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Abstract. A semi-analytical method is proposed to analyze both axisymmetric and asymmetric 
vibrations of thin opened spherical shells with elastic boundary conditions and discontinuity in 
thickness. To establish the governing equation, the method is involved in dividing the shell into 
many narrow strips in meridional direction, and those strips are approximately treated as conical 
ones with uniform thickness. Flügge shell theory is used to describe the motions of strips and 
displacement functions are expanded as power series. Artificial springs are employed to restrain 
displacements at edges so that arbitrary boundary conditions can be analyzed. By assembling all 
continuity conditions of adjacent strips and boundary conditions, the governing equation is 
established. In numerical results discussion, many comparisons of frequency parameters of present 
method and those in literature are firstly presented and they illustrate high accuracy and wide 
application of present method. Furthermore, influences of elastic boundary conditions, open angle, 
ratio of thickness to radius and thickness discontinuity on natural frequencies of spherical shells 
are investigated. Results show that meridinoal and circumferential displacements have obvious 
effects on natural frequencies, and the influence of thickness discontinuity seriously depends on 
the location of discontinuity. 
Keywords: opened spherical shells, semi-analytical method, elastic boundary conditions, 
stepwise thickness, free vibration analysis. 

1. Introduction 

In building roofs, LNG tanks, offshore structures, nuclear power plants and other engineering 
structures, spherical shells are extensively used. Many times those structures are subjected to 
various external loads, such as earthquakes and sea waves, and the loads are of serious 
consequence for the strength and safety. Herein, knowing vibration characteristics plays an 
important role in design process. To this end, vibrations of spherical shells were investigated in 
past years and are also attracting attentions of more and more scholars nowadays.  

In general, the research method analyzing vibrations of spherical shells can be classified as 
three categories: analytical method [1-21], numerical method [22-37] and experimental method 
[38]. For analytical method, selecting appropriate displacement functions is the most important 
aspect. Although Legendre functions are usually adopted [2, 3, 6-11, 13-15], those functions 
significantly increase difficulties in solving natural frequencies due to the complex values. 
Niordson [14, 15] decomposed Legendre functions into real and imagine parts and the frequency 
equation could be correspondently solved in real number region. However, the form of 
displacements is uncertain around the critical frequency. Except for Legendre functions, Bessel 
functions were also used by some scholars, such as Kalnins and Naghdi [1], Hoppmann II [4] and 
Kalnins [5], to express the displacement functions of spherical shells. However, only shallow 
spherical shells can be accurately analyzed. Chakrabarti [12] adopted elementary (algebraic) 
functions to study radial vibrations of spherical shells. Lee [17] employed Chebyshev polynomials 
and Fourier series to express the displacement functions of spherical caps. Then, Lee [18] used 
the same method to analyze free vibration a hermetic capsule consisting of one cylindrical shell 
and two hemispherical shells. Standard Fourier series with auxiliary functions were adopted by 

https://crossmark.crossref.org/dialog/?doi=10.21595/jve.2016.17154&domain=pdf&date_stamp=2017-06-30


2464. A SEMI-ANALYTICAL METHOD FOR VIBRATION ANALYSIS OF THIN SPHERICAL SHELLS WITH ELASTIC BOUNDARY CONDITIONS.  
KUN XIE, MEIXIA CHEN, ZUHUI LI 

 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. JUN 2017, VOL. 19, ISSUE 4. ISSN 1392-8716 2313 

Su et al. [19] to express displacement functions of functionally graded spherical shells. 
Chernobryvko et al. [20] used the eigenmodes of the cantilever beam to approximate eigenmodes 
of axisymmetric shells and presented natural frequencies of a spherical shell of clamped-free 
boundary conditions. Excepting two-dimensional shell theory, three-dimensional method was 
adopted by Chen and Ding [16] and Kang [21] to study vibrations of multi-layered hollow spheres 
and shallow spherical domes, respectively.  

Numerically solving governing equations [22, 23, 30-33] and discretizing spherical shell 
[24-29, 34-37] are two main numerical methods to analyze vibrations of spherical shells. 
Zarghamee and Robinson [22] used the Holzer method to analyze free vibrations of spherical 
shells. Souza and Croll [23] investigated free vibrations of spherical shells by the finite difference 
method. Artioli and Viola [30] and Tornabene and Viola [31] used the generalized differential 
quadrature method (GDQ) to evaluate natural frequencies of spherical shells. Simmonds and 
Hosseinbor [32, 33] adopted a perturbation method to study free and forced vibrations of a closed 
elastic spherical shell fixed to an equatorial beam. As similar with other shell structures, finite 
element method [24, 26, 29] and semi-analytic finite element method [27] are the most common 
discrete methods to study vibrations of spherical shells. By using circular arc to represent the 
generic segment of the shell of revolution, Singh [25] adopted Bezier polynomials to study free 
vibrations of shells of revolutions. Piecewise Hermite interpolation polynomial and Fourier 
approximation were used by Wu and Heyliger [28] to expand approximately unknown 
displacements and forces in azimuthal and circumferential directions, respectively. By combining 
the modified variational principle with multi-segment partitioning procedure, Qu et al. [34] 
studied free and forced vibrations of functionally graded shells of revolution through adopting 
Fourier series and polynomials to expand the displacements. Choi et al. [35] used the 
Sylvester-transfer stiffness coefficient method to study free vibrations of axisymmetric shells. 
Before establishing the governing equation, axisymmetric shells were divided into lots of narrow 
strips and those strips were treated approximately as conical shells. Naghsh et al. [36] used the 
meridional finite strip method to investigate free vibrations of general shells of revolution, and 
natural frequencies of a spherical shell with constant and linearly variable thickness in the 
meridional direction were presented. Cui et al. [37] proposed a nodal integration model for elastic-
static, free vibration and forced vibrations of axisymmetric thin shells by using two-node truncated 
conical elements. 

In most above cited literature, the thickness of shell is uniform and only classic boundary 
conditions are taken into account. However, in practical engineering applications, boundary 
conditions may not be fixed in a classic restraint, and a variety of boundary conditions, such as 
elastic ones, may be encountered. In addition, non-uniform thickness, e.g. continuous variational 
thickness and stepped thickness, is also widely adopted to efficiently improve structural strength 
without obviously increasing the weight. At this context, proposing an accurate and efficient 
method for vibration analysis of thin spherical shells with arbitrary boundary conditions and 
non-uniform thickness is meaningful.  

The main purpose of the paper is to present an approach to analyze free vibrations of thin 
spherical shells with arbitrary boundary conditions and non-uniform thickness. First, the spherical 
shell is decomposed into lots of narrow strips, which are approximately treated as conical shells. 
Then, Flügge thin shell theory is employed to describe equations of motions of those conical strips, 
and displacement functions are expressed as power series. Finally, the governing equation is 
established through assembling continuity and boundary conditions. Based on the proposed 
method, effects of elastic boundary conditions, open angles, thickness discontinuity and other 
parameters on vibration characteristics of spherical shells are investigated. The present method is 
believed to include following novelties. It offers an accurate and efficient method to investigate 
free vibrations of spherical shells with elastic boundary conditions. In addition, it is applicable to 
deal with both uniform and non-uniform thickness. Last but not least, as spherical shells are 
coupled with thin cylindrical, conical and/or spherical shells, the continuity conditions between 
spherical shells and other shells can be accurately satisfied by present method. Vibrations of this 
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kind of coupled structures are rarely studied whereas vibrations of coupled cylindrical-cylindrical, 
conical-cylindrical and conical-conical shells have been relatively extensively studied.  

