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Abstract. To address the non-stationary and nonlinear characteristics of vibration signals 
produced by rolling bearings and the noise pollution of acquired signals, a fault diagnosis method 
based on singular value decomposition (SVD), empirical mode decomposition (EMD) and 
variable predictive model-based class discrimination (VPMCD) is proposed in this paper. 
VPMCD is a novel pattern recognition method; however, according to the results obtained when 
the fault diagnosis method is applied to a small sample, the stability of the VPM constructed based 
on the least squares (LS) method is not sufficient, as demonstrated by the multiple correlations 
found between independent variables. This paper uses the partial least squares (PLS) method 
instead of the LS method to estimate the model parameters of VPMCD. Compared with the 
back-propagation neural network (BP-NN) and least squares support vector machine (LS-SVM) 
methods, based on numerical examples, the method presented in this paper can effectively identify 
a faulty rolling bearing. 
Keywords: fault diagnosis, partial least square, variable predictive model-based class 
discrimination, empirical mode decomposition, singular value decomposition. 

1. Introduction 

Rolling element bearings are significant components of rotary machines, and their working 
condition can directly affect the operation of the machine. The failure of a bearing can lead to the 
failure of the entire structure. Therefore, the early fault diagnosis of rolling element bearings can 
improve the safety of operating machinery [1-3]. 

The first step in fault diagnosis is to extract fault features from rolling bearing signals. Because 
the vibration signal carries large amounts of information representing the health conditions of 
mechanical equipment, vibration analysis has been established as the most common and reliable 
method of analysis in the field of condition monitoring and diagnostics of rotating machinery. 
When a fault occurs, the generated vibration signals are mostly nonlinear and non-stationary [3-5]; 
therefore, the key to bearing fault diagnosis is determining how to extract fault features from 
nonlinear and non-stationary signals. Conventional signal processing techniques, such as 
time-domain statistical analysis, Fourier transforms, and Wigner-Viller distributions, are based on 
the assumption that the signals are stationary and linear, which is not realistic. Wavelet transforms 
can be used process nonstationary signals. However, energy leakage will occur in the wavelet 
transformation, and the selection of the wavelet base function in the wavelet transform is difficult. 
The EMD method is a time-frequency analysis method suited to addressing nonlinear and 
non-stationary signals and can decompose signals into several stable intrinsic mode function (IMF) 
components [6, 7]. EMD has been widely applied in the fault diagnosis of rolling element bearings 
[8-10]. The collected signals are often mixed with noise, which can increase the number of layers 
of the EMD and enhance end effects, mixing fault feature signals and noise and increasing the 
difficulty of extracting fault features [10]. Therefore, selecting appropriate de-noising methods to 
remove the noise signals is very important and improves the accuracy of feature extraction. De-
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noising methods based on SVD represent effective nonlinear filtering methods with high 
robustness and are also used in the fields of image processing and signal filtering [11-13]. Entropy 
can be used to not only represent the complexity of signals but also measure the non-determinacy 
of a system or a piece of information [1, 14, 15]. When different bearing faults occur, the energy 
distributions of signals will change in different bands. Therefore, the energy entropy of vibration 
signals can be used as the eigenvector to extract fault features. 

After extracting fault features from vibration signals, many scholars adopt neural networks, 
support vector machines (SVMs) or other intelligent methods to identify the fault features of 
bearings [1, 15, 16]. However, neural network identification methods are built based on large 
training samples. Their training speed is low, and such methods can easily fall into local extrema 
[17]. SVMs represent a method of small-sample learning that can obtain a globally optimal 
solution; however, the kernel function and parameters are not easy to confirm. Because the internal 
relations between the features of different faults obviously differ, the relations can be used to 
perform fault diagnosis. Thus, a new pattern recognition method based on the VPMCD method 
was proposed by Raghuraj and Lakshminarayanan [18, 19]. Cheng adopted the VPMCD method 
to study the fault diagnosis of bearings and to improve diagnosis performance [20]. LS regression 
is used in the VPMCD method to estimate the model parameters based on the assumption that no 
highly linear correlations exist between independent parameters. However, the fault feature data 
are limited in practical situations such that a linear correlation between independent variables is 
inevitable for small samples. A high degree of correlation influences the accuracy of parameter 
estimation, therein increasing model error and destabilizing the model. To address this problem, 
instead of the LS method, PLS regression is used to estimate the model parameters. The PLS 
method benefits from a strong processing capacity for high-dimensional data and can estimate 
parameters given a linear dependence between independent variables to improve the estimation 
accuracy [21]. 

