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Abstract. In this paper an Improved Fourier series method has been employed to study the free 
vibrations of isotropic homogeneous moderately thick open cylindrical shells with arbitrary 
subtended angle and general elastic restraints. In this method, regardless of the boundary 
conditions, each of the displacement components of open shell is invariably expressed as a simple 
trigonometric series with accelerated and uniform convergence over the solution domain. 
Distributed elastic restraints are used to specify the elastic boundary conditions along the shell 
edges and therefore, arbitrary boundary restraints can be achieved by varying the values of 
spring’s stiffness. All the unknown expansion coefficients are treated as the generalized 
coordinates and solved using the Rayleigh-Ritz technique. A considerable number of new 
vibration results for isotropic open cylindrical shells with various geometric parameters and 
boundary conditions are presented. The effects of boundary stiffness, thickness to radius ratio and 
subtended angle on the vibration characteristics are also discussed in detail. 
Keywords: vibrations, natural frequency, mode shapes, arbitrary boundary conditions. 

1. Introduction 

Shell structures are widely used in various engineering applications like submarines, rockets, 
missile, automobiles and aircrafts etc. In these applications the shell structures may be exposed to 
various dynamic loads under different boundary conditions. These boundary conditions may be 
classical, elastic, uniform, non-uniform and/or a combination of these. These dynamic loads under 
various boundary conditions induce structural vibrations which further results in catastrophic 
structural failures. Many such incidents have been observed in the history. Due to this reason it is 
very important to study, design and analyze these structural vibrations for reliable, safe, efficient 
and lasting structural performance. Based on the geometrical shapes the shell structures may be 
classified into cylindrical, spherical and conical shells, however in the present manuscript only 
open cylindrical shells are under consideration which are widely used in various engineering 
applications.   

For any structure, modal analysis is performed to study its vibration characteristics. This modal 
analysis includes the study of natural frequencies and the corresponding mode shapes.  This 
information is of prime importance in order to suppress the vibrations induced in any structure 
when it is exposed to dynamic loads or excitations. In case of shell structures there are also other 
geometric parameters like thickness to length ratio, thickness to radius ratio and subtended angle 
which plays a prominent role in the vibrations, acoustic and safety analysis of these shell structures. 
For this reason, a lot of research work has been done on the vibration characteristics of shells and 
various numerical methods have been developed from time to time and used by researchers to 
deeply analyze the vibrations of shells. A detailed review of various such methods can be found 
in the Leissa’s book [1]. To the author’s best knowledge, the literature available related to open 
cylindrical shells as compared to closed shells is very limited. In this manuscript an effort has been 
put to study the vibrations characteristics of open cylindrical shells therefore it is necessary to 
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highlight some prominent studies related to open shells.  
Initially the study of vibration characteristics of cylindrical shells was limited to shallow shells 

[2-7]. Later, employing the classical shell theory, Selmane et al. [8], presented a hybrid finite 
element method for open cylindrical shells. A similar study was performed by Bardell et al. [9]. 
He used ℎ- version of finite element method and studied the isotropic open cylindrical shells. 
3-D elasticity approach and three-dimensional displacement based extremum energy principle was 
used by Lim et al. [10] to perform the modal analysis of open cylindrical shells. Incorporating the 
effect of shear deformation and rotary inertia, Price et al. [11] did his research on cylindrical pipes 
and open shells by employing various shell theories. Zhang et al. [12] used wave propagation 
technique to investigate the natural frequencies and mode shapes for cylindrical panels. 
Employing virtual work and d’Alembert’s principle followed by predictor-corrector method, 
Ribeiro [13] investigated the geometrically non-linear vibration characteristics of moderately 
thick shells.  

Using first order shear deformation theory, Kandasamy et al. [14] investigated skewed open 
cylindrical deep shells. Later in another similar study C. Adam [15], addressed non-linear 
vibrations of shallow shells with different shear flexibility. Using thin shell theory and discrete 
singular convolution method, Omer [16] studied the vibration characteristics of laminated conical 
and cylindrical shells. Similarly, in another study laminated open cylindrical shells were studied 
by Ribeiro [17] using clamped boundary conditions. Tornabene et al. [18] studied the FGM shell 
and plate structures using differential quadrature method. In another important research Hadi et.al 
[19], performed research on shallow cylindrical and delaminated shells for large amplitude 
vibrations. A 3D higher deformation theory was employed by Khalili et al. [20] to calculate the 
modal frequencies of circular shells subjected to various classical boundary conditions. 
Employing Ritz method similar research on different geometrical shell structures subjected to 
arbitrary boundary conditions were performed by Qatu and Asadi [21]. A lot of other similar 
important research work on cylindrical shells is given in [22-37]. 

A very important method previously developed for beams [38] and plates [39] is presently a 
source of attention for researchers and is currently used for studying the vibration characteristics 
of shells subjected to general boundary conditions. In this manuscript this method has been 
employed to study the vibration characteristics of moderately thick isotropic homogeneous open 
cylindrical shells subjected to general elastic boundary conditions.  

