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Abstract. The vibration signal of rolling bearing is usually complex and the useful fault 
information is hidden in the background noise, therefore, it is a challenge to identify rolling 
bearing faults from the complex vibration environment. In this paper, a novel multilayer deep 
learning convolutional neural network (CNN) method to identify rolling bearing fault is proposed. 
Firstly, in order to avoid the influence of different characteristics of the input data on the 
identification accuracy, a normalization preprocessing method is applied to preprocess the 
vibration signals of rolling bearings. Secondly, a multilayer CNN based on deep learning is 
designed in this paper to improve the fault identification accuracy of rolling bearing. Simulation 
data and experimental data analysis results show that the proposed method has better performance 
than SVM method and ANN method without any manual feature extractor design. 
Keywords: multilayer deep learning CNN, normalization preprocessing, rolling bearing, fault 
identification, feature learning. 

1. Introduction 

As a key part of rotating machinery, rolling bearing is widely used in modern machine [1, 2]. 
Its working condition is directly related to whether the equipment can operate normally. Faults in 
rolling bearings can lead to machine breakdown, and even bring serious economic loss to 
industries. Therefore, carrying out fault diagnosis researches on rolling bearing is very necessary, 
and it has been a hot research topic in recent years [3, 4]. 

In recent years, various fault diagnosis methods have been proposed [5-13]. Yu et al. applied 
EMD method and Hilbert spectrum to the rolling bearing fault diagnosis [7]. Tian et al. proposed 
a rolling bearing fault diagnosis method based on LMD-SVD and extreme learning machine [8]. 
Rauber et al. introduced a method based on heterogeneous feature models to bearing fault 
diagnosis [9]. Tian et al. applied differential geometry to rolling bearing fault diagnosis [10]. Ma 
et al. applied softmax regression to the fault diagnosis and health assessment of centrifugal pumps 
[11]. Among the proposed methods, intelligent fault diagnosis methods based on artificial neural 
networks [14-16], SVM [13, 17] have been the center of intelligent fault diagnosis researches. 
However, current intelligent fault diagnosis methods are shallow learning models, which only 
involve a few hidden layers. As a result, their learning ability is limited and they need careful 
feature extractor design with manual intervention and domain expertise when applied to 
multi-calss and complex fault diagnosis researches. These disadvantages greatly limit the 
application of intelligent fault diagnosis methods, which prompt researchers to focus on deep 
learning methods.  

In 2006, Geoffery Hinton proposed the concept of deep learning [18]. Because of the good 
performance, a lot of research works based on deep learning methods have been proposed in recent 
years [19-21]. Among the deep learning models, CNN is the first truly successful deep learning 
model [22]. CNN is a multilayer model consisted of multiple processing layers and can transform 
the raw input data into essential internal features layer by layer to improve the classification 
accuracy, in other words, no careful manual feature extractor design is required for CNN. Because 
of the good performance of CNN, it is widely applied in pattern identification problems [23-25] 
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Therefore, this paper proposes a fault identification method based on CNN and applied the method 
to the rolling bearing fault identification problems. 

The diagnosis procedure of the proposed method is as follows. Firstly, vibration signals of 
rolling bearings under various conditions are obtained by the data acquisition system; secondly, 
the obtained vibration signals are preprocessed using the method illustrated in this paper; third, a 
CNN model for rolling bearing fault diagnosis is designed; finally, the designed CNN model is 
used to diagnose rolling bearing faults. 

The main advantage of the proposed method is that the proposed method has excellent feature 
learning ability and can automatically learn the essential features from vibration data, which 
greatly increases the classification accuracy of rolling bearing fault diagnosis problems without 
any manual feature extractor and feature selection design. 

The rest of this paper is organized as follows. The deep learning CNN model is briefly 
introduced in Section 2. The proposed method is described in Section 3. In Section 4, the proposed 
method is applied to analyze the simulation signal and experimental signal. The conclusions are 
given in Section 5. 

2. Deep learning CNN model 

2.1. The architecture of CNN 

As a deep learning model with multilayer architecture, CNN relies more on automatic learning 
and less on careful manual design [21, 22]. The main layers of CNN contain convolutional layers 
and subsampling layers. The convolutional layers perform as shared-weight extractors and the 
subsampling layers perform subsampling on the output of the previous convolutional layers. 