2. Theoretical formulations 

2.1. Basic concept of the semi-analytical method 

Fig. 1 shows the schematic diagram of a spherical shell with two open angles. The thickness 
may be constant, stepwise or continuous variational. ߮  and ߠ  denote the azimuthal and 
circumferential coordinates in spherical coordinate system. ߮ and ߮ଵ are the azimuth angles of 
two edges. In order to establish the governing equation of the spherical shell, the shell is divided 
into many narrow strips along the short dash lines in Fig. 1(b), and the strips are approximately 
treated as conical shells. Meanwhile, the thickness of any narrow strip, which may be variational, 
can be equivalently dealt as constant one when the strips are narrow enough. Radii of two ends of 
the strip are same as the radii of two circles of edges of the corresponding strip, and the axial 
length is the axial distance between the two circles. Then, on the basis of Flügge thin shell theory, 
power series are adopted to expand displacements of conical shells. Consequently, for a particular 
circumferential mode number, displacements and forces at the cross-section of one strip can be 
expressed in terms of eight unknown coefficients. Lastly, four continuity conditions of 
displacements and four equilibrium equations of forces of adjacent two strips are used to assemble 
those strips to the spherical shell. With the help of boundary conditions, the final governing 
equation analyzing vibrations of spherical shells is established. 

If north and/or south poles are included in the spherical shell, the poles should be cut so that 
the strip closing to the pole can be treated as truncated conical shells. In addition, the hole must 
be small enough to avoid big errors. In the following analysis, the azimuth angle of edge is  ߮ = 0.1° for the north pole while the azimuth angle of edge is ߮ = 179.9° for the south pole. At 
those added edges, free boundary conditions are adopted. 

 
a) 

 
b) 

 
c) 

Fig. 1. Schematic diagram of a spherical shell with two edges 

2.2. Equations of motion of conical shells 

The local coordinate system, displacements and forces of a conical shell are shown in Fig. 2. ݔ  is the meridional coordinate and it’s measured from the middle of the strip. ߠ  is the 
circumferential coordinate and it’s same with that of the spherical shell. ܴ1 and ܴ2 are the radii of 
small and large ends, respectively. ܴ0  is the mean radius and ܴ  is the radius at ݔ ߙ .  is the 
semi-vertex angle. ݒ ,ݑ and ݓ are the displacements in meridional, circumferential and normal 
directions. ߚ =  is the bending moment resultant, ܰ is the meridional ܯ .denotes the slope ݔ߲/ݓ߲
force resultant, and തܵ and ഥܰ  are the normal and circumferential Kelvin-Kirchhoff shear force 
resultants, respectively. 
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Fig. 2. Local coordinate system, displacements and forces of a conical shell 

By utilization of Flügge shell theory, equations of motion of a conical shell are [39]: 

ݑଵଵܮ + ݒଵଶܮ + ݓଵଷܮ − ℎߩ ߲ଶݐ߲ݑଶ = ݑଶଵܮ ,0 + ݒଶଶܮ + ݓଶଷܮ − ℎߩ ߲ଶݐ߲ݒଶ = ݑଷଵܮ ,0 + ݒଷଶܮ + ݓଷଷܮ − ℎߩ ߲ଶݐ߲ݓଶ = 0, (1)

where ℎ and ߩ are the thickness and density, respectively. Differential operators ܮ (݅, ݆ = 1, 2, 3) 
can refer to Ref. [40]. 

For a given circumferential mode number, power series are employed to express displacement 
functions [41]: 

,ݔ)ݑ ,ߠ (ݐ =  ܽ,ݔஶ
ୀ cos(݊ߠ)݁ିఠ௧, 

,ݔ)ݒ ,ߠ (ݐ =  ܾ,ݔஶ
ୀ sin(݊ߠ)݁ିఠ௧, 

,ݔ)ݓ ,ߠ (ݐ =  ܿ,ݔஶ
ୀ cos(݊ߠ)݁ିఠ௧. 

(2)

In Eq. (2), the recurrence relations of ܽ, , ܾ, , ܿ,  have been detailedly deduced in the 
authors’ recently opened paper [40]. With the help of the recurrence relations, only eight unknown 
coefficients, ܽ, , ܽ,ଵ , ܾ, , ܾ,ଵ , ܿ, , ܿ,ଵ , ܿ,ଶ , ܿ,ଷ , exist in the displacement functions. 
Omitting subscript ݊, the displacement functions can be further expressed as: ݔ)ݑ, ,ߠ (ݐ = ܝ ⋅ ܠ ⋅ cos(݊ߠ)݁ିఠ௧, ݔ)ݒ, ,ߠ (ݐ = ܞ ⋅ ܠ ⋅ sin(݊ߠ)݁ିఠ௧, ݔ)ݓ, ,ߠ (ݐ = ܟ ⋅ ܠ ⋅ cos(݊ߠ)݁ିఠ௧, (3)

where the vectors ܟ ,ܞ ,ܝ and ܠ are: ܝ = .(ݔ)ଵݑ] . . ܞ     ,[(ݔ)଼ݑ = .(ݔ)ଵݒ] . . ܟ     ,[(ݔ)଼ݒ = .(ݔ)ଵݓ] . . (4) ,[(ݔ)଼ݓ

and ܠ = [ܽ  ܽଵ  ܾ  ܾଵ  ܿ  ܿଵ  ܿଶ  ܿଷ]். (5)
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In Eq. (4), ݑ(ݔ), ݒ(ݔ) and ݓ(ݔ) (݅ = 1-8) are the base functions.  
It must be mentioned that only torsionless axisymmetric modes (ݑ ≠ 0 ݓ , ≠ 0 ݒ , = 0) , 

namely breathing modes, are accounted for in the following analysis. In addition, in view of 
differences of semi-vertex angles of two adjacent strips, displacements and forces will be 
considered in the cylindrical coordinate system. Correspondingly, four notations about some 
displacements and forces are introduced and they are: ݑ = ߙcosݑ − ݓ       ,ߙsinݓ = ߙcosݓ + , ෩ܰߙsinݑ = ܰcosߙ − ܵ̅sinߙ,    ܵ̅ሚ = ܵ̅cosߙ + ܰsinߙ, (6)

where ߙ is the semi-vertex angle of the ݅th strip, ݑ  and ݓ  are the axial and radial displacements, 
and ෩ܰ and ܵ̅ሚ denote axial and radical force resultants, rather than meridional and normal ones.  