2. Theoretical formulation 

2.1. Model description 

Consider an isotropic homogeneous moderately thick open cylindrical shell having uniform 
thickness ℎ, subtended angle ߠ, radius ܴ, and length ܮ as shown in Fig. 1. A cylindrical coordinate 
system (ݖ ,ߠ ,ݔ) is also shown, in which the ݔ coordinate is taken in the axis of the shell panel and ߠ  and ݖ  represents the circumferential and radial directions respectively. The middle surface 
displacements are represented by ݑ ݒ ,  and ݓ  whereas ߶௫  and ߶ఏ  represents the rotation of 
transverse normal with respect to ߠ and ݔ axis respectively.  

Three translational springs having stiffnesses (݇௨ , ݇௩  and ݇௪ ) and two rotational springs 
having stiffnesses (ܭ௫ and ܭఏ) are introduced along each edge of the cylindrical shell panel to 
simulate arbitrary boundary conditions. All the classical sets of boundary conditions can easily be 
achieved by assigning proper stiffness values to the translational and rotational springs. For 
instance, a clamped boundary (C) is achieved by simply setting the stiffnesses of the entire springs 
equal to infinite (which is represented by a very large number, 1014 N/m). Inversely, a free 
boundary (F) is gained by setting the stiffnesses of the entire springs equal to zero. 
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Fig. 1. Geometry of open shell 

2.2. Energy functional of moderately thick open cylindrical shells 

Based on first order shear deformation theory for isotropic homogeneous moderately thick 
cylindrical shells, the displacement components (ݑ௫, ݒఏ and ݓ) of the shell in terms of middle 
surface displacements can be expressed as: ݑ௫(ݔ, ,ߠ ,ݖ (ݐ = ,ݔ) ݑ ,ߠ (ݐ + ,ݔ)௫߶ݖ ,ߠ ,ݔ)ఏݒ ,(ݐ ,ߠ ,ݖ (ݐ = ,ݔ) ݒ ,ߠ (ݐ + ,ݔ)ఏ߶ݖ ,ߠ ,ݔ) ݓ ,(ݐ ,ߠ ,ݖ (ݐ = ,ݔ)ݓ ,ߠ (1) ,(ݐ

where ݒ ,ݑ and ݓ are the middle surface displacements of the shell in the axial, circumferential 
and radial directions respectively, ߶௫  and ߶ఏ represent the rotations of transverse normal with 
respect to ߠ and ݔ-axes and ݐ is the time variable. The strain displacement relation for the shell 
panel in terms of middle surface strains can be expressed as: ߝ௫௫ = ௫௫ߝ + ఏఏߝ     ,௫௫߯ݖ = ఏఏߝ + ௫ఏߛ     ,ఏఏ߯ݖ = ௫ఏߛ + ௫ఏ, (2)߯ݖ

where ߝ௫௫ ఏఏߝ ,  and ߛ௫ఏ  represents the middle surface strains and ߯௫௫, ߯ఏఏ and ߯௫ఏ represents the 
curvature changes during deformation for a moderately thick shell panel. For a cylindrical shell 
panel having constant radius ܴ, the middle surface strains and curvature changes are given as: 

௫௫ߝ = ݔ߲ݑ߲ ఏఏߝ     , = 1ܴ ߠ߲ݒ߲ + ܴݓ ௫ఏߛ     , = ݔ߲ݒ߲ + 1ܴ ௫௫߯(3) ,ߠ߲ݑ߲ = ߲߶௫߲ݔ ,     ߯ఏఏ = 1ܴ ߲߶ఏ߲ߠ ,     ߯௫ఏ = ߲߶ఏ߲ݔ + 1ܴ ߲߶௫߲ߠ . (4)

The transverse shear strains are given by: 

௫௭ߛ = ߶௫ + ݔ߲ݓ߲ ఏ௭ߛ     , = ߶ఏ − ݒܴ + 1ܴ ߠ߲ݓ߲ . (5)

According to Hooke’s law the stress strains relations for a moderately thick cylindrical shell 
are given as: 
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۔ۖەۖ
ఏఏ߬௫ఏ߬௫௭߬ఏ௭ߪ௫௫ߪۓ ۙۘۖ

ۖۗ = ێێۏ
ଵଵܳۍێ ܳଵଶ 0 0 0ܳଵଶ ܳଵଵ 0 0 00 0 ܳ 0 00 0 0 ܳ 00 0 0 0 ܳۑۑے

ېۑ
۔ۖەۖ
ఏ௭ߛ௫௭ߛ௫ఏߛఏఏߝ௫௫ߝۓ ۙۘۖ

ۖۗ, (6)

where ܳଵଵ = ܧ 1 − ⁄ଶߤ , ܳଵଶ  = ܧߤ 1 − ⁄ଶߤ , ܳ = ܧ 2(1 + ⁄(ߤ ܧ ,  is the modulus of elasticity 
and ߤ is the Poisson ratio. 