The inputs of convolutional layers are a set of units from the previous layers. The convolutional 
layers perform convolution operation on the input maps with a set of trainable kernels. For a 
convolutional layer in the ݈th layer in the CNN, the computation is as follows: 

ݔ = ݂ ቌ  ିଵݔ ∗ ݇ + ܾ∈ெೕ ቍ, (1)

where ܾ denotes a trainable bias, ݂(⋅) denotes the activation function, ݇ denotes the 
convolutional kernel, ܯ denotes feature map and * denotes discrete convolution operation. 

The subsampling layers are designed to reduce the complexity of CNN. In this paper, 
subsampling layers compute the average values over a neighborhood in each feature map. The 
computation is as follows: ݔ = ݂൫ߚ݀݊ݓ(ݔିଵ) + ܾ൯, (2)

where ߚ  denotes the weight vector value, ܾ  denotes a trainable bias parameter. ݀݊ݓ(⋅) is a 
subsampling function. 

2.2. CNN training  

The CNN model designed in this paper is trained by backprop algorithm, which contains 
feedforward pass and backpropagation pass [22]. In the feedfordward pass, the output of each 
layer is the input of the next layer. Therefore, the output of each layer will affect the output of the 
network. The training error is computed according to the squared-error loss function. For a training 
dataset with ܰ training samples and c classes, the training error ܧ is computed according to the 
following formula: 



2306. ROLLING BEARING FAULT IDENTIFICATION USING MULTILAYER DEEP LEARNING CONVOLUTIONAL NEURAL NETWORK.  
HONGKAI JIANG, FUAN WANG, HAIDONG SHAO, HAIZHOU ZHANG 

140 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. FEB 2017, VOL. 19, ISSUE 1. ISSN 1392-8716  

ܧ = 12  (ݖ
ୀଵ

ே
ୀଵ − ,)ଶݕ (3)

where ݖ  is the ݇th dimension of the ݊th pattern’s target, and ݕ  is the ݇th output layer unit 
corresponding to the ݊th input pattern. 

For an ordinary fully connected layer l, the output ݔ is as follows: ݔ = ݑ     ,(ݑ)݂ = ܹݔିଵ + ܾ, (4)

where ܹ denotes the weight vector and ܾ denotes the bias vector. 
In the backpropagation pass, the parameters are updated with the training error. ߜ  is the 

sensitive of each unit with respect to perturbations of the bias ܾ. In this case, because ∂ݑ ∂ܾ⁄ =  :can be computed as follows ߜ ,1

ߜ = ܾ∂ܧ∂ = ݑ∂ܧ∂ ܾ∂ݑ∂ = .ݑ∂ܧ∂ (5)

For each layer, the weights are updated by adding Δܹ. Δܹ is computed as follows: 

Δܹ = ߟ− ܹ∂ܧ∂ = ,்(ߜ)ିଵݔߟ− (6)

where ߟ denotes the learning rate. 
The output layer is a fully connected layer. The sensitive ߜ for the output layer neurons are 

computed as follows: 

ߜ = ܾ∂ܧ∂ = ݑ∂ܧ∂ ∂ܾݑ∂ = ݑ∂ܧ∂ = ݂ᇱ(ݑ) ∘ ݕ) − ,(ݖ (7)

where ∘ denotes element-wise multiplication.  
For a convolutional layer at the ݈th layer, the sensitive ߜ for ݆th map is computed as follows: ߜ = ାଵߚ ቀ݂ᇱ൫ݑ൯ ∘ ,ାଵ൯ቁߜ൫ݑ (8)

where ߚାଵis the weight of the subsampling layer at layer ݈ +  denotes an upsampling (⋅)ݑ ,1
operation. 

For a subsampling layer at ݈th layer, the sensitive ߜ is computed as follows: ߜ = ݂ᇱ൫ݑ൯ ∘ ,ାଵߜ2൫ݒ݊ܿ 180൫ݐݎ ݇ାଵ൯, ,ᇱ൯݈݈ݑ݂′ (9)

where, the kernel ݇ାଵ  is rotated 180 degrees to make the convolution function perform 
cross-correction. ܿ2ݒ݊ denotes full 2D convolution operation.  

3. The proposed method 

Because of the excellent feature learning ability of deep learning CNN, a novel multilayer deep 
learning CNN method to identify rolling bearing faults is proposed in this paper. 