Substituting the functions of displacements into the expressions of slope and forces 
(Expressions of force resultants in terms of displacements are given in the Appendix), four 
displacements and four forces at the cross-section can be expressed as: ൣݑ   ݓ   ݒ   ߚ   ෩ܰ   തܶ    ܵ̅ሚ  ܯ൧் = [۲][۴] ൨ ⋅ (7) ,ܠ

where  

[۲] = ൦ݑଵ ଶݑ ଷݑ ସݑ ହݑ ݑ ݑ ଵݒ଼ݑ ଶݒ ଷݒ ସݒ ହݒ ݒ ݒ ଵݓ଼ݒ ଶݓ ଷݓ ସݓ ହݓ ݓ ݓ ଵߚ଼ݓ ଶߚ ଷߚ ସߚ ହߚ ߚ ߚ ଼ߚ ൪, (8)

[۴] = ێێێۏ
ۍ ෩ܰଵ ෩ܰଶ ෩ܰଷ ෩ܰସ ෩ܰହ ෩ܰ ෩ܰ ෩଼ܰതܶଵ തܶଶ തܶଷ തܶସ തܶହ തܶ തܶ ത଼ܶܵ̅ሚଵ ܵ̅ሚଶ ܵ̅ሚଷ ܵ̅ሚସ ܵ̅ሚହ ܵ̅ሚ ܵ̅ሚ ܵ̅ሚ଼ܯଵ ଶܯ ଷܯ ସܯ ହܯ ܯ ܯ ۑۑۑے଼ܯ

(9) .ې

In Eqs. (8) and (9), the detailed expressions of Φ, which represents ݑ, ݒ, ݓ, ߚ, ෩ܰ, തܶ, ܵ̅ሚ 
and ܯ, can be readily obtained and they are not given for the sake of brevity. 

2.3. Boundary and continuity conditions 

After all strips have been analyzed individually, the strips can be assembled through the 
continuity conditions. Fig. 3 shows the displacements and forces at the ݅th junction, namely the 
junction between the ݅th strip and (݅ + 1)th strip. The continuity conditions of displacements and 
equilibrium equations of forces are: ݑ = ݒ      ,ோݑ = ݓ     ,ோݒ = ߚ     ,ோݓ = ோ, (10)෩ܰߚ = ෩ܰோ,     ܶ = ܶோ ,     ܵ̅ሚ = ܵ̅ሚோ,    ܯ = ோ, (11)ܯ

where ܮ and ܴ represent edges of adjacent strips at left side and right side of the ݅th junction, 
respectively. 

Besides continuity conditions, boundary conditions are also indispensable. Artificial springs 
are employed to restrain the displacements at the ends, and corresponding equations are: ݑ ݑܭ ± ܰ = ݒ ݒܭ    ,0 ± തܶ = ݓ ݓܭ    ,0 ± തܵ = ߚ ߚܭ    ,0 ± ܯ = 0, (12)

where, plus sign indicates boundary condition at ߮ = ߮ଵ while minus sign indicates boundary 
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condition at ߮ = ߮. ݓܭ , ݒܭ , ݑܭ  and ߚܭ  are stiffness constants of artificial springs restraining 
meridional, circumferential and normal displacements and slop, respectively.  

By assigning appropriate values of stiffness constants of artificial springs, both classic and 
elastic boundary conditions can be analyzed. In the following analysis, the stiffness constant is set 
as 0 if the corresponding displacement is free or is assigned as a large value (1016 N/m) if the 
corresponding one is fixed, e.g. ݑܭ = = ݒܭ = ݓܭ = ߚܭ 0  for free boundaries (۴),  ݑܭ = = ݒܭ = ݓܭ ,N/m for clamped boundaries (۱) 1016 = ߚܭ  and ݑܭ = = ߚܭ  0 and  ݒܭ =   .N/m for hinged boundaries (۶) 1016 = ݓܭ

 
Fig. 3. Displacements and forces of adjacent strips 

2.4. Final governing equation 

Assuming that a spherical shell is decomposed into ܲ individual narrow strips, 8ܲ unknown 
coefficients need to be solved for a given circumferential mode number. The final governing 
equation, Eq. (13), can be obtained by assembling all continuity conditions and boundary 
conditions in matrix form: ۹܆ = , (13)

where ܆ = ,்[ଵܠ]] ,்[ଶܠ] . . . ,  ,is a 8ܲ×1 vector of the unknown coefficients of all strips ்[்[ܠ]
and the expression of ܭ is: 

۹ =
ێێۏ
ێێێ
ێێێ
[۲ଵ(݈ଵ/2)][۰ଵ(−݈ଵ/2)]ۍێ −[۲ଶ(−݈ଶ/2)][۴ଵ(݈ଵ/2)] − [۴ଶ(−݈ଶ/2)][۲ଶ(݈ଶ/2)] − [۲ଷ(−݈ଷ/2)][۴ଶ(݈ଶ/2)] −[۴ଷ(−݈ଷ/2)]⋯ ⋯⋯ ⋯ [۲ିଵ(݈ିଵ/2)] −[۲(−݈/2)][۴ିଵ(݈ିଵ/2)] −[۴(−݈/2)][۰(݈/2)] ۑۑے

ۑۑۑ
ۑۑۑ
ېۑ
, (14)

where ݈ (݅ = 1: ܲ) is the meridional length of the ݅th strip. By assigning appropriate dimension 
and material parameters of the corresponding strip, values of the elements in [۲] and [۴] are 
obtained through Eqs. (8, 9). [۰ଵ] and [۰] depend on the boundary conditions of two edges, and 
the general expressions are: [۰ ] = [௦܂] ⋅ [܂] ⋅ [۲ ] ± [܂] ⋅ [۴ ],     ݅ = 1, ܲ, (15)
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where [܂௦]  is the matrix about stiffness constants of artificial springs, [܂]  denotes the 
transformation matrix about the notations introduced in Eq. (6), and their detailed expressions are: [܂௦] = diag൫ܭ௨ , , ௩ܭ , ௪ܭ ఉ ൯, (16)ܭ

[܂] = ൦ cosߙ 0 sinߙ 00 1 0 0−sinߙ 0 cosߙ 00 0 0 1൪. (17)

Keeping circumferential number ݊ unchanged, ߱ is increased in an appropriately small step 
until the sign of the determinant of matrix ۹ changes, and corresponding eigenvalue is roughly 
obtained. Decreasing the step and repeating the same process, the eigenvalue, namely natural 
frequency, can be trapped with the desired accuracy. Meanwhile, substituting the eigenvalue back 
into Eq. (13) and setting one coefficient in vector ܆ to 1, all the other coefficients can be solved 
and the corresponding mode shape can be obtained. 

3. Numerical results and discussion 

In the following analysis, all natural frequencies are expressed as frequency parameters,  Ω = ܴ߱ඥ(1 − ߭ଶ)ߩ ⁄ܧ . 

3.1. Convergence and validity 

First, the convergence of present method for asymmetric vibrations of a clamped spherical 
shell with different open angles and ratios of thickness to radius is discussed. Before convergence 
analysis, a notation, Δ߮, is introduced and it denotes the difference of azimuth angles of two edges 
of one strip, as shown in Fig. 1. For the sake of brevity, the value of Δ߮ is constant for one kind 
of decomposition, and different values of Δ߮ essentially indicate different numbers of strips, e.g. Δ߮ = 1° denotes 60 strips as ߮ଵ = 60° and 90 strips as ߮ଵ = 90°. The influence of the number of 
strips on frequency parameters is listed in Table 1, and Fig. 4 shows some mode shapes. In the 
table, ݉ denotes mode number in meridional direction. As Δ߮ decreases, frequency parameters 
rapidly converge, and the ones of Δ߮ =  0.5° satisfy the requirement of convergence. More 
importantly, the difference of frequency parameters of present method and those in the literature 
is negligible, which demonstrates high accuracy of present method. Furthermore, although the thin 
shell theory is adopted, present method can still predict accurately natural frequencies as the ratio 
of thickness to radius ℎ ܴ⁄  reaches 0.05. 