In this paper, an improved VPMCD method is used for bearing fault diagnosis. First, an SVD 
de-noising method is adopted to facilitate the filtering of vibration signals. Then, the EMD method 
is used to decompose the signals into several IMF components. When a fault appears, some useful 
faulty information can be extracted from the high-frequency bands of vibration signals. The 
energy entropy of the first several orders of IMF components is selected to construct the fault 
eigenvector. The PLS method is selected to estimate the VPMCD model parameters, and the 
prediction model is applied to facilitate bearing fault identification. 

2. Feature extraction of bearing faults based on SVD and EMD  

2.1. Effect of noise on EMD  

The EMD method proposed by Huang et al. in 1998 was found to be remarkably effective in 
analysing nonlinear and non-stationary signals [6]. The method can decompose any nonlinear, 
non-stationary signal into several IMF components and a remainder [8, 9]: 

ሻݐሺݔ =  ܿሺݐሻ
ୀଵ + ,ሻݐሺݎ (1)

where ܿሺݐሻ represents the ݅th IMF and ݎሺݐሻ represents the remainder. 
During EMD, the upper and lower envelopes are obtained via the cubic spline interpolation of 

extreme points [10]. Because of the uncertainty of whether the endpoints are the extremes, the 
spline has a fitting error at the endpoints in each IMF. The error continues to spread to the data 
internally during the decomposition process, which can lead to the IMF losing its original physical 
meaning and to false IMF components. Because the vibration signals are polluted by various types 
of noise to some extent, the number of spline interpolations and layers in the EMD increases, 
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gradually accumulating the error caused by the end effect and seriously affecting the quality of 
the EMD. Moreover, signals that contain no interference by EMD cannot be well separated into 
IMF components because of the influence of noise; thus, it is extremely difficult to effectively 
extract fault features from interfered IMF components. 

The effect of interference on EMD is presented in the following example. The simulated  
signal is: ݔሺݐሻ = ൫3 + cosሺ15ݐߨሻ൯cos൫380ݐߨ − 3sinሺ5ݐߨሻ൯ + ݐߨcosሺ70ݐ2 + 0.5cos2ݐߨሻ + ݊ሺݐሻ, (2)

where ݔሺݐሻ is the time-domain signal, as shown in Fig. 1, and ݊ሺݐሻ is a Gaussian white noise 
signal with an SNR of 14.5 dB. The sampling frequency is 5 kHz, and the sampling duration is 
1 s. The IMF components obtained from the EMD are shown in Fig. 2. 

 
Fig. 1. Time-domain signal 

 
Fig. 2. IMF components 

Fig. 2 shows that the 1st-3rd IMF components are mainly noise signals and that the 4th-8th 
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IMF components contain the active ingredient. Due to the influence of noise, frequency aliasing 
appears in the IMF components. Therefore, the signals containing noise pollution must be 
preprocessed before applying EMD to improve the accuracy. 

2.2. De-noising method based on SVD 

The de-noising method based on SVD provides good stability and can reduce noise and 
improve the SNR [11-13]. Assuming that the vibration signal of a rolling bearing is ܠ =ሾݔଵ, ,ଶݔ ⋯ ,  :ெሿ, the reconstructed track matrix of the attractor ۲ is as followsݔ

۲ = ൦ ଵݔ ଶݔ ⋯ ଶݔݔ ଷݔ ⋯ ⋮ାଵݔ ⋮ ⋮ ݔ⋮ ାଵݔ ⋯ .ାିଵ൪ݔ (3)