3.1. The preprocessing of rolling bearing vibration signals 

The amplitude values of rolling bearing vibration signals vary greatly under various fault 
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conditions, which will affect the fault identification accuracy. To solve this problem, this paper 
adopts the following formula to preprocess the obtained rolling bearing vibration signals, and 
normalize the signal amplitude values to [0, 1]: ݕ = ୫ୟ୶ݕ) − (୫୧୬ݕ × ݔ − ୫ୟ୶ݔ୫୧୬ݔ − ୫୧୬ݔ + ,୫୧୬ݕ (10)

where ݔ୫ୟ୶ and ݔ୫୧୬ are the maximum value and minimum value of the raw data, ݕ୫ୟ୶ is 1 and ݕ୫୧୬ is 0 in this paper. ݕ denotes the preprocessed signal. In this paper, the maximum value of the 
preprocessed signal is 1 and the minimum value of the preprocessed signal is 0. The preprocessing 
operation is beneficial for improving the fault identification accuracy. 

The preprocessed data is divided into samples in this paper. The training dataset and test 
dataset are composed of samples and fault labels. 

3.2. Multilayer deep learning CNN for rolling bearing fault identification design 

In this paper, rolling bearing fault identification method using multilayer deep learning CNN 
are designed as follows: 

Step 1: Use accelerometers to collect the vibration signals of rolling bearings. 
Step 2: Preprocess the collected vibration signals using the method in 3.1 and construct the 

training dataset and testing dataset. 
Step 3: Design the multilayer deep learning CNN model. 
Step 4: Train the designed CNN model. 
Step 5: Diagnose on the testing dataset using the well trained multilayer deep learning CNN. 
The flowchart of the proposed method is described in Fig. 1. In Fig. 1, numpochs is the current 

training epoch and maxpoches is the maximum training epoch. Firstly, design the multilayer deep 
learning CNN model and input the preprocessed vibration signals of rolling bearings. Secondly, 
initialize the multilayer deep learning CNN model. Then, compute the output of networks and 
back propagate the error to update the weights. Lastly, diagnose on the testing dataset using the 
trained multilayer deep learning CNN and output the fault identification accuracy.  

The CNN designed in this paper consists of input layer, convolutional layer C1, subsampling 
layer S2, convolutional layer C3, subsampling layer S4, and the output layer. The maps in the 
input layer are in the size of 20×20. The convolutional layer C1 contains 6 feature maps and the 
size of convolutional kernels is 5×5. In S2 and S4, feature maps from convolutional layers are 
divided into sub-regions with the size of 2×2 and the sub-regions are non-overlapping, the mean 
value of each sub-region is the output. C3 contains 12 feature maps and the size of convolutional 
kernels is 5×5. The output layer is a softmax classifier. 

4. Simulation and experimental validation 

In this paper, simulation data and experimental data are used to verify effectiveness of the 
proposed method. 

4.1. Case 1: simulation signal analysis 

In this case study, two vibration signals of rolling bearings are simulated. The fault patterns of 
simulated rolling bearings contain outer fault and inner fault. In fact, the vibration signals are 
interfered by background signal when rolling bearings are working in rotating machinery. The 
simulation vibration signal ݔ is described as follows: 
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ݔ =  ቂ݁ିଶగభ(௧ି/భ)sin2ߨ ଵ݂(ݐ − ݅/ ଵ݂)ඥ1 − ଶேߞ
ୀଵ      + ݁ିଶగమ(௧ି/మ)sin2ߨfଶ(ݐ − ݅/ ଶ݂)ඥ1 − ଶቃߞ + ܽ × ,1)݊݀݊ܽݎ ݊), (11)

where ݔ is composed of two different impulse response signals with carrier center frequencies 
corresponding to ଵ݂ and ଶ݂ respectively. ߞ denotes the damping ratio. A noise signal is added to ݔ 
and ܽ is the amplitude of the noise signal.  

 
Fig. 1. The flowchart of the proposed method 

The characteristic frequency of the inner race fault signal is ݂ = 87.897 Hz, and ܰ for inner 
race fault signal is 112. The characteristic frequency of the inner race fault signal is  ݂ = 64.819 Hz, and ܰ for outer race fault signal is 83. The sampling frequency ௦݂ is 12.8 KHz. 
The simulation time ݐ is 1.28 s and ݊ = 16384. The parameter values of the two kinds of rolling 
bearing faults simulation signals are described in Table 1. Fig. 2 is the time domain figures for 
inner race fault and outer race fault simulation signals without noise. Fig. 3 is the time domain 
figures for rolling bearing inner race fault and outer race fault simulation signals combined noise. 