 
Fig. 4. Asymmetric mode shapes and frequency parameters Ω݊݉  

of the spherical shell with different open angles 

The convergence of frequency parameters of axisymmetric modes of a clamped spherical shell 
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is presented in Table 2. Compared with asymmetric modes, the rate of convergence for 
axisymmetric modes is slower. Some axisymmetric mode shapes are shown in Fig. 5, and it’s seen 
that the amplitudes of mode shapes have obvious variation at the region closing to the pole, which 
explains why more strips are required to satisfy the requirement of convergence. It’s further 
observed that the convergence rate of frequency parameter of the spherical shell with ߮ଵ = 30° is 
obviously slower than the others, which is mainly attributed to higher frequency parameters and 
similar variations of amplitudes at much smaller region for the same meridional mode. Last but 
most important, excellent agreement of frequency parameters of present method and literature is 
observed. That’s to say the axisymmetric vibrations can be also accurately analyzed by present 
method. 

Table 1. Convergence of frequency parameters of asymmetric modes  
of a clamped spherical shell with different open angles (߮ = 0°, ߭ = 0.3) ℎܴ

 ݊ ݉ 
߮ଵ = 60° ߮ଵ = 90° Δ߮ Ref. 

[11] 
Ref. 
[24] 

Δ߮ Ref. 
[11] 

Ref. 
[24] 3° 1° 0.5° 3° 1° 0.5° 

0.05 

1 1 0.919 0.863 0.858 0.859 0.858 0.589 0.566 0.564 0.564 0.563 
2 1.304 1.170 1.166 1.087 1.154 0.936 0.906 0.904 0.905 0.903 

2 1 1.034 1.034 1.034 1.034 1.029 0.879 0.879 0.879 0.879 0.879 
2 1.142 1.440 1.438 1.125 1.408 1.028 1.027 1.027 1.059 1.029 

3 1 1.170 1.170 1.170 1.184 1.158 0.962 0.962 0.962 0.961 0.959 
2 1.764 1.764 1.744 1.307 1.684 1.145 1.144 1.144 1.180 1.136 

0.02 

1 1 0.868 0.788 0.832 0.833 0.832 0.580 0.530 0.548 0.548 0.548 
2 1.002 0.941 0.961 0.962 0.961 0.875 0.843 0.863 0.863 0.863 

2 1 0.950 0.950 0.950 0.950 0.949 0.863 0.863 0.863 0.863 0.862 
2 1.052 1.051 1.051 1.085 1.050 0.937 0.937 0.937 0.936 0.936 

3 1 0.990 0.990 0.990 0.991 0.990 0.914 0.914 0.914 0.915 0.914 
2 1.130 1.130 1.130 1.157 1.127 0.977 0.977 0.977 0.977 0.977 

0.01 

1 1 0.851 0.820 0.827 0.827 0.827 0.599 0.539 0.542 0.542 0.542 
2 0.941 0.924 0.928 0.928 0.928 0.860 0.850 0.852 0.852 0.853 

2 1 0.930 0.929 0.930 0.925 0.930 0.860 0.860 0.860 0.860 0.860 
2 0.981 0.981 0.981 0.981 0.981 0.922 0.922 0.922 0.922 0.922 

3 1 1.062 0.952 0.952 0.949 0.952 0.904 0.904 0.904 0.908 0.904 
2 1.010 1.010 1.010 1.006 1.010 0.944 0.944 0.944 0.944 0.944 

Table 2. Convergence of frequency parameters of axisymmetric modes of a clamped spherical shell  
with three different open angles (߮ = 0°, ℎ ܴ⁄ ݒ ,0.01 = = 0.3) ݉ 

߮ଵ = 30° ߮ଵ = 60° ߮ଵ = 90° Δ߮ Ref. 
[13] 

Δ߮ Ref. 
[13] 

Δ߮ Ref. 
[13] 1° 0.5° 0.25° 1° 0.5° 0.25° 1° 0.5° 0.25° 

1 1.132 1.017 0.999 0.998 0.881 0.868 0.868 0.868 0.734 0.726 0.726 0.725 
2 1.380 1.305 1.260 1.260 0.973 0.953 0.950 0.950 0.903 0.895 0.895 0.895 
3 1.744 1.583 1.536 1.537 1.068 1.026 1.017 1.017 0.949 0.939 0.939 0.939 
4 2.358 2.085 1.948 1.948 1.211 1.151 1.131 1.131 0.992 0.976 0.973 0.973 
5 3.349 3.012 2.770 2.772 1.434 1.341 1.307 1.308 1.053 1.028 1.021 1.022 

To further illustrate high accuracy and wide application of present method, more 
comprehensive comparisons of frequency parameters are tabulated in Table 3. A spherical shell 
with four kinds of open angles, three different ratios of thickness to radius and two different 
boundary conditions are considered. It’s observed that, as the ratio of thickness to radius is small, 
e.g. ℎ ܴ⁄ = 0.005 and ℎ ܴ⁄ = 0.01, frequency parameters of present method coincide exactly with 
the ones in literature for all four kinds of open angles. As ℎ ܴ⁄  increases to 0.05, obvious 
differences can be found for some modes if open angle ߮ଵ is small. It’s further found that, for the 
same circumferential and meridional mode numbers, frequency parameters of the spherical shell 
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with small open angle are obvious larger than those of the spherical shell with large open angle. 
In addition, classical thin shell theory is employed by present paper while the first-order shear 
deformation theory is used in [24], and differences of those two theories are negligible at low 
frequency. All those mentioned reasons lead to obvious differences for some modes when ℎ ܴ⁄  is 
0.05. From Table 3, it can be also observed that frequency parameters of the shell with clamped 
boundary conditions are expectedly larger than those of the shell with hinged boundary conditions, 
and the frequency parameters increase as the ratio of thickness to radius increases. 

Table 3. Comparison of frequency parameters of a spherical shell  
with different open angles and boundary conditions (߮ ݒ ,0° = = 0.3) 

߮ଵ ݊ ݉ 

۱ ۶ ℎ ܴ⁄ = 0.005 ℎ ܴ⁄ = 0.01 ℎ ܴ⁄ = 0.05 ℎ ܴ⁄ = 0.005 ℎ ܴ⁄ = 0.01 ℎ ܴ⁄ = 0.05 
Ref. 
[24] Present Ref. 

[24] Present Ref. 
[24] Present Ref. 

[24] Present Ref. 
[24] Present Ref. 