According to SVD theory, the matrix ۲ is decomposed as ۲ = ܃ where ,்܄܁܃ ∈ ்܄ ,×܀ ∈ ்܃܃ ,×܀ ∈ ۷, and ்܄܄ ∈ ݉ is an ܁ .۷ × ݊ diagonal matrix with diagonal elements of ߣଵ, ߣଶ,…, ߣ, which are called the singular values of the matrix ۲, where ߣଵ > ଶߣ > ⋯ > ݇  andߣ = minሺ݉, ݊ሻ. For the signal containing noise, its reconstructed track matrix of the attractor ۲ 
must be a column full-rank matrix, namely, rank ݇ = ݉. Based on SVD theory and the matrix 
optimal approximation theorem based on the Frobenius norm, if the first ݇′ singular values are 
retained and if the other singular values are set to zero, then the matrix ۲ᇱ  can be obtained via 
the inverse process of SVD, which is the best approximation matrix of ۲. Thus, the de-noised 
signals can be obtained from the matrix ۲ᇱ . 

When constructing the best approximation matrix ۲ᇱ , the de-noising effect differs when the 
selected order ݇′ changes. If the order is too low, the information of the filtered signal is not 
complete, and if the order is too high, the filtered signal continues to contain an excessive noise 
signal. The singular entropy of the signal can reflect the degree of information contained in the 
singular value. The singular entropy ܵ is defined as follows: 

ܵ = ௦, (4)௦log−

where ௦ = ߣ ∑ ⁄ୀଵߣ  (݅ = 1, 2,…, ݇). Because the first ݇′ singular value corresponds to the 
effective components of the signal, the singular entropy is relatively large. After reaching a certain 
order, the singular value that corresponds to the components of the noise and the singular entropy 
is relatively small; therefore, the distribution diagram of the singular entropy can be used to 
determine the order of the effective components. Then, the signal can be reconstructed to 
effectively and simultaneously retain the signal information and remove the noise. The distribution 
diagram of the singular entropy is shown in Fig. 3 for the time-domain signal ݔሺݐሻ in Fig. 1. The 
figure shows that after the singular entropy curve decreases to the asymptotic value, the small 
singular value can be considered as that caused by noise signals. Fig. 3 shows that the order of 
denoising used to reconstruct the signal is 28. 

The SNR after de-noising is 55 dB. The first 3 orders of IMF components obtained by EMD 
from the de-noising signals are shown in Fig. 4. 

The figure shows that the de-noising method based on SVD provides good stability and can 
both reduce noise and improve the SNR. The IMF components obtained from EMD are the 
effective parts of the signal. 
 



2308. APPLICATION OF VPMCD METHOD BASED ON PLS FOR ROLLING BEARING FAULT DIAGNOSIS.  
HONGYU CUI, MING HONG, YUANYING QIAO, YUMEI YIN 

164 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. FEB 2017, VOL. 19, ISSUE 1. ISSN 1392-8716  

 
Fig. 3. Distribution diagram of singular entropy 

 
Fig. 4. IMF components of filtered signal 

2.3. Feature extraction based on energy entropy  

When different bearing faults appear, the energy distribution of vibration signals for each order 
of IMF components changes. Entropy not only represents the complexity of signals but also can 
be used to measure the uncertainty of a system or a piece of information. Therefore, the 
distribution of energy characteristics of different IMF components can be described by the energy 
entropy. For the collected bearing vibration signal ܠ = ሾݔଵ, ,ଶݔ ⋯ ,  orders of IMF ݍ ேሿ, the firstݔ
components are obtained via EMD; then, the energy ܧଵ, ܧଶ,…, ܧ can be calculated to obtain the 
energy entropy of each order of IMF components: ܵாே = , (5)log−

where  = ܧ ⁄ܧ  is the proportion of energy of the first ݅ orders of the IMF components to the 
total energy ܧ =  ேୀଵݔ|ଶ݀ݔ| . 

3. Improved VPMCD method 

3.1. VPMCD method 

VPMCD is a novel pattern recognition method that considers linear or nonlinear interrelations 
among system eigenvalues and assumes that the relations differ in different systems [18, 19]. First, 
the mathematical models of the interrelations among system eigenvalues are built, and different 
types of training samples are selected to estimate the model parameters to obtain different 
predictive models. Then, test samples are identified and classified by the predictive models. 