The in-plane force resultant vector, bending and twisting moment resultant vector and 
transverse shear force resultant vector is given by: 

ܰ = ൝ ௫ܰ௫ఏܰఏ௫ܰఏ ൡ = න ൝ߪ௫௫ߪఏఏ߬௫ఏ ൡ/ଶ
ି/ଶ ܯ     ,ݖ݀ = ൝ܯ௫௫ܯఏఏܯ௫ఏൡ = න ൝ߪ௫௫ߪఏఏ߬௫ఏ ൡ/ଶ

ି/ଶ  ,ݖ݀ݖ
ܳ = ൜ܳ௫௫ܳఏఏൠ = න ߢ ቄߪ௫௭ߪఏ௭ቅ/ଶ

ି/ଶ (7) ,ݖ݀

where ‘ߢ’ is the shear correction factor i.e. ߢ = 5/6 
The equations relating the force and moment resultants to the strains and curvature changes in 

the middle surface can be written in matrix form as: 

൝ܰܳܯൡ =
ێێۏ
ێێێ
ଵଶܣ ଵଵܣۍێ 0 ଵଵܤ ଵଶܤ 0 0 ଵଶܣ0 ଵଵ 0ܣ ଵଶܤ ଵଵܤ 0 0 00 0 ܣ 0 0 ܤ 0 ଵଶܤ ଵଵܤ0 0 ଵଵܦ ଵଶܦ 0 0 ଵଶܤ0 ଵଵ 0ܤ ଵଶܦ ଵଵܦ 0 0 00 0 ܤ 0 0 ܦ 0 00 0 0 0 0 0 ܣߢ 00 0 0 0 0 0 0 ۑۑےܣߢ

ۑۑۑ
ېۑ

ەۖۖ
۔ۖ
ఏ௭ߛ௫௭ߛ௫ఏ߯௫௫߯ఏఏ߯௫ఏߛఏఏߝ௫௫ߝۓۖ ۙۖۖ

ۘۖ
ۖۗ, (8)

where ܣ௦௧ =  ܳ௦௧/ଶି/ଶ . ௦௧ܤ , ݖ݀ =  ܳ௦௧/ଶି/ଶ ௦௧ܦ and ݖ݀ݖ =  ܳ௦௧/ଶି/ଶ ݐ ,ݏ ,ݖଶ݀ݖ = 1, 2, 6. 
The strain energy ܷ of the open circular cylindrical shell is given by: 

ܷ = න න( ௫ܰ௫ߝ௫௫ + ఏܰఏߝఏఏ + ௫ܰఏߛ௫ఏ + ௫௫ߝ௫௫ܯ + ఏఏߝఏఏܯ + ௫ఏఈߛ௫ఏܯ



       +ܳ௫ߛ௫௭ + ܳఏߛఏ௭)ܴ݀(9) .ݔ݀ߠ

Substituting Eq. (8) into (9), the strain energy can be expressed as a sum of three parts: 

௦ܷ = ௦ܷ௧௧ + ܷௗ + ܷ௨  ௗ&ௌ௧௧. (10)

For cylindrical shells: 

௦ܷ௧௧ = 12 න න ቊܣଵଵ ൬߲ݔ߲ݑ൰ଶ + ଵଵܣ ൬1ܴ ߠ߲ݒ߲ + ܴ൰ଶݓ + ܣߢ ൬߶ఏ − ݒܴ + 1ܴ ߠ߲ݓ߲ ൰ଶఈ



  

ܣߢ+       ൬߶௫ + ݔ߲ݓ߲ ൰ଶ + ଵଶܣ2 ൬߲ݔ߲ݑ൰ ൬1ܴ ߠ߲ݒ߲ + ܴ൰ݓ + ܣ ൬߲ݔ߲ݒ + 1ܴ ൰ଶቋߠ߲ݑ߲ (11) ,ݔ݀ߠܴ݀
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ܷௗ = 12 න න ቊܦଵଵ ൬߲߶௫߲ݔ ൰ଶ + ଵଵܦ ൬1ܴ ߲߶ఏ߲ߠ ൰ଶ + ଵଶܦ2 ൬߲߶௫߲ݔ ൰ ൬1ܴ ߲߶ఏ߲ߠ ൰ఈ



  

ܦ+       ൬߲߶ఏ߲ݔ + ߲߶௫ܴ߲ߠ൰ଶቋ (12) ,ݔ݀ߠܴ݀

ܷ௨  ௗ&ௌ௧௧ = 12 න න ൜ܤଵଵ ൬߲ݔ߲ݑ൰ ൬߲߶௫߲ݔ ൰ + ଵଵܤ ൬1ܴ ߠ߲ݒ߲ + ܴ൰ݓ ൬1ܴ ߲߶ఏ߲ߠ ൰ + ଵଶܤ ൬߲ݔ߲ݑ൰ ൬1ܴ ߲߶ఏ߲ߠ ൰ఈ



  

ଵଶܤ+       ൬1ܴ ߠ߲ݒ߲ + ܴ൰ݓ ൬߲߶௫߲ݔ ൰ + ܤ ൬߲ݔ߲ݒ + 1ܴ ൰ߠ߲ݑ߲ ൬߲߶ఏ߲ݔ + 1ܴ ߲߶௫߲ߠ ൰ൠ (13) .ݔ݀ߠܴ݀

Similarly, the kinetic energy of the open cylindrical shell is given by: 