[24] Present 

30° 

1 
1 0.968 0.964 1.003 1.001 1.416 1.450 0.963 0.959 1.003 1.001 1.211 1.222 
2 1.037 1.042 1.161 1.165 2.949 3.231 1.037 1.043 1.107 1.110 2.506 2.668 
3 1.155 1.137 1.572 1.575 3.843 3.886 1.113 1.095 1.435 1.436 3.838 3.861 

2 
1 0.993 0.993 1.054 1.055 1.954 2.061 0.989 0.990 1.050 1.050 1.627 1.679 
2 1.086 1.087 1.319 1.323 3.952 4.504 1.080 1.080 1.233 1.236 3.437 3.781 
3 1.266 1.268 1.868 1.883 5.878 5.917 1.208 1.209 1.700 1.711 5.822 5.916 

3 
1 1.017 1.017 1.125 1.126 2.625 2.857 1.017 1.017 1.102 1.103 2.209 2.345 
2 1.146 1.147 1.518 1.526 4.995 5.902 1.124 1.124 1.400 1.405 4.447 5.063 
3 1.397 1.399 2.202 2.226 7.594 7.669 1.321 1.322 2.008 2.025 7.205 7.669 

45° 

1 
1 0.921 0.920 0.927 0.926 1.020 1.023 0.920 0.919 0.926 0.926 0.973 0.974 
2 0.958 0.958 0.986 0.987 1.589 1.643 0.958 0.958 0.977 0.978 1.403 1.430 
3 0.992 0.987 1.097 1.096 2.508 2.579 0.985 0.980 1.060 1.059 2.350 2.465 

2 
1 0.947 0.947 0.969 0.970 1.233 1.250 0.944 0.944 0.967 0.967 1.146 1.155 
2 0.988 0.988 1.053 1.053 2.054 2.167 0.985 0.985 1.048 1.048 1.812 1.879 
3 1.044 1.044 1.202 1.204 3.308 3.647 1.043 1.044 1.155 1.157 2.997 3.245 

3 
1 0.960 0.960 0.996 0.996 1.497 1.540 0.958 0.958 0.996 0.996 1.354 1.381 
2 1.009 1.009 1.107 1.108 2.564 2.763 1.007 1.007 1.092 1.093 2.284 2.417 
3 1.077 1.077 1.314 1.318 3.999 4.531 1.074 1.074 1.253 1.256 3.658 4.054 

60° 

1 
1 0.825 0.825 0.827 0.827 0.858 0.858 0.823 0.823 0.823 0.823 0.833 0.833 
2 0.918 0.918 0.928 0.928 1.154 1.166 0.915 0.915 0.921 0.921 1.076 1.081 
3 0.949 0.948 0.983 0.983 1.679 1.737 0.945 0.944 0.971 0.970 1.548 1.588 

2 
1 0.922 0.922 0.930 0.930 1.029 1.034 0.919 0.919 0.927 0.927 1.008 1.011 
2 0.953 0.953 0.981 0.981 1.408 1.438 0.951 0.951 0.981 0.981 1.292 1.310 
3 0.982 0.982 1.042 1.043 2.084 2.197 0.980 0.980 1.035 1.035 1.901 1.980 

3 
1 0.937 0.937 0.952 0.952 1.158 1.170 0.935 0.935 0.950 0.950 1.113 1.121 
2 0.965 0.965 1.010 1.010 1.684 1.744 0.963 0.963 1.010 1.010 1.540 1.580 
3 1.001 1.000 1.092 1.092 2.494 2.672 0.998 0.998 1.080 1.081 2.287 2.418 

90° 

1 
1 0.539 0.538 0.542 0.542 0.543 0.564 0.533 0.533 0.535 0.534 0.542 0.542 
2 0.848 0.847 0.853 0.852 0.903 0.904 0.842 0.841 0.845 0.844 0.879 0.879 
3 0.914 0.913 0.921 0.921 1.095 1.104 0.910 0.911 0.916 0.916 1.054 1.059 

2 
1 0.859 0.858 0.860 0.860 0.879 0.879 0.857 0.857 0.859 0.859 0.877 0.877 
2 0.917 0.917 0.922 0.922 1.024 1.027 0.917 0.917 0.922 0.922 0.997 0.999 
3 0.939 0.939 0.952 0.952 1.254 1.273 0.939 0.939 0.951 0.951 1.192 1.204 

3 
1 0.900 0.900 0.904 0.904 0.959 0.962 0.899 0.899 0.902 0.902 0.957 0.959 
2 0.933 0.932 0.944 0.944 1.136 1.144 0.931 0.931 0.943 0.943 1.102 1.108 
3 0.950 0.950 0.977 0.977 1.430 1.462 0.949 0.948 0.976 0.976 1.354 1.377 

In above analysis, only one edge is considered in the spherical shell. In Table 4, frequency 
parameters of a spherical shell with one or two free edges are presented. It’s observed that 
frequency parameters of present method agree well with the ones in [14] for all combinations of 
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open angles ߮ and ߮ଵ. It’s further observed that, for a fixed open angle ߮, frequency parameters 
do not monotonically increase or decrease as open angle ߮ଵ increases. The effect of open angle 
will be particularly investigated in the following. 

 
Fig. 5. Some axisymmetric mode shapes and frequency parameters Ω0݉  

of the spherical shell with three different open angles 

Table 4. Comparison of frequency parameters of a spherical shell  
with one or two ۴ boundary conditions (݊ = 2, ݉ = 1, ℎ ܴ⁄ ݒ ,0.01 = = 0.3) ߮1 ߮ = 0° ߮ = 30° ߮ = 45° ߮ = 60° ߮ = 75° 

Ref. [14] Present Ref. [14] Present Ref. [14] Present Ref. [14] Present Ref. [14] Present 
15° 0.23119 0.22999 – – – – – – – – 
30° 0.06195 0.06134 – – – – – – – – 
45° 0.02989 0.02950 0.02155 0.02123 – – – – – – 
60° 0.01884 0.01854 0.01656 0.01624 0.01290 0.01264 – – – – 
75° 0.01416 0.01391 0.01337 0.01310 0.01183 0.01153 0.00954 0.00932 – – 
90° 0.01231 0.01211 0.01200 0.01178 0.01121 0.01095 0.00983 0.00957 0.00829 0.00810 
105° 0.01238 0.01219 0.01223 0.01204 0.01171 0.01148 0.01049 0.01022 0.00928 0.00902 
120° 0.01470 0.01446 0.01461 0.01436 0.01402 0.01374 0.01214 0.01185 0.01049 0.01022 
135° 0.02165 0.02117 0.02152 0.02103 0.01922 0.01874 0.01402 0.01374 0.01177 0.01148 
150° 0.04395 0.04279 0.04124 0.04013 0.01992 0.02103 0.01461 0.01436 0.01223 0.01204 
165° 0.16055 0.15746 0.04394 0.04278 0.02165 0.02116 0.01469 0.01445 0.01236 0.01216 
180° 0.70101 0.70106 0.04395 0.04279 0.02165 0.02117 0.01470 0.01446 0.01238 0.01219 

Based on above comparisons of frequency parameters of present method and literature, it can 
be concluded that present semi-analytic method can accurately analyze free vibrations of thin 
opened spherical shells. 

3.2. Effects of boundary conditions 

Fig. 6 presents effects of boundary conditions on the frequency parameters of a spherical shell 
with three different open angles. It’s observed that, as circumferential mode number is not less 
than 2, no matter what boundary conditions are, tendencies of frequency parameter versus 
circumferential mode number are identical, which means the increase of circumferential mode 
number leads to the increase of frequency parameter. However, as the circumferential mode 
number varies from 0 to 2, increasing circumferential mode number may lead to the increase or 
decrease of frequency parameter, which depends on the boundary conditions, open angle and 
meridional mode number. It’s also observed that, for a particular circumferential mode number, 
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the frequency parameter of the mode with larger meridional mode number is always larger than 
the one with small meridional mode number. In addition, for ݊ = 0 and ݊ = 1, frequency 
parameters of ۴ are larger than the ones of ۱, which is attributed to that the rigid modes are not 
considered for ۴. 