During the bearing fault diagnosis, ݍ different eigenvalues ܆ = ൣ ଵܺ, ܺଶ, ⋯ , ܺ൧ are extracted 
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from the vibration signals and are used to describe the characteristics of fault features. There are 
functional relationships between the eigenvalue ܺ and one or more other eigenvalues ܺ  ሺ݆ ≠ ݅ሻ. 
In the VPMCD method of this paper, linear interaction VPM is used to establish the interrelations: 

ܺ = ܾ +  ܾ ܺ௦
ୀଵ +   ܾ ܺܺ௦

ୀାଵ
௦

ୀଵ , (6)

where ݏ ሺݏ ≤ ݍ − 1ሻ is the order of the predictive model and ܾ is the regression parameter of the 
predictive model. 

We use the eigenvalues ܺ to predict ܺ, that is: 

ܺ = ݂൫ ܺ, ܾ൯ + ݁, (7)

where ݂ሺ⋅ሻ is the ܸܲܯ of variable ܺ and ݁ is the model error. 

3.2. VPMCD method based on PLS regression  

The VPMCD method based on LS regression (LS-VPMCD) was proposed by Raghuraj et al. 
to predict the model parameters [18-20]. When the number of samples is small, a linear correlation 
between independent variables is inevitable. If the linear correlation is strong and if LS regression 
continues to be used to fit regression models, the regression coefficients will be very sensitive to 
small changes in sample data; thus, it will be difficult to obtain stable regression models. In 
practical parameter estimation, multiple correlations between parameters are ubiquitous. 
Information integration and screening technology are applied when building regression models 
based on PLS regression. Associations are established with latent factors extracted from predictor 
variables that maximize the explained variance in the dependent variables, and the noise 
interference can be excluded to some extent. Thus, this method can effectively solve the regression 
modelling problem subject to the multiple correlations that exist among independent variables. 
During bearing fault diagnosis, the model parameters in Eq. (6) are identified as follows [21]: 

1) Build the output variable matrix ܡ and the input variable matrix ܄ using Eq. (6): ܡ = ,ଵݕൣ ,ଶݕ ⋯ , ൧்ݕ = ቂ ܺሺଵሻ, ܺሺଶሻ, ⋯ , ܺሺሻቃ், (8)

܄ = ,ଵܞൣ ,ଶܞ ⋯ , ൧ܞ = ێێۏ
1ۍێ ܺሺଵሻ ⋯ ܺሺଵሻܺሺଵሻ1 ܺሺଶሻ ⋯ ܺሺଶሻܺሺଶሻ⋮ ⋮ ⋮ ⋮1 ܺሺሻ ⋯ ܺሺሻܺሺሻۑۑے

(9) ,ېۑ

where ݊ is the number of samples and  is the number of input variables. 
2) Obtain the normalized variable matrices ۳ and  as follows, using data standardization to 

ensure that the collection centre of the sample points coincides with the coordinate origin: 

൝۳ = ൫ݒ∗ ൯×,ݒ∗ = ൫ݒ − ൯ݒ̅ ௩ೕൗݏ , ݅ = 1,2, … , ݊, ݆ = 1,2, … , , (10)

ቊ = ሺݕ∗ሻ×ଵ,ݕ∗ = ሺݕ − തሻݕ ⁄௬ݏ , (11)

where ۳ and  are normalized matrices of ܄ and ܡ, respectively; ̅ݒ and ݕത are the means of ܄ 
and ܡ, respectively; and ݏ௩ೕ and ݏ௬ are the mean square deviations of ܄ and ܡ, respectively. 
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(3) Extract the principal components ܜଵ as follows: ൜ܜଵ = ۳ܟଵ,ܝଵ = ,ܿଵ  (12)

where ‖ܟଵ‖ = 1 and ܿଵ = 1. Solve the regression equation of ۳ and  on ܜଵ as follows: 

ቊ۳ = ଵ்ܘଵܜ + ۳ଵ, = ࢀݎܜ + ,ଵ  (13)