ܶ = 12 න න ቈߩℎ ቊ൬߲߲ݐݑ ൰ଶ + ൬߲ݐ߲ݒ൰ଶ + ൬߲ݓ߲ݐ ൰ଶቋ + ℎଷ12ߩ ቊ൬߲߶௫߲ݐ ൰ଶ + ൬߲߶ఏ߲ݐ ൰ଶቋఈ



 (14) ,ݔ݀ߠܴ݀

where ߩ is density. 
Since three groups of translational springs (݇௨ , ݇௩  and ݇௪ ) and two groups of rotational 

springs (ܭ௫ and ܭఏ) are attached at each edge of the open cylindrical shell to simulate the arbitrary 
elastic boundary conditions, therefore the potential or strain energy stored in these elastic springs 
can be expressed as: 

௦ܷ = 12 න ቄ൫݇ఏ௨ ଶݑ + ݇ఏ௩ ଶݒ + ݇ఏ௪ ଶݓ + ఏ௫ܭ ߶௫ଶ + ఏఏܭ ߶ఏଶ൯ఏୀ


        +൫݇ఏ௨ഀ ଶݑ + ݇ఏഀ௩ ଶݒ + ݇ఏ௪ഀ ଶݓ + ఏ௫ഀܭ ߶௫ଶ + ఏఏഀܭ ߶ఏଶ൯ఏୀఈቅ +       ݔ݀ 12 න ቄ൫݇௫௨ ଶݑ + ݇௫௩ ଶݒ + ݇௫௪ ଶݓ + ௫௫ܭ ߶௫ଶ + ௫ఏܭ ߶ఏଶ൯௫ୀ
ఈ

        +൫݇௫ಽ௨ ଶݑ + ݇௫ಽ௩ ଶݒ + ݇௫ಽ௪ ଶݓ + ௫ಽ௫ܭ ߶௫ଶ + ௫ಽఏܭ ߶ఏଶ൯௫ୀቅ  .ߠܴ݀
(15)

After establishing the strain energy and kinetic energy expressions, the Lagrangian expression 
can be written as: ܮ = ௦ܷ + ௦ܷ − ܶ. (16)

3. Solution scheme 

3.1. Selection of Admissible displacement functions 

After establishing the potential energy and kinetic energy expression, the next step is to choose 
appropriate admissible displacement functions which is of crucial importance in the Rayleigh-Ritz 
procedure. Generally, for shell problems, the admissible functions are often expressed in terms of 
beam functions under the same boundary conditions. Thus, a specially customized set of beam 
functions is required for each type of boundary conditions. Instead of the beam functions, one may 
also use other forms of admissible functions such as orthogonal polynomials. However, the higher 
order polynomials tend to become numerically unstable due to the computer round-off errors. This 
numerical difficulty can be avoided by expressing the displacement functions in the form of a 
Fourier series expansion because Fourier functions constitute a complete set and exhibit an 
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excellent numerical stability. 
In the present study, irrespective of the boundary conditions, each of the displacement function 

is expressed as a new form of trigonometric expansion with accelerated convergence. Each of 
displacement and rotation functions of the open cylindrical shell is expanded as: 

ݑ =  ஶܣ
ୀୀିଶ ߮(ݔ)߮(ߠ),     ݒ =  ஶܤ

ୀୀିଶ ߮(ݔ)߮(ߠ), 
ݓ =  ஶܥ

ୀୀିଶ ߮(ݔ)߮(ߠ),      ߶௫ =  ஶܦ
ୀୀିଶ ߮(ݔ)߮(ߠ), 

߶ఏ =  ஶܧ
ୀୀିଶ ߮(ݔ)߮(ߠ), 

(17)

where: ߮(ݔ) = ൜cosߣ(ݔ),    ݉ ≥ 0sinߣ(ݔ),     ݉ < 0ൠ,     ߮(ߠ) = ൜cosߣ(ߠ),     ݊ ≥ 0sinߣ(ߠ),      ݊ < 0ൠ, ߣ(ݔ) = ܮ(ݔ)ߨ݉ (ߠ)ߣ     , = ߙ(ߠ)ߨ݊ . 
The sine terms in the Eq. (17) are introduced to overcome the potential discontinuities of the 

displacement function, along the edges of the shell, when it is periodically extended and sought in 
the form of trigonometric series expansion. As a result, the Gibbs effect can be eliminated and the 
convergence of the series expansion can be substantially improved. 

