFs. Then we can select this IMF with 
the largest energy value to extract features for fault diagnosis.  

 
Fig. 5. The decomposition information of IEEMD, in which the components ܿଵ to ܿ  

are the first six IMFs and the other decomposition information is not showed 

3. Fault diagnosis mode 

3.1. Feature extraction 

A bearing cannot smoothly work after a defect appears. Additionally, the impact to other 
components will also be collected by sensors. For different bearing faults, the main frequencies 
will vary and are defined as characteristic damage frequencies (CDFs). Generally, these CDFs are 
determined by shaft rotational speed and the structural parameters of a bearing, which can be 
calculated by [9]: 

ەۖۖۖ
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where ݊ is the speed of shaft; ௦݂ௗ is shaft rotational frequency; ݂, ݂ and ݂௨௧ are CDFs of 
inner race fault, ball fault and outer race fault, respectively; ܤ and ܲ are ball and pitch diameter, 
respectively; ܰ is the number of balls; and ߠ is the angle of the load from the radial plane. 

According to Eq. (4), if a bearing is under normal stress then the shaft rotational frequency 
component will be large. If one fault appears, the information of CDFs will increase. Therefore, 
the energies of a band frequency nearby, i.e., 1× ( ௦݂ௗ, ݂, ݂ and ݂௨௧), 2× ( ௦݂ௗ, ݂, ݂ 
and ݂௨௧) are computed as features. 

When extracting features as above description, how to accurately find these frequency 
components of CDFs and shaft rotational frequency is also a thorny problem need to be solved. 
The theoretical values of CDFs will be different from their actual values because of following 
reasons: when rotating machinery working, its shaft rotational frequency will be fluctuations; at 
the same time, the used frequency resolution may also impact on the finding effect of CDFs and 
shaft rotational frequency. In order to extract sufficient fault impact information, a CDF finding 
algorithm is presented in this paper, and which mainly includes following steps: 

First, calculate theoretical values of CDFs with Eq. (4), and which are marked as ݂∗ , ݂∗  and ݂௨௧∗ . In this paper, the shaft rotational frequency for calculating CDFs is regarded as the set value 
when rotating machinery working. In actual production, a rotary machine usually has a preset 
rotating speed ௦݂ௗ∗ , although it may run with a speed which fluctuates within a certain range 
nearby ௦݂ௗ∗ . 

Second, determine the searching radius of impact frequency and denote it as ݂∗ . Further 
analysis of Eq. (4), we can find that CDF can be regarded as a factor times shaft rotational 
frequency. Therefore, we set ݂∗ = 0.5 × ௦݂ௗ∗ .  

Third, find this frequency with maximal amplitude among the searching frequency interval 
which is defined as [ܨ − ݂∗ ܨ + ݂∗ ], and which is denoted as ܨ୫ୟ୶. In this step, F can 
be replaced by ௦݂ௗ, ݂, ݂ and ݂௨௧. 

Final, calculate the energy of these frequency among [݅ × ௫ܨ − ݀, ݅ × ௫ܨ + ݀] as feature. 
In fact, ܨ௫ can be treated as the most likely CDF or shaft rotational frequency information. 

3.2. SVM based fault diagnosis 

Typically, a complete fault diagnosis method includes three steps: signal collection, feature 
extraction by signal processing and fault decision. After extracting features from original vibration 
signals, the method for using these features for fault diagnosis is also an important step. SVM is 
presented from the statistical learning theory to solve binary classification issues based on the 
structural risk minimization principle [21-23]. Using a few feature samples, SVM can be trained. 
Therefore, SVM is employed to perform fault diagnosis based on the extracted features. In this 
study, the used SVM code was acquired from the LIBSVM open source code library maintained 
by the National Taiwan University [23] and the procedure for the proposed method is shown in 
Fig. 6. 