  

 
Fig. 6. Effects of boundary conditions on frequency parameters of the spherical shell  

with different open angles (ℎ ܴ⁄ ݒ ,0.01 = = 0.3, ߮ = 0°): a) ߮ଵ = 45°, b) ߮ଵ = 90°, c) ߮ଵ = 135° 

In Fig. 7, influences of elastic boundary conditions on free vibrations of a hemispherical shell 
are shown. Before analyzing the effects of elastic boundaries, it should be mentioned that only 
three curves in Fig. 7(a), which results from that the circumferential displacement is always 0 for ݊ = 0. In addition, every curve denotes that only one displacement is elastically restrained and the 
other three are fixed. It’s observed that effects of meridional and circumferential displacements 
are obviously greater than normal displacement and slope. However, with the increase of 
circumferential mode number, the effect of circumferential displacement becomes greater than 
meridonal displacement. Meanwhile, influences of normal displacement and slope become 
obvious as the circumferential mode number varies from 0 to 2. It’s further observed that the 
appropriate value of stiffness constant, which can significantly affect natural frequencies, is 
different for different circumferential mode numbers and directions of displacements, which is 
attributed to different values of stresses. 

3.3. Effects of open angle 

In Section 3.1, it is pointed out that the open angle has great influence on frequency parameters. 
In this section, influences of the open angle are discussed in detail. Fig. 8 and Fig. 9 show the 
effects of the open angle on frequency parameters of the free and clamped spherical shell, 
respectively. For free boundary conditions, on the one hand, the increase of the open angle can 
increase the frequency parameter as the open angle is small.  
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Fig. 7. Effects of stiffness constants on frequency parameters of the hemispherical shell  

(݉ = 1, ℎ ܴ⁄ ݒ ,0.01 = = 0.3, ߮ = 0°): a) ݊ = 0, b) ݊ = 1, c) ݊ = 2, c) ݊ = 3 

  

  
Fig. 8. Effects of open angle on frequency parameters of the spherical shell with free boundary  

conditions (ℎ ܴ⁄ ݒ ,0.01 = = 0.3, ߮ = 0°): a) ݊ = 0, b) ݊ = 1, c) ݊ = 2, d) ݊ = 3 
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On the other hand, for no small open angle, the increase of open angle may lead to the increase 
or decrease of frequency parameter, which depends on the circumferential and meridional mode 
numbers. For clamped boundary conditions, with the increase of open angle, the frequency 
parameter always decreases as the circumferential mode number varies from 0 to 3 and meridional 
mode number changes from 1 to 3. In addition, as the circumferential mode number increases 
from 0 to 3, the decrease speed of frequency parameter becomes slower and slower as open angle 
is larger than 45°. 

  

  
Fig. 9. Effects of open angle on frequency parameters of the spherical shell with clamped boundary 

conditions (ℎ ܴ⁄ ݒ ,0.01 = = 0.3, ߮ = 0°): a) ݊ = 0, b) ݊ = 1, c) ݊ = 2, d) ݊ = 3 

3.4. Effects of thickness to radius ratio 

Effects of the ratio of thickness to radius on frequency parameters are presented in Fig. 10 and 
Fig. 11. Generally, frequency parameters are increased by the increase of the ratio of thickness to 
radius. However, effects of the ratio of thickness to radius on frequency parameters are dependent 
on the mode shape, open angle and boundary conditions. As the open angle increases, effects of 
the ratio of thickness to radius rapidly decrease, especially for ݊ = 0 and ݊ = 1, frequency 
parameters of which keep basically unchanged.  

3.5. Effects of thickness discontinuity 

In above study, the thickness of the shell is uniform, and non-uniform thickness can be also 
analyzed by present method. As a special case, a two-stepped hemi-spherical shell is employed 
and Fig. 12 shows the schematic diagram.  

Influences of the location of thickness discontinuity on frequency parameters of the free and 
clamped hemispherical shell are presented in Fig. 13 and Fig. 14, respectively. It’s observed that 
tendencies of frequency parameters versus azimuth angle vary with circumferential mode numbers 
and boundary conditions.  
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Fig. 10. Effects of the ratio of thickness to radius on frequency parameters of the spherical shell with free 

boundary conditions (ݒ = 0.3, ߮ = 0°): a) ߮ଵ = 45°, b) ߮ଵ = 90°, c) ߮ଵ = 135° 

  

 
Fig. 11. Effects of the ratio of thickness to radius on frequency parameters of the spherical shell with 

clamped boundary conditions (ݒ = 0.3, ߮ = 0°): a) ߮ଵ = 45°, b) ߮ଵ = 90°, c) ߮ଵ = 135° 
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However, no matter what the modes and boundary conditions are, the tendencies of  ℎଵ ℎଶ⁄ = 0.5 and ℎଵ ℎଶ⁄ = 2 are basically opposite. In the following analysis, effects of the 
discontinuity on frequency parameters of the hemispherical shell with ℎଵ ℎଶ⁄ = 2 are discussed in 
detail. 

 
Fig. 12. Schematic diagram of a two-stepped hemispherical shell  

For the free hemispherical shell with ℎଵ ℎଶ⁄ = 2, the increase of azimuth angle of discontinuity 
may lead to the increase or decrease of frequency parameters as circumferential mode number is 
0 and 1. Nevertheless, as circumferential mode number is 2 and 3, frequency parameter certainly 
decreases as the azimuth angle of discontinuity increases. It’s further observed that, as the azimuth 
angle of discontinuity is small, effects of azimuth angle of discontinuity are negligible for ݊ = 2 
and ݊ = 3, which is different from those of ݊ = 0 and ݊ = 1. 

  

  
Fig. 13. Effects of thickness discontinuity on frequency parameters of the hemispherical shell with free 

boundary conditions (ℎଵ ܴ⁄ = 0.01, ߭ = 0.3, ݉ = 1): a) ݊ = 0, b) ݊ = 1, c) ݊ = 2, d) ݊ = 3 
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For the clamped hemispherical shell with ℎଵ ℎଶ⁄ = 2, the tendencies of ݊ = 0 and ݊ = 1 are 
simpler than those of ݊ = 2 and ݊ = 3. Frequency parameters firstly increase and then decrease 
as the azimuth angle of discontinuity increases for ݊ = 0 and ݊ = 1. For ݊ = 2 and ݊ = 3, as 
shown in Fig. 14(c) and (d), frequency parameters firstly decrease and then increase. Finally, as 
the azimuth angle closes to 90°, frequency parameters decrease again. 