3.2. Determination of expansion coefficients 

After establishing energy expressions and selecting proper admissible displacement functions, 
the next step is to find the expansion coefficients in the assumed displacement series. This can be 
achieved by substituting the assumed displacement fields Eq. (17) in the Eq. (10), (14) and (15) 
and then minimizing Eq. (16) against all the unknown series expansion coefficients i.e.: ߲ܮ∂Θ = 0,     Θ = ,ܣ  ,ܤ ,ܥ ,ܦ . (18)ܧ

After minimizing the Langrangian against all unknown series expansion coefficients as shown 
in Eq. (18), we will obtain a series of linear algebraic expressions which can be further expressed 
in matrix form as: (ܭ − ߱ଶܧ(ܯ = 0, (19)

where ܧ is a vector which contains all the unknown series expansion coefficients, ܭ and ܯ are 
the stiffness and mass matrices, respectively. ܭ ,ܧ and ܯ are expressed as: 
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ܧ = ۔ۖەۖ
,ଶ,ିଶିܣۓ ,ଶ,ିଵିܣ ,ଶ,ିܣ . . . , ,ᇱ,ିଶܣ ,ᇱ,ିଵܣ . . . ,ᇱ,ᇱܣ . . . , ,ଶ,ିଶିܤெ,ேܣ ,ଶ,ିଵିܤ ,ଶ,ିܤ . . . ,ᇱ,ିଶܤ   , ,ᇱ,ିଵܤ . . . ,ᇱ,ᇱܤ . . . , ,ଶ,ିଶିܥெ,ேܤ ,ଶ,ିଵିܥ ,ଶ,ିܥ . . . , ,ᇱ,ିଶܥ ,ᇱ,ିଵܥ . . . ,ᇱ,ᇱܥ . . . , ,ଶ,ିଶିܦெ,ேܥ ,ଶ,ିଵିܦ ,ଶ,ିܦ . . . , ,ᇱ,ିଶܦ ,ᇱ,ିଵܦ . . . ,ᇱ,ᇱܦ . . . , ,ଶ,ିଶିܧெ,ேܦ ,ଶ,ିଵିܧ ,ଶ,ିܧ . . . , ,ᇱ,ିଶܧ ,ᇱ,ିଵܧ . . . ,ᇱ,ᇱܧ . . . , ۘۖۙ ெ,ேܧ

்ۖۗ
, 

ܭ =
ێێۏ
ۍێێ
௨௨ܭ ௨௩ܭ ௨௪ܭ ௨టೣܭ ௨௩்ܭ௨టഇܭ ௩௩ܭ ௩௪ܭ ௩టೣܭ ௨௪்ܭ௩టഇܭ ௩௪்ܭ ௪௪ܭ ௪టೣܭ ௨టೣ்ܭ௪టഇܭ ௩టೣ்ܭ ௪టೣ்ܭ టೣటೣܭ ௨టഇ்ܭటೣటഇܭ ௩టഇ்ܭ ௪టഇ்ܭ టೣటഇ்ܭ ۑۑےటഇటഇܭ

 ,ېۑۑ
ܯ = ێێۏ

௨௨ܯۍێ 0 0 0 00 ௩௩ܯ 0 0 00 0 ௪௪ܯ 0 00 0 0 టೣటೣܯ 00 0 0 0 ۑۑےటഇటഇܯ
 .ېۑ

(20)

For conciseness, the detailed expressions for the stiffness and mass matrices are not shown 
here. 

3.3. Determination of eigen values and eigen vectors 

After establishing Eq. (19), the eigenvalues (or natural frequencies) and eigenvectors of 
moderately thick open cylindrical shell can now be easily and directly determined from solving a 
standard matrix eigenvalue problem Eq. (19). In the current work, the authors have used 
MATLAB software to obtain eigen values (natural frequencies) and corresponding eigen vectors. 
For a given natural frequency, the corresponding eigenvector actually contains the series 
expansion coefficients which can be used to construct the physical mode shape based on Eq. (17). 
Although this investigation is focused on the free vibration of open cylindrical shells, the response 
of the shell panel to an applied load can also be easily obtained by considering the work done by 
this load in the Lagrangian, eventually leading to a force term on the right side of Eq. (19). 

4. Results and discussion 

In practical engineering, the study of structure response, when it is subjected to static or 
dynamic loads is of critical importance. One of such studies is the modal analysis and testing. The 
modal analysis of any structure includes the identification of resonant frequencies which are 
subsequently quantified to avoid well known resonance phenomena. In order to find these modes 
of vibrations or resonant frequencies accurately, researchers have developed various analytical 
methods for different boundary conditions. For any structure the modes of vibration are highly 
dependent upon the material properties and boundary conditions. Each mode of vibration is 
defined by a natural (modal or resonant) frequency, modal damping, and a mode shape. If there is 
a slight change in material properties or boundary conditions of a structure, its modes of vibration 
will also change. Since in real scenarios, the material properties and boundary conditions of any 
structure may vary therefore it is of prime importance to study or estimate these natural 
frequencies for any change in material properties as well as boundary conditions.  

In this section a systematic comparison of the results obtained using the present method and 
those obtained from ABAQUS is carried out to verify the accuracy, reliability and feasibility of 
the present method. First of all, the convergence study of the present method is performed. 
Convergence study is important to check the rationality of hypothetical admissible functions of 
the displacement fields and also to determine the proper truncated numbers in the calculations to 
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follow. Therefore, for different values of ܯ  and ܰ  (number of truncation terms) results are 
calculated for a completely clamped moderately thick open cylindrical shell panel having 
parameters ߙ = 60°, ℎ ܴ⁄ = 0.1, ݈ ܴ⁄ = 2. For convenience, the four-letter string ‘CCCC’ has 
been used to refer to clamped boundary condition at edges ݔ ߠ ,0 = ݔ ,0 = = ܮ  and ߠ = ߙ , 
respectively. The clamped boundary condition is easily achieved by assigning a very high stiffness 
value i.e 1e14 to the boundary springs. Similarly, free boundary conditions can be achieved by 
assigning zero stiffness value to the restraining springs. In calculations to follow the symbol ܵ, ܨ 
and ܧ  will be used to denote the simply supported, free and elastic boundary restraints. For 
different no. of truncation terms, Table 1 shows first six frequencies (Hz) for open cylindrical shell 
panel subjected to CCCC boundary conditions. 