 
Fig. 6. Procedure of the proposed method 

4. Experiment 

4.1. Experimental setup 

To test the effectiveness of the proposed method based on the EEMD, correlation analysis and 
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SVM, an experimental study was implemented using vibration data sets from the bearing data 
center of Case Western Reserve University [24]. This simulator includes a 3-phase, 2 hp induction 
motor, a torque, rolling element bearings (6205-2RS JEM SKF) and a dynamometer. The test 
bearings were installed at the drive end to support the motor shaft. The bearing faults were all 
single point damages with fault diameters of 0.007 inches that were formed using electro-
discharge machining methods. The sample frequency used was 12000 Hz and the corresponding 
vibration signals were collected by accelerometers using a 16 channel data recorder when bearings 
were rotating at a speed of 1797 rpm or 29.95 Hz. According to Eq. (4), we can get the theoretical 
values of ݂, ݂ and ݂௨௧ are 162.2 Hz, 142.2 Hz and 107.3 Hz, respectively. In this study, the 
test conditions included normal operations and three types of faults including an inner race fault, 
a ball fault and an outer race fault. Fig. 7 shows the segmental vibration signals. According to the 
plots in Fig. 8, the difficulty of performing fault diagnosis solely based on the time domain 
information from the collected vibration signals can be observed. 

 
Fig. 7. The waves of vibration signals and their frequencies 

4.2. Experimental results and discussion 
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this figure, ܿଵ to ܿ are the first six IMFs of the EEMD, ܥூெி is the final IMF of the IEEMD and ܧଵ is the energy of ܿଵ. Concurrently, the energy values of other IMFs are also described based on 
the form of ݇ ×  .ଵܧ

From Fig. 8, we can see that ܿଵ  has the largest energy value compared to the other 
decompositions of the EEMD. Therefore, ܿଵ  is selected and processed with EMD. After 
processing by EMD, ܿଵ is decomposed into a new series of IMFs where the new IMFs may include 
various useful information. Therefore, the IMF with the largest energy value is selected for 
purpose of this study. The final IMF obtained by the IEEMD includes most of the energy 
belonging to ܿଵ, that is to say, the proposed method can improve the decomposition results of the 
EEMD while resolving some noise. According to the principles of traditional EMD, the 
decomposition results are suitable IMFs. Therefore, the proposed IEEMD can solve the non-IMF 
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problem of EEMD. Additionally, experimental verification can be found in Refs. [16, 17]. In this 
study, each feature is extracted from 4000 points from the vibration signal; hence, the length of 
the data segment processed by IEEMD is 4000 sampling values. 

  
Fig. 8. The decomposition results of inner race fault with IEEMD, in which ܿଵ to ܿ are the first six IMFs 

of EEMD, ܥூெி is the final IMF of IEEMD and ܧଵ is the energy of ܿଵ 

Fig. 9 shows the envelope spectrums of the selected IMF under consideration, where (a), (b), 
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“2”, “3” and “4”, respectively. The other parameters of the SVM model are set as the default 
values. The default values themselves were obtained from Ref. [21]. 

 
Fig. 9. The envelope spectrums of consideration conditions 

 
Fig. 10. The test results of the proposed method  

The test results are shown in Fig. 10. As shown in this figure, the outputs of the samples with 
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In the same fashion, the other test samples are all diagnosed accurately. Therefore, Fig. 10 shows 
that the propose method is effective for fault diagnosis of rotating machinery. Additionally, the 
IEEMD algorithm can be considered a satisfactory process. 

5. Conclusions 

Rotating machinery is an important kind of equipment widely used in many fields. Bearings 
faults will cause performance degradation of the entire system and potentially create significant 
security problems. Therefore, a new method based on EMD, EEMD and SVM was proposed to 
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diagnose the faults of rotating machinery. First, the collected vibration signals were processed by 
IEEMD and then combined with EMD and EEMD. In this stage, the original vibration signals 
were decomposed by EEMD and then the IMF with the largest energy value was selected to be 
determined using EMD. For the decomposition components of EMD, the component with the 
largest energy value was defined as the final well-IMF and was selected for further analysis. Then 
envelope spectrums were produce to extract the energies of these frequency components based on 
a band of multiple fault characteristic frequencies as features. In order to extract sufficient fault 
impact information, a CDF finding algorithm is presented in this paper. Finally, a SVM based 
fault diagnosis mode was constructed by training samples for fault diagnosis of the rotary machine. 
A test experiment was performed on a test bench where the test results indicated the proposed 
method was effective for fault diagnosis of rotating machinery.  
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