۔ۖەۖ
ଵܘۓ = ۳் ଵ‖ଶܜ‖ଵܜ ଵݎ, = ் ଵ‖ଶܜ‖ଵܜ ,  (14)

where ܘଵ and ݎଵ are the regression coefficients and ۳ଵ and ଵ are the residual matrices. 
(4) Replace ۳ with ۳ଵ, and replace  with ଵ. Obtain the second principal axis ܟଶ and the 

second principal components ܜଶ; then: ܜଶ = ۳ଵܟଶ. (15)

Solve the regression equation of ۳ଵ and ଵ on ܜଶ. Specifically: 

൜۳ଵ = ଶ்ܘଶܜ + ۳ଶ,ଵ = ଶ்ݎଶܜ + ,ଶ  (16)

۔ۖەۖ
ଶܘۓ = ۳ଵ் ଶ‖ଶܜ‖ଶܜ ଶݎ, = ଵ் ଶ‖ଶܜ‖ଶܜ .  (17)

(5) Extract the ℎth principal component ܜ. Similarly, perform the third step through the ℎth 
step to obtain ℎ principal components ܜଵ ଶܜ , ܜ ,…, . The number ℎ can be determined via the 
principle of cross-validation, in which the rank of ℎ is less than the rank of ܆. 

(6) Reconstruct the PLS regression model. Obtain the PLS regression equation  on ܜଵ, ܜଶ,…, ܜ; thus: መ = ଵ்ݎଵܜ + ଶ்ݎଶܜ + ⋯ + ்ݎܜ + ݂. (18)

Because ܜଵ, ܜଶ,…, ܜ is a linear combination of ۳, we have: ܜ = ۳ିଵܟ = ۳ܟ∗,    ݅ = 1,2, … , ℎ, (19)

where ܟ∗ = ∏ ൫۷ − ்ܘܟ ൯ܟିଵୀଵ . Using Eqs. (18) and (19), we have: መ = ∗ଵܟଵ۳ݎ + ∗ଶܟଶ۳ݎ + ⋯ + ∗ܟ۳ݎ +  = ۳ሺݎଵܟଵ∗ + ∗ଶܟଶݎ + ⋯ + ∗ሻܟݎ + . (20)

Denoting ܡ∗ = ߙ , = ∑ ∗ୀଵݓݎ , (݅ = 1, 2,…, ݉), the standardized regression equation is: ܡො∗ = ∗ଵܞଵߙ + ∗ଶܞଶߙ + ⋯ + ∗ܞߙ . (21)

Reconstruct the regression equation of the original variables as follows: 
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ොܡ = ܡത −  ߙ ௩ݏ௬ݏ ݒ̅
ୀଵ ൩ + ଵߙ ௩ݏ௬ݏ ଵܞ + ⋯ + ߙ ௩ݏ௬ݏ .ܞ (22)

4. A fault diagnosis approach for rolling bearings based on the improved VPMCD method  

In this paper, SVD, EMD and the PLS-VPMCD are combined to provide fault diagnosis for 
rolling bearings. Using the SVD method, noise is reduced in the original vibration signals. Then, 
the EMD method is used to decompose the vibration signals of the rolling bearings into several 
IMF components. The energy entropy of the first several orders of IMF components is extracted 
to construct the fault eigenvector, which is combined with the PLS-VPMCD method for pattern 
recognition. The flow chart of the proposed fault diagnosis approach is shown in Fig. 5. 

The fault diagnosis process based on PLS-VPMCD is as follows: 
(1) The vibration signals at a certain sample frequency ௦݂ are collected under four types of 

conditions: the rolling bearing is normal, the bearing has outer race faults, the bearing has inner 
race faults and the bearing has rolling ball faults. The number of samples is ݊  under each  
condition. 

(2) The de-noising method based on SVD is used to pre-process the collected signals, and the 
reconstruction order is determined by the singular entropy and used to reconstruct the vibration 
signals. 

(3) The EMD method is used to decompose the reconstructed signals to obtain several IMF 
components. The first ݍ orders are selected, and the energy entropy is calculated to construct the 
fault eigenvector. 