Table 1. First six frequencies (Hz) for completely clamped open cylindrical  
shell panel (ߙ = 60°, ℎ ܴ⁄ = 0.1, ݈ ܴ⁄ ܯ (2 = = ܰ Mode sequence 

1 2 3 4 5 6 
2 879.547 1112.311 1463.763 1671.980 2021.887 2140.287 
4 877.588 991.404 1227.954 1228.916 1411.978 1692.215 
6 877.328 988.366 1210.706 1222.908 1402.000 1548.622 
8 877.251 987.671 1208.433 1221.810 1399.761 1540.250 
10 877.223 987.445 1207.782 1221.501 1399.045 1538.153 
12 877.210 987.354 1207.536 1221.390 1398.764 1537.416 
14 877.204 987.312 1207.426 1221.342 1398.635 1537.105 
16 877.201 987.291 1207.372 1221.319 1398.569 1536.956 
18 877.199 987.279 1207.342 1221.307 1398.533 1536.878 
20 877.198 987.271 1207.325 1221.300 1398.512 1536.834 

ABAQUS 877.340 987.040 1207.100 1222.700 1398.600 1537.300 

Table 2. First six frequencies (Hz) for open cylindrical shell panel  
ߙ) = 270°, ℎ ܴ⁄ = 0.2, ݈ ܴ⁄ = 2) subjected to CFCF boundary conditions ܯ = ܰ Mode sequence 

1 2 3 4 5 6 
2 392.809 399.278 515.197 606.723 752.915 918.837 
4 356.415 363.707 500.894 517.999 600.070 741.259 
6 338.981 345.826 488.791 495.970 578.042 605.890 
8 336.239 336.714 477.231 485.121 573.300 603.493 

10 336.234 336.681 477.000 484.965 571.963 602.551 
12 336.231 336.519 476.880 484.739 569.786 598.987 
14 336.227 336.452 476.808 483.984 568.681 598.606 
16 336.210 336.423 476.761 483.874 568.614 597.998 
18 336.197 336.409 476.729 483.793 568.569 597.745 
20 336.189 336.316 476.706 483.735 568.536 597.610 

It can be seen that the frequency parameter converges very quickly for small number of 
truncation terms. Furthermore, the results are also in close agreement with those obtained from 
ABAQUS. Similarly, Table 2 gives first five frequency parameter (Hz) for cylindrical shell panel 
having geometric parameters (ߙ = 270°, ℎ ܴ⁄ = 0.2, ݈ ܴ⁄ = 2) and subjected to CFCF boundary 
conditions. 

A fast convergence and close agreement with the results obtained from ABAQUS can be seen. 
Furthermore, the fast convergence of the frequencies can be observed in Fig. 2 which shows 
convergence of 2nd, 5th and 8th mode frequencies of cylindrical shell panel (ߙ = 60°, ℎ ܴ⁄ = 0.1, ݈ ܴ⁄ = 2) subjected to FFFF boundary conditions and using different number of truncation terms. 

It can be observed from table 1 that when the truncated terms change from ܯ = ܰ = 10 to ܯ = ܰ = 12, the difference of the frequency parameters does not exceed 0.045 % for the worst 
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case, which is acceptable. More accurate results may be obtained by further truncated numbers, 
but the computational cost will be increased. Therefore, for the sake of both accuracy and 
computational cost, the truncated number of the displacement expressions will be uniformly 
selected as ܯ = ܰ = 12 in all the following numerical calculations. 

 
Fig. 2. Convergence pattern of frequency parameters with no. of terms (ܯ = ܰ) 

After studying the convergence of the present method, the accuracy of the method is verified 
by applying it on cylindrical shell panels subjected to various combinations of classical boundary 
conditions. The first four non-dimensional frequency parameters for a moderately thick cylindrical 
shell panel having geometric parameters (ߙ = 180°, ℎ ܴ⁄ = 0.1, ݈ ܴ⁄ = 2) subjected to various 
combinations of classical boundary conditions are presented in Table 3. A good agreement can be 
observed between the calculated results and those obtained from ABAQUS. 