  

  
Fig. 14. Effects of thickness discontinuity on frequency parameters of the hemispherical shell with clamped 

boundary conditions (ℎଵ ܴ⁄ ݒ ,0.01 = = 0.3, ݉ = 1): a) ݊ = 0, b) ݊ = 1, c) ݊ = 2, d) ݊ = 3 

4. Conclusions 

In present paper, a semi-analytical method was proposed to analyze both axisymmetric and 
asymmetric modes of spherical shells with elastic boundary conditions and discontinuity in 
thickness. To establish the governing equation, the spherical shell is firstly divided into many 
narrow strips, which are approximately treated as conical shells. Based on Flügge thin shell theory 
and power series method, displacements and forces at the cross-section of strips are expressed in 
terms of eight unknown coefficients. Lastly, continuity conditions of adjacent strips and boundary 
conditions are assembled to the final governing equation. By comparing frequency parameters of 
present method with those in literature, high accuracy and wide application of present method are 
verified. As circumferential mode number is small, frequency parameter may increase or decrease 
as circumferential mode number increases. On the other hand, the increase of circumferential 
mode number certainly results in the increase of frequency parameters for no small circumferential 
mode number. The effects of stiffness constants of elastic boundaries illustrate that meridional 
and circumferential displacements have the greatest effects on frequency parameters, and the 
effects of normal displacement and slope becomes obvious as circumferential mode number varies 
from 0 to 3. For ߮ = 0°, increasing the open angle ߮ଵ can significantly reduce the frequency 
parameters as the open angle is small. However, as the open angle is greater than 125°, the increase 
of open angle may lead to the increase or decrease of frequency parameters, which strongly 
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depends on the boundary conditions and circumferential mode number. The frequency parameters 
increase as the ratio of thickness to radius increases. Nevertheless, for ݊ = 0 and ݊ = 1, the effect 
of the ratio thickness to radius is negligible as open angle ߮ଵ is between 90° and 135°. The location 
of thickness discontinuity is of great influence on frequency parameters, and the influence strongly 
depends on the boundary conditions, circumferential mode number and thickness ratio ℎଵ ℎଶ⁄ . 

The proposed method can accurately and efficiently analyze free vibrations of spherical shells. 
In the subsequent work, spherical shells coupled with other revolution shells, e.g. cylindrical and 
conical shells, will be investigated since continuity conditions between spherical shells and others 
can be accurately satisfied without difficulty. In addition, it should be mentioned that the 
continuity conditions may be the bottleneck to analyze vibrations of coupled spherical-cylindrical 
or spherical-conical shells because there are many papers studying coupled cylindrical-cylindrical, 
conical-conical and cylindrical-conical shells whereas the literature about couple shells including 
spherical shells is rare. 

Acknowledgement 

The present research obtains great financial support from the National Natural Science 
Foundation of China (Grant No. 51179071). 

References 

[1] Kalnins A., Naghdi P. Axisymmetric vibrations of shallow elastic spherical shell. Journal of the 
Acoustical Society of America, Vol. 32, Issue 3, 1960, p. 342-347. 

[2] Baker W. E. Axisymmetric modes of vibration of thin spherical shell. Journal of the Acoustical 
Society of America, Vol. 33, Issue 12, 1961, p. 1749-1758. 

[3] Hoppmann II W. H., Baker W. E. Extensional vibrations of elastic orthotropic spherical shells. 
Journal of Applied Mechanics, Vol. 28, Issue 2, 1961, p. 229-237. 

[4] Hoppmann II W. H. Frequencies of vibration of shallow spherical shells. Journal of Applied 
Mechanics, Vol. 28, Issue 2, 1961, p. 305-307. 

[5] Kalnins A. On vibration of shallow spherical shells. Journal of the Acoustical Society of America, 
Vol. 33, Issue 8, 1961, p. 1102-1107. 

[6] Naghdi P. M., Kalnins A. On vibrations of elastic spherical shells. Journal of Applied Mechanics, 
Vol. 29, Issue 1, 1962, p. 65-72. 

[7] Kalnins A. Effect of bending on vibrations of spherical shells. Journal of the Acoustical Society of 
America, Vol. 36, Issue 1, 1964, p. 74-81. 

[8] Prasad C. On vibration of spherical shells. Journal of the Acoustical Society of America, Vol. 36, 
Issue 3, 1964, p. 489-494. 

[9] Wilkinson J. P., Kalnins A. On nonsymmetric dynamic problems of elastic spherical shells. Journal 
of Applied Mechanics, Vol. 32, Issue 3, 1965, p. 525-532. 

[10] Ramakrishnan C. V., Shah A. H. Vibration of an aelotropic spherical shell. Journal of the Acoustical 
Society of America, Vol. 47, Issue 5, 1970, p. 1366-1374. 

[11] Martynenko V. S., Shapakova S. G. Asymmetric vibrations of spherical shells. International Applied 
Mechanics, Vol. 9, Issue 10, 1973, p. 1059-1063. 

[12] Chakrabarti R. Forced vibrations of non-homogeneous isotropic elastic spherical shell. Pure and 
Applied Geophysics, Vol. 112, Issue 1, 1974, p. 52-57. 

[13] Kunieda H. Flexural axisymmetric free vibrations of a spherical dome: exact results and approximate 
solutions. Journal of Sound and Vibration, Vol. 92, Issue 1, 1984, p. 1-10. 

[14] Niordson F. I. Free vibration of thin elastic spherical shells. International Journal of Solids and 
Structures, Vol. 20, Issue 7, 1984, p. 667-687. 

[15] Niordson F. I. The spectrum of free vibrations of a thin elastic spherical shell. International Journal 
of Solids and Structures, Vol. 24, Issue 9, 1988, p. 947-961. 

[16] Chen W. Q., Ding H. J. Free vibration of multi-layered spherically isotropic hollow spheres. 
International Journal of Mechanical Sciences, Vol. 43, 2001, p. 667-680. 

[17] Lee J. Free vibration analysis of spherical caps by the pseudospectral method. Journal of Mechanical 
Science and Technology, Vol. 23, 2009, p. 221-228. 



2464. A SEMI-ANALYTICAL METHOD FOR VIBRATION ANALYSIS OF THIN SPHERICAL SHELLS WITH ELASTIC BOUNDARY CONDITIONS.  
KUN XIE, MEIXIA CHEN, ZUHUI LI 

 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. JUN 2017, VOL. 19, ISSUE 4. ISSN 1392-8716 2329 

[18] Lee J. Free vibration analysis of a hermetic capsule by pseudospectral method. Journal of Mechanical 
Sciences and Technology, Vol. 26, Issue 4, 2012, p. 1011-1015. 

[19] Su Z., Jin G. Y., Shi S. X., Ye T. G. A unified accurate solution for vibration analysis of arbitrary 
functionally graded spherical shell segments with general end restrains. Composite Structures, 
Vol. 111, 2014, p. 271-284. 

[20] Chernobryvko M. V., Avramov K. V., Romanenko V. N., Batutina T. J., Tonkonogenko A. M. 
Free linear vibrations of thin axisymmetric parabolic shells. Meccanica, Vol. 49, Issue 12, 2014, 
p. 2839-2845. 

[21] Kang J. H. Free vibration analysis of shallow spherical dome by three-dimensional Ritz method. 
Journal of Vibration and Control, Vol. 22, Issue 11, 2016, p. 2731-2744. 

[22] Zarghamee M. S. Robinson A. R. A numerical method for analysis of free vibration of spherical 
shells. AIAA Journal, Vol. 5, Issue 7, 1976, p. 1256-1261. 

[23] De Souza V. C. M., Croll J. G. A. An energy analysis of the free vibrations of isotropic spherical 
shell. Journal of Sound and Vibration, Vol. 73, Issue 3, 1980, p. 379-404. 