Table 1. The parameters value of rolling bearing faults simulation signals 
Fault condition ଵ݂ / Hz ଶ݂ / Hz ߞ ܽ ܰ ௦݂ ݐ
Inner race fault 1200 5200 0.02 0.3 112 12.8 KHz 1.28 s 
Outer race fault 2000 5200 0.02 0.3 83 12.8 KHz 1.28 s 
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Fig. 2. The time domain figures for simulation signals without noise: a) inner race fault; b) outer race fault 

 
Fig. 3. The time domain figures for simulation signals combined with noise:  

a) inner race fault; b) outer race fault 

In this case study, the simulation signals are preprocessed according to the method illustrated 
in Section 3.1. As shown in Table 2, two comparative datasets are designed, including dataset A 
and dataset B. Dataset A is vibration data without noise and dataset B is vibration data combined 
with noise. In each simulation signal, the first 16000 data points are equally divided into 30 
training samples and 10 testing samples, each sample contains 400 data points. Therefore, each 
dataset has 60 training samples including 30 inner race fault samples and 30 outer race fault 
samples and 20 testing samples including 10 inner race fault samples and 10 outer race fault 
samples. 

Table 2. Fault samples distribution for simulation signals 
Dataset Fault condition Training sample Testing sample Label 

Dataset A (without noise) Inner race fault 30 10 1 
Outer race fault 30 10 2 

Dataset B (with noise) Inner race fault 30 10 1 
Outer race fault 30 10 2 

In order to verify the effectiveness of the proposed method, the samples are input to the 
designed CNN model without any manual feature extraction. For comparison, the artificial neural 
network (ANN) and SVM methods are respectively used to analyze the same datasets without any 
manual feature extraction. The three methods are explained as follows. (1) The proposed method: 
the CNN model is designed as illustrated in Section 3.2, the learning rate is 1 and the training 
epoch is 100. (2) ANN method: the scaled conjugate gradients method is used to train the ANN 
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model, the learning rate is 0.25, maximum training epochs is 100 and the hidden layer has 400 
neurons. (3) SVM method: the RBF kernel is applied, the penalty factor is 0.92 and the radius of 
the kernel function is 0.44. All the parameters are determined by experience and repeated 
experiments. 

Fig. 4 shows the classification accuracy using the proposed method, SVM method and ANN 
method. In dataset A, the classification accuracy of training samples based on the proposed  
method, SVM and ANN is 100 %, 100 % and 96 %, respectively, The classification accuracy of 
testing samples in dataset A based on the proposed method, SVM and ANN is 100 %, 100 % and 
75 %, respectively. In dataset B, the simulation signals are combined with noise, and the 
classification accuracy of training samples based on the proposed method, SVM and ANN is 
100 %, 100 % and 92 %, respectively, the classification accuracy of testing samples in dataset B 
based on the proposed method, SVM and ANN is 100 %, 75 % and 65 %, respectively.  

 
Fig. 4. Identification accuracy of simulation signals 

The simulation result confirms that the proposed method has better classification performance 
than SVM methods and ANN methods, especially when the signals are combined with noise. The 
proposed method has better feature learning ability. 

4.2. Case 2: experimental signal analysis 

In this case study, the rolling bearing data are from the electrical engineering laboratory of 
Case Western Reserve University [12]. As shown in Fig. 5, the test stand is composed of a driving 
motor, a torque transducer, a dynamometer and control electronic unit. The testing rolling bearings 
contain four health conditions: (1) normal condition, (2) inner race fault, (3) outer race fault and 
(4) ball fault. The vibration signals were collected by accelerometers, and the sampling frequency 
is 12 kHz. 

 
Fig. 5. The test stands of rolling bearings 

In this case, 11 vibration signals collected at the speed of 1797 rpm from the drive end 
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containing four health conditions and varied fault severity are selected to verify the effectiveness 
of the proposed method. Fig. 6 are the time domain figures of vibration signals of rolling bearings 
with four health conditions. As Table 3 shows, each vibration signal is preprocessed according to 
the method illustrated in section 3.1. Each signal is equally divided into 300 samples and each 
sample contains 400 data points. The training dataset has 2200 (200×11) samples and the testing 
dataset has 1100 (100×11) samples. The proposed method is used to analyze these samples, and 
SVM method and ANN method are used to. 