Table 3. First four non-dimensional frequency parameters Ω = ߱ × ܴඥ1)ߩ − (ଶߤ ∗  ଵ for cylindricalିܧ
shell panel (ߙ = 180°, ℎ ܴ⁄ = 0.1, ݈ ܴ⁄ = 2) subjected to various boundary conditions 

BC Methods Mode sequence 
1 2 3 4 

CFCF Present 0.2458 0.2541 0.4127 0.4656 
ABAQUS 0.2448 0.2518 0.4113 0.4655 

CFFF Present 0.0877 0.0891 0.1872 0.1976 
ABAQUS 0.0861 0.0887 0.1868 0.1959 

FFCC Present 0.0937 0.1885 0.2876 0.3014 
ABAQUS 0.0906 0.1867 0.2852 0.2951 

After verifying the accuracy of the present method for various combinations of classical 
boundary conditions, it is important to study the effect of boundary spring stiffnesses on the 
frequency parameters. Figs. 3 and 4 shows the variation of frequency for 7th, 8th and 9th mode 
respectively plotted against the spring stiffnesses by varying the stiffnesses of one group of 
boundary springs from 0 to 1014 while keeping the stiffnesses of the other group equal to infinite 
i.e. 1014. 

It can be seen in Fig. 3 that the frequency parameter almost remains at a level when the stiffness 
of the translational springs in ߠ ,ݔ and ݖ directions is less than 108 and greater than 1012 where as 
other than this range the frequency parameter increases with increasing stiffness values. Similar 
phenomena can be observed in Fig. 4 which shows the variation in frequency parameter with 
increasing stiffness values for rotational springs. It can be observed from figures that the 
influential range for translational and rotational springs is 108 to 1012 and 106 to 1010 respectively. 
Within this range the frequency parameter increases with increasing stiffness values however 
before and after this influential range the frequency parameters remain at a level. Based on the 
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analysis it can be concluded that stable frequency parameter can be obtained when the stiffnesses 
for all the restraining springs is more than 1012 or less than 106 and also it is also suitable and valid 
to use the stiffness value 1014 to simulate the infinite stiffness in the numerical calculations since 
the frequency parameter remain at the same level for values greater than equal to 1012. Also, an 
elastic boundary condition can also be easily defined with any stiffness value between 106 to 1012. 

 
Fig. 3. Effect of translational springs stiffness  
(݇௨, ݇௩ and ݇௪) on the frequency parameter 

 
Fig. 4. Effect of rotational springs stiffness  

 on the frequency parameter (ఏܭ ௫ andܭ)

As mentioned earlier the present method can be used to obtain natural frequency parameters 
for moderately thick open cylindrical shell under general elastic boundary condition regardless of 
modifying solution algorithm and procedure. The arbitrary boundary conditions including the 
classical and elastic boundary restraints can easily be achieved by assigning proper stiffness values 
to the restraining springs as shown in Table 4 where E1 and E2 represents the two different types 
of elastic restraints having different stiffness values. 

Table 4. Corresponding spring’s stiffnesses for different types of boundary conditions. 
BC  ݔ = 0 or ݔ = ߠ ௫ܮ = 0 or ߠ =  ఏܭ ௫ܭ ఏ ݇௨ ݇௩ ݇௪ܭ ௫ܭ ௨ ݇௩ ݇௪݇ ߙ
F 0 0 0 0 0 0 0 0 0 0 
C 1e14 1e14 1e14 1e14 1e14 1e14 1e14 1e14 1e14 1e14 
S 0 1e14 1e14 0 1e14 1e14 0 1e14 1e14 0 
E1 1e8 1e14 1e14 1e14 1e14 1e8 1e14 1e14 1e14 1e14 
E2 1e14 1e8 1e14 1e14 1e14 1e14 1e8 1e14 1e14 1e14 

Next, we calculate the frequency parameter for open cylindrical shells using different 
combinations of classical and elastic boundary restraints. Table 5, 6 and 7 shows the frequency 
parameters for open cylindrical shell panels having different subtended angles, thickness to radius 
ratio and subjected to various combinations of classical and elastic boundary conditions. 

It can be observed that all the frequencies mentioned in table 5, 6 and 7 are in close agreement 
with those obtained from ABAQUS. The maximum error for the worst case in the Table 5, 6 and 
7 is 0.17 % which is acceptable. 

At present, most of the existing techniques available so far to estimate the natural or resonant 
frequencies are limited to classical boundary conditions (clamped, free, simply supported etc.), 
however in practical engineering applications the structures are not always subjected to classical 
boundary conditions rather they may be subjected to elastic boundary conditions. In the present 
manuscript, the method presented not only helps to accurately estimate these natural frequencies 
of cylindrical shells subjected to different sets of classical boundary conditions but also accurately 
predicts these frequencies when such structures are subjected to general elastic boundary 
conditions. Furthermore, the presented results give an insight of the modes of vibration of these 
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structures having different material properties and subjected to elastic boundary conditions. 
Moreover, another important contribution of this technique is that this method does not require 
any changes in procedure or solution algorithms to accommodate different geometries, material 
properties or boundary conditions. The same solution algorithm or procedure can be used to 
estimate natural frequencies for different materials and boundary conditions. Different boundary 
conditions (classical, elastic, uniform & non-uniform) can easily be achieved by simply changing 
the stiffnesses of the translational and rotational springs attached at the boundaries or edges of the 
shell structure.  