(4) The ݊ fault eigenvectors under each fault condition are used as the training sample. The 
corresponding variable predictive model ܸܲܯሺሻ can be obtained using the PLS method as shown 
in Eqs. (8)-(22), where ݇ = 1, 2, 3, 4 represent the normal state, the outer race fault state, the inner 
race fault state and the rolling ball fault state, respectively, and ݅ denotes different eigenvalues. 

(5) The testing signals are collected, and the eigenvector ܆′ is constructed according to steps 
(1)-(3) as the input of the ܸܲܯ classifier. Then, the working condition and fault classes can be 
identified by the output of the ܸܲܯ classifier. 

 
Fig. 5. Flow chart of the fault diagnosis model based on PLS-VPMCD 
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5. Experiment 

In this paper, PLS-VPMCD method is used for the fault diagnosis of rolling bearings. Rolling 
bearing experimental data from the Bearing Data Center of Case Western Reserve University are 
adopted to verify the validity and superiority of this method. A type 6205-2RS JEM SKF bearing 
is used. The sampling frequency is 12 kHz, the motor load is 0.746 kW, and the rotational speed 
is 1797 rpm. The fault types are the normal state, the outer race fault state, the inner race fault 
state and the rolling ball fault state. The diameter of the fault point is 0.1778 mm, and the depth 
of the fault is 0.2794 mm. The sampling time of each group is 0.1 s. The acceleration signals of 
the rolling bearing vibration in the normal state, the outer race fault state, the inner race fault state 
and the rolling ball fault state are shown in Figs. 6(a)-(d), respectively. 

 
Fig. 6. Vibration signal of the rolling bearing 

The collected acceleration signal of the rolling bearing vibration is inevitably influenced by 
noise. In this paper, the SVD method is used to reduce the noise components in the rolling bearing 
vibration signal. We reconstruct the vibration signals, which correspond to the normal state, the 
outer race fault state, the inner race fault state and the rolling ball fault state, and calculate the 
singular entropy of the vibration signal under each working condition, as shown as Fig. 7. 

There are different laws for the singular entropy value distribution in each component of a 
signal. The singular entropy values of the smooth signals and fault signals are larger and mainly 
appear during the initial period of the singular entropy diagram; thus, the singular entropy value 
that decreases to the flat region is caused by noise. We select the order for which the singular 
entropy value decreases to the flat region of the singular entropy curve as the de-noising order. 
This ensures the validity of the noise filtering process. Fig. 7 shows that the distribution of the 
singular entropy value exhibits different characteristics during each working state. However, after 
the 15th order, the singular entropy curve becomes flat; thus, the de-noising order is selected as 
15 in this paper. The rolling bearing vibration signals after de-noising in the normal state, the outer 
race fault state, the inner race fault state and the rolling ball fault states are shown in Figs. 8(a)-(d), 
respectively. 

Comparing Fig. 6 with Fig. 8 shows that the stochastic noise of the signal is largely reduced. 
The signal after filtering is decomposed using EMD, and the energy entropy of the first 4 orders 
of the IMF components is used to construct the bearing eigenvector. The first 4 orders of the IMF 
components decomposed using EMD in the normal state, the outer race fault state, the inner race 
fault state and the rolling ball fault state are shown in Figs. 9(a)-(d), respectively. 
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Fig. 7. Singular entropy of the vibration signal 

 
Fig. 8. Vibration signal after de-noising 

Fig. 9 shows that the SVD de-noising process decreases the influence of noise on the EMD 
and that each order of the IMF components is the main component of the vibration signal. The 
characteristics of the energy distributions of the IMF components differ under different fault 
conditions. The fault eigenvector constructed using the energy entropy of the IMF components 
can effectively provide information about the bearing work state. 

The key point of the VPMCD method used in the fault diagnosis of bearings is obtaining an 
effective prediction model VPM via training sample regression. With fewer training samples, the 
number of sample points could be nearly equal to and sometimes less than the number of variables. 
When the number of samples is smaller, a linear correlation between independent variables is 
inevitable. If the linear correlation is strong and if LS regression is used to construct the regression 
model, the accuracy and reliability of the prediction model cannot be easily guaranteed. 