 
Fig. 6. Time domain figures for rolling bearings vibration signals:  

a) normal condition; b) inner race fault; c) ball fault; d) outer race fault 

Without any manual feature extraction and any manual feature selection, the samples are 
directly input to the designed CNN, SVM and ANN. The three methods are explained as follows. 
(1) The proposed method: the CNN model is designed as illustrated in Section 3.2, the learning 
rate is 1 and the training epoch is 300. (2) SVM method: the RBF kernel is applied, the penalty 
factor is 0.50 and the radius of the kernel function is 0.92. (3) ANN method: the scaled conjugate 
gradients method is used to train the ANN model, the learning rate is 0.05 and maximum training 
epochs is 500, the hidden layer has 400 neurons. All parameters are determined by experience and 
repeated experiments. 

Table 3. Rolling bearing fault sample distribution 
Rolling bearing condition Training sample Testing samples Label 

Normal condition 200 100 1 
0.007/Inner race fault 200 100 2 

0.007/Ball fault 200 100 3 
0.007/Outer race fault 200 100 4 

0.014/Ball fault 200 100 5 
0.014/Outer race fault 200 100 6 
0.021/Inner race fault 200 100 7 

0.021/Ball fault 200 100 8 
0.021/Outer race fault 200 100 9 
0.028/Inner race fault 200 100 10 

0.028/Ball fault 200 100 11 
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As shown in Table 4 and Fig. 7, the classification accuracy of training samples based on the 
proposed method is 98.36 %, and it is much higher than those using SVM method and ANN 
method, which are 77.27 % and 75.09 %. The classification accuracy of testing samples based on 
the proposed method is 88.00 %. That is much higher than those based on SVM and ANN, which 
are 63.18 % and 53.91 %. The proposed method performs much better than SVM and ANN. 

Table 4. Identification results of rolling bearing vibration signals 

Methods Identification accuracy 
Training samples Testing samples 

The proposed method 98.36 % 88.00 % 
SVM 77.27 % 63.18 % 
ANN 75.09 % 53.91 % 

 
Fig. 7. Classification accuracy of rolling bearing faults 

The classification result of the 11 class of samples is shown in the following confusion matrix 
in Fig. 8. Fig. 8(a) is the confusion matrix for training dataset and Fig. 8(b) is the confusion matrix 
for testing dataset. The ordinate axis of each confusion matrix is the actual labels of classification 
and the horizontal axis is the predicted labels.  

Although many researches show that SVM and ANN have excellent performance when 
applied to fault diagnosis, the proposed method performs much better than SVM and ANN. The 
main reason is that the SVM and ANN are used to analyze the raw data with multiple fault patterns 
without any feature extractor design and any feature selection in this paper. The current fault 
diagnosis methods based on SVM ANN require manual feature extractor and feature selection 
design while the proposed method based on CNN is a multilayer deep learning model, which uses 
a well-developed trainable topology to replace feature extraction step and can automatically 
transform the raw input data into suitable internal features to improve the performance. In fact, as 
Yann Lecun has pointed out, the key aspect of deep learning is that these layers of features are not 
designed by human engineers: they are learned from data using a general-purpose learning 
procedure [22].  

As a summary, the proposed method is more suitable for the complex fault diagnosis problems 
without any manual feature extractor and feature selection design than SVM method and ANN 
method. The experimental result confirms that the proposed method has good classification 
performance. 

5. Conclusions 

This paper proposes a multilayer deep learning CNN method for rolling bearing fault diagnosis 
problems without any feature extractor and feature selection design. The normalization 
preprocessing method is used to preprocess the rolling bearing vibration signals, and which can 
avoid the influence of different characteristics of the input data on the identification accuracy. 
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a)  

  
b) 

Fig. 8. Result of rolling bearing fault identification: a) training samples; b) testing samples 

The proposed method is validated to analyze rolling bearing simulation data and experimental 
data without any feature extractor and feature selection design. As the analysis result show, the 
proposed method has better and more robust performance than ANN method and SVM method. 
The proposed method can automatically learn effective features from vibration signals with high 
classification accuracy and requires no careful manual intervention. The future study will pay 
more attention to improve the performance of the proposed method with signal processing 
methods. 
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