Table 5. First four frequencies (Hz) for open cylindrical shell panel (ߙ = 60°, ݈ ܴ⁄ = 2)  
subjected to different boundary conditions 

BC ℎ ܴ⁄  Methods Mode sequence 
1 2 3 4 

E1E1E1E1 

0.1 
Present 78.816 836.356 963.911 1191.668 

ABAQUS 78.704 836.160 963.160 1190.700 
% Error 0.14 0.02 0.08 0.08 

0.2 Present 55.704 1080.569 1326.075 1405.296 
ABAQUS 55.670 1080.100 1325.000 1405.000 
% Error 0.06 0.04 0.08 0.02 

CE1CE1 

0.1 
Present 870.575 955.476 1195.536 1220.768 

ABAQUS 870.380 954.690 1194.700 1220.300 
% Error 0.02 0.08 0.06 0.03 

0.2 
Present 1130.947 1262.642 1432.718 1712.324 

ABAQUS 1130.800 1262.200 1432.500 1712.100 
% Error 0.01 0.04 0.02 0.01 

FE1FE1 

0.1 
Present 55.660 808.238 830.808 884.843 

ABAQUS 55.654 807.400 830.020 884.020 
% Error 0.01 0.1 0.09 0.09 

0.2 
Present 39.395 1027.752 1070.862 1166.300 

ABAQUS 39.365 1027.100 1070.400 1165.800 
% Error 0.07 0.06 0.04 0.04 

Table 6. First four frequencies (Hz) for open cylindrical shell panel (ߙ = 90°, ݈ ܴ⁄ = 2)  
subjected to different boundary conditions 

BC ℎ ܴ⁄  Methods Mode sequence 
1 2 3 4 

CE1CF 

0.1 
Present 222.246 440.265 474.896 664.259 

ABAQUS 221.870 439.810 474.620 663.870 
% Error 0.17 0.10 0.06 0.06 

0.2 Present 349.143 591.131 755.025 1024.495 
ABAQUS 349.110 590.980 754.900 1024.100 
% Error 0.01 0.02 0.02 0.04 

CE2CE2 

0.1 
Present 425.665 539.988 731.036 750.295 

ABAQUS 425.530 539.870 730.790 750.100 
% Error 0.03 0.02 0.03 0.03 

0.2 
Present 575.058 657.481 1012.780 1091.955 

ABAQUS 574.800 657.200 1012.500 1091.200 
% Error 0.04 0.04 0.03 0.07 

FE1FE1 

0.1 
Present 45.480 506.710 522.305 657.038 

ABAQUS 45.425 506.650 522.240 656.910 
% Error 0.12 0.01 0.01 0.02 

0.2 
Present 32.143 727.394 755.393 780.742 

ABAQUS 32.136 727.290 755.250 780.560 
% Error 0.05 0.01 0.02 0.02 
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Table 7. First four frequencies (Hz) for open cylindrical shell panel (ߙ = 270°, ݈ ܴ⁄ = 2)  
subjected to different boundary conditions 

BC ℎ ܴ⁄  Methods Mode sequence 
1 2 3 4 

E1FE1F 

0.1 
Present 29.773 193.010 196.105 316.912 

ABAQUS 29.760 192.970 196.070 316.860 
% Error 0.04 0.02 0.02 0.02 

0.2 Present 21.053 309.710 314.003 423.101 
ABAQUS 21.046 309.650 313.950 423.050 
% Error 0.03 0.02 0.02 0.01 

CE2CE2 

0.1 
Present 371.725 399.433 449.635 550.224 

ABAQUS 371.660 399.380 449.590 550.090 
% Error 0.02 0.01 0.01 0.02 

0.2 
Present 483.725 544.132 587.706 739.569 

ABAQUS 483.690 544.080 587.640 739.410 
% Error 0.01 0.01 0.01 0.02 

CE1CF 

0.1 
Present 215.061 364.871 413.932 461.280 

ABAQUS 215.000 364.830 413.890 461.240 
% Error 0.03 0.01 0.01 0.01 

0.2 
Present 336.439 486.840 557.422 645.701 

ABAQUS 336.400 486.780 557.310 645.560 
% Error 0.01 0.01 0.02 0.02 

5. Conclusions 

In this manuscript, an Improved Fourier series method previously developed for beams and 
plates has been employed to study the vibration characteristics of moderately thick isotropic 
homogeneous open cylindrical shells subjected to arbitrary elastic boundary conditions. 
Distributed elastic restraints have been used along the shell edges to achieve the elastic boundary 
restraints. Irrespective of the boundary conditions, all the displacement components have been 
presented in the form of simple trigonometric series with accelerated and uniform convergence. 
All the unknown expansion coefficients have been obtained using Rayleigh-Ritz technique. The 
efficiency, accuracy and reliability of the present method have been fully demonstrated by various 
numerical examples. All the results obtained have been found in close agreement with those 
obtained from ABAQUS. The effects of spring stiffnesses, thickness to radius ratio and subtended 
angle on the vibration characteristics have also been highlighted. In comparison with most existing 
techniques, the present method does not require any inconvenient formulation or procedural 
modifications to accommodate different boundary conditions or geometrical shapes. Furthermore, 
this method can easily be extended to study vibration analysis of different shell plate  
combinations.  
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