[24] Singh A. V., Mirza S. Asymmetric modes and associated eigenvalues spherical shells. Journal of 
Pressure Vessel Technology, Vol. 107, Issue 1, 1985, p. 77-82. 

[25] Singh A. V. On vibrations of shells of revolution using Bezier polynomials. Journal of Pressure Vessel 
Technology, Vol. 113, Issue 4, 1991, p. 579-584. 

[26] Fan S. C., Luah M. H. Free vibration analysis of arbitrary thin shell structures by using spline finite 
element. Journal of Sound and Vibration, Vol. 179, Issue 5, 1995, p. 763-776. 

[27] Gautham B. P., Ganesan N. Free vibration characteristics of isotropic and laminated orthotropic 
spherical caps. Journal of Sound and Vibration, Vol. 204, Issue 1, 1997, p. 17-40. 

[28] Wu Y. C., Heyliger P. Free vibration of layered piezoelectric spherical caps. Journal of Sound and 
Vibration, Vol. 245, Issue 3, 2001, p. 527-544. 

[29] Sai Ram K. S., Sreedhar Babu T. Free vibration of composite spherical shell cap with and without a 
cutout. Computers and Structures, Vol. 80, Issue 23, 2002, p. 1749-1756. 

[30] Artioli E., Viola E. Free vibration analysis of spherical caps using a G.D.Q. numerical method. Journal 
of Pressure Vessel Technology, Vol. 128, Issue 3, 2006, p. 370-378. 

[31] Tornabene F., Viola E. Vibration analysis of spherical shell structures element using the GDQ 
method. Computers and Mathematics with Applications, Vol. 53, Issue 10, 2007, p. 1538-1560. 

[32] Simmonds J. G., Hosseinbor A. P. The free and forced vibrations of a closed elastic spherical shell 
fixed to an equatorial beam-part I: the governing equations and special solutions. Journal of Applied 
Mechanics, Vol. 77, Issue 2, 2010, p. 021017. 

[33] Simmonds J. G., Hosseinbor A. P. The free and forced vibrations of a closed elastic spherical shell 
fixed to an equatorial beam-part II: perturbation approximations. Journal of Applied Mechanics, 
Vol. 77, Issue 2, 2010, p. 021018. 

[34] Qu Y. G., Long X. H., Yuan G. Q., Meng G. A unified formulation for vibration analysis of 
functionally graded shells of revolution with arbitrary boundary conditions. Composites Part B: 
Engineering, Vol. 50, 2013, p. 381-402. 

[35] Choi M. S., Kondou T., Choi H. J. Free vibration analysis of axisymmetric shells with various shapes 
using Sylvester-transfer stiffness coefficient method. Journal of Mechanical Sciences and Technology, 
Vol. 29, Issue 7, 2015, p. 2755-2766. 

[36] Naghsh A., Saadatpour M. M., Azhari M. Free vibration analysis of stringer stiffened general shells 
of revolution using a meridional finite strip method. Thin-Walled Structures, Vol. 94, 2015, 
p. 651-662. 

[37] Cui X. Y., Wang G., Li G. Y. A nodal integration axisymmetric thin shell model using linear 
interpolation. Applied Mathematical Modelling, Vol. 40, 2016, p. 2720-2742. 

[38] Brown D., Brown C. T. Investigation of vibrations of piezoelectric spherical shells with axisymmetric 
holes. Proceedings of Meetings on Acoustics, Vol. 19, 2013, p. 030065. 

[39] Leissa A. W. Vibrations of Shells. Acoustical Institute of Physics, New York, 1993. 
[40] Xie K., Chen M. X., Deng N. Q., Jia W. C. Free and forced vibration of submerged ring-stiffened 

conical shells with arbitrary boundary conditions. Thin-Walled Structures, Vol. 96, 2015, p. 240-255. 
[41] Tong L. Y. Free vibration of orthotropic conical shells. International Journal of Engineering Science, 

Vol. 31, Issue 5, 1993, p. 719-733. 



2464. A SEMI-ANALYTICAL METHOD FOR VIBRATION ANALYSIS OF THIN SPHERICAL SHELLS WITH ELASTIC BOUNDARY CONDITIONS.  
KUN XIE, MEIXIA CHEN, ZUHUI LI 

2330 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. JUN 2017, VOL. 19, ISSUE 4. ISSN 1392-8716  

Appendix 

According to Ref. [39], the force and moment resultants at the cross-section of conical shells 
are: 

ܰ = ℎ1ܧ −  ߭ଶ ቆ߲ݔ߲ݑ + ߭ ൬1ܴ ߠ߲ݒ߲ + ݏܴ ݑ + ܴܿ ൰ݓ − ℎ ଶ12 ܴܿ ߲ଶݔ߲ݓଶ ቇ, ܯ = ℎ ଷ12(1ܧ −  ߭ଶ) ቈ− ߲ଶݔ߲ݓଶ + ߭ ቆ ܴܿ ଶ ߠ߲ݒ߲ − 1ܴ ଶ ߲ଶߠ߲ݓଶ − ݏܴ ݔ߲ݓ߲ ቇ + ܴܿ , തܶݔ߲ݑ߲ = − ൬ ௫ܰఏ + ௫ఏܴܯ ൰,     ܵ̅ = ܳ௫ + 1ܴ ߠ௫ఏ߲ܯ߲ , 
where: 

௫ܰఏ = ℎ2(1ܧ + ߭) ቈ1ܴ ߠ߲ݑ߲ + ݔ߲ݒ߲ − ݏܴ ݒ + ℎଶ12 ቆ− ܴܿ ଶ ߲ଶݔ߲ߠ߲ݓ + ܿଶܴ ଶ ݔ߲ݒ߲ + ଷ ܴܿݏ ߠ߲ݓ߲ − ଶܴ ଷܿݏ ఏܯ ,ቇݒ = ℎ ଷ12(1ܧ −  ߭ଶ) ቈ− 1ܴ ଶ ߲ଶߠ߲ݓଶ − ݏܴ ݔ߲ݓ߲ − ߭ ߲ଶݔ߲ݓଶ − ଶ ܴܿݏ ݑ − ܿଶܴ ଶ ௫ఏܯ ,ݓ = ℎ ଷ12(1ܧ + ߭) ቆ− 1ܴ ߲ଶߠ߲ݔ߲ݓ + ܴܿ ݔ߲ݒ߲ + ଶ ݏܴ ߠ߲ݓ߲ − ଶ ܴܿݏ ఏ௫ܯ ,ቇݒ = ℎଷ24(1ܧ + ߭) ቆ− 2ܴ ߲ଶߠ߲ݔ߲ݓ + ଶ ܴݏ2 ߠ߲ݓ߲ + ܴܿ ݔ߲ݒ߲ − ܴܿ ଶ ߠ߲ݑ߲ − ଶ ܴܿݏ ቇ, ܳ௫ݒ = 1ܴ ݔ߲(ܯܴ)߲ + 1ܴ ߠ߲(ఏ௫ܯ)߲ − ݏܴ  ,ఏܯ
where ݏ = sinߙ, ܿ = cosߙ, and ܧ and ߭ are the Young’s modulus and Poisson’s ratio.  
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