The variance inflation factor is the most commonly used diagnostic method when addressing 
multiple correlations. When the variance inflation factor is larger than 10, multiple correlations 
strongly influence the estimated value of the LS method. The average variance inflation factors 
between independent variables are shown in Table 5. 

Table 5 shows that the average variance inflation factors between independent variables are 
much larger than 10. When the model parameters are estimated via the LS method, large 
deviations appear and subsequently influence the identification precision of the VPM model. The 
number of samples is ݊ = 7. VPM models are constructed using the LS method and the PLS 
method. VPM models are then used to identify 20 new groups of samples, and the VPM model 
identification errors are shown in Fig. 10. 
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Fig. 9. IMF components of the bearing vibration signal 
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Table 5. The average variance inflation factors between independent variables 
Dependent 
variables 

Average variance inflation factors 
Normal state Outer race faults Inner race faults Roller faults ݔଵ 7960.96 17742.23 7229.62 21562.93 ݔଶ 2670.89 5747.73 266007.96 13494.77 ݔଷ 6012.05 3788.70 7030.72 7015.84 ݔସ 45992.36 4704.83 3737.37 934.01 

 

 

 
Fig. 10. VPM model identification errors. (ܸܲܯଵ: VPM model constructed using samples in the normal 

state; ܸܲܯଶ: VPM model constructed using samples in the outer race fault state; ܸܲܯଷ:  
VPM model constructed using samples in the inner race fault state; ܸܲܯସ:  

VPM model constructed using samples in the rolling ball fault state) 

 
Fig. 11. The recognition rates of different methods. A is the recognition rate when the number of samples 

and when the signal is unfiltered, B is the recognition rate when the number of samples and when  
the signal is filtered, C is the recognition rate when the number of samples and when the signal is 
unfiltered, D is the recognition rate when the number of samples and when the signal is filtered,  

E is the recognition rate when the number of samples and when the signal is unfiltered,  
and F is the recognition rate when the number of samples and when the signal is filtered 

Fig. 10 shows that, because of the multiple correlations amongst independent variables, larger 
errors appear in the estimated values of the LS-VPM model. Especially for the rolling ball fault 
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state, large errors appear such that it becomes difficult to identify the fault state. The PLS method 
can effectively solve the problem of multiple correlations amongst independent variables. The 
error of the estimated value from the PLS-VPM model is stable; thus, the model can properly 
identify the faulty state of a bearing. 

The BP-NN and LS-SVM methods are effective identification methods that possess strong 
identification abilities and high robustness. Using different numbers of samples when the vibration 
signals are pre-processed using SVD de-noising and identified using the BP-NN, LS-SVM, 
LS-VPMCD and PLS-VPMCD methods, the identification error values of 20 new groups of 
samples are determined, as listed in Table 6. The total recognition rates of 80 groups of samples 
for different methods are shown in Fig. 11. 

Table 6. The number of model identification errors 

Method 
Normal state ݊ = 5 ݊ = 7 ݊ = 10

Unfiltered Filtered Unfiltered Filtered Unfiltered Filtered 
BP-NN 12 8 12 4 10 4 

LS-SVM 9 2 7 0 9 0 
LS-VPMCD 2 1 0 0 1 0 

PLS-VPMCD 2 1 0 0 0 0 

Method 
Outer race faults ݊ = 5 ݊ = 7 ݊ = 10

Unfiltered Filtered Unfiltered Filtered Unfiltered Filtered 
BP-NN 12 9 10 5 7 2 

LS-SVM 5 3 5 3 4 0 
LS-VPMCD 6 0 4 0 1 0 

PLS-VPMCD 5 0 2 0 1 0 

Method 
Inner race faults ݊ = 5 ݊ = 7 ݊ = 10

Unfiltered Filtered Unfiltered Filtered Unfiltered Filtered 
BP-NN 8 7 9 2 9 3 

LS-SVM 3 3 0 0 6 0 
LS-VPMCD 3 1 0 0 0 0 

PLS-VPMCD 2 1 0 0 0 0 

Method 
Rolling ball faults ݊ = 5 ݊ = 7 ݊ = 10

Unfiltered Filtered Unfiltered Filtered Unfiltered Filtered 
BP-NN 17 15 12 9 12 6 

LS-SVM 10 4 10 2 7 2 
LS-VPMCD 10 10 8 16 14 1 

PLS-VPMCD 9 3 4 1 7 0 

Table 7 shows the number of model identification errors for various orders (10, 15 and 20) of 
de-noising when the sample number ݊ = 7. 

The following is demonstrated by the data in Fig. 11, Table 6 and Table 7: 
(1) When the number of training samples ݊ = 5 or ݊ = 7, independent variables strongly 

affect each other through the multiple correlations, making the LS-VPM model less stable, 
especially as shown by the low identification rate of rolling ball bearing faults. The PLS-VPM 
model effectively avoids the multi-correlation influence between independent variables. Under 
the different fault state types, the method achieves high identification accuracy.  

(2) After de-noising the original vibration signal using SVD, the fault eigenvector extracted 
from the original vibration signal can provide information about the bearing’s state. Compared 
with the unfiltered state, the identification accuracy of each method is strongly increased. 
Increasing the number of samples without performing signal de-noising using the SVD method 
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cannot improve the identification accuracy. Table 7 shows that selecting the 15th order of the 
de-noising can improve the identification accuracy. 

(3) When the number of samples ݊ = 10, the identification accuracy of the PLS-VPMCD 
method is 100 % after the signal is filtered. Therefore, the method can accurately identify the fault 
state of a bearing. The identification accuracy of the PLS-VPMCD method is higher than that of 
the BP-NN, LS-SVM and LS-VPMCD methods, which are more suitable for identification when 
using small samples. 

Table 7. The number of model identification errors for different orders of de-noising 

Method 
Normal state (݊ = 7) 

Unfiltered Filtered 
10th order 15th order 20th order 

BP-NN 12 4 4 6 
LS-SVM 7 3 0 0 

LS-VPMCD 0 1 0 0 
PLS-VPMCD 0 1 0 0 

Method 
Outer race faults (݊ = 7) 

Unfiltered Filtered 
10th order 15th order 20th order 

BP-NN 10 8 5 5 
LS-SVM 5 3 3 2 

LS-VPMCD 4 1 0 1 
PLS-VPMCD 2 2 0 1 

Method 
Inner race faults (݊ = 7) 

Unfiltered Filtered 
10th order 15th order 20th order 

BP-NN 9 3 2 2 
LS-SVM 0 0 0 0 

LS-VPMCD 0 0 0 0 
PLS-VPMCD 0 0 0 0 

Method 
Rolling ball faults (݊ = 7) 

Unfiltered Filtered 
10th order 15th order 20th order 

BP-NN 12 7 9 6 
LS-SVM 10 3 2 4 

LS-VPMCD 8 14 16 12 
PLS-VPMCD 4 1 1 2 

6. Conclusions 

A bearing fault diagnosis method based on the SVD de-noising method and the PLS-VPMCD 
method is proposed in this paper to address the vulnerabilities faced by rolling bearings, the 
non-stationary and nonlinear characteristics of vibration signals and the presence of noise signals 
found in the collected signals. The results prove that, when performing fault diagnosis using small 
samples, the PLS-VPMCD can effectively avoid unstable model parameter identification caused 
by multiple correlations amongst independent variables. The PLS-VPMCD method achieves a 
higher diagnostic accuracy than the BP-NN and LS-SVM methods, and the PLS-VPMCD method 
does not require complicated parameter adjustments, thus avoiding the parameter optimization 
problem. As a result of the de-noising process using SVD, the fault eigenvector extracted from 
the original vibration signals can effectively provide fault feature information, reducing the 
influence of noise on bearing fault diagnosis and improving identification accuracy. Selecting the 
appropriate order of de-noising can improve the identification accuracy. In this paper, we provide 
a new analysis method based on PLS-VPMCD for diagnosing ball bearing faults. 
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