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Abstract. The conventional state space method for force identification has the disadvantage of 
large discretization error with a low sampling frequency. This paper presents an improved method 
based on the function interpolation of the external force in time domain. Two types of the 
interpolation functions are investigated, one is the linear interpolation, and the other type is the 
sigmoid curve interpolation. Gauss integration method is used for integration computation. 
Numerical studies show that both of the improved methods based on the two types of interpolation 
function are more accurate especially when the sampling is long and/or with a low sampling 
frequency. In addition, the proposed method is also extended for the case of high noise level. The 
key idea is to divide the time step of measured responses into several smaller time steps to form 
an overdetermined equation of the inverse force identification. Then, the least square algorithm is 
adopted, which helps to reduce the effect of the high random noise to improve the accuracy of 
identified solution. 
Keywords: force identification, function interpolation, Gauss integration, high level of noise. 

1. Introduction 

Accurate knowledge of the dynamic force on a structural system is of great importance in 
many structural dynamic problems, such as structural dynamic design, response reconstruction, 
condition assessment and health monitoring. However, direct measurement of the external forces 
is very difficult, especially the interaction force between different substructures of a large 
structural system. Also, in some situations, if force gauges are inserted into force transfer path to 
measure those dynamic excitations, it is difficult to obtain the accurate forces since the existence 
of force gauges may alter the system properties. Instead, vibration responses can be conveniently 
measured. The indirect method of force identification is to perform an inverse identification 
process with the measured structural responses and the known structural system, which is an 
important topic in the identification of structural systems under operational conditions.  

Existing force identification methods can be mainly classified into two categories of 
approaches, the frequency domain [1-5] and time domain methods [6-10]. The frequency domain 
methods of estimating forces were originally developed in the 1980s using the frequency response 
functions. The identified forces are just in frequency domain. To obtain the forces in time domain, 
inverse Fourier transform is required. This makes those methods suitable for stable and stationary 
random forces, and difficult to identify impact transient forces. Later, the time domain methods 
have been proposed. Both of the frequency and time domain methods are mainly concerned as the 
deterministic approaches. In recent years, the probabilistic/statistical methods [11-13] have been 
developed, such as Bayesian methods [14] and Kalman filtering methods [15]. In this paper, we 
focus on the force identification method based on the state space method which is the most popular 
method among the existing time domain methods. The state space method relates the structural 
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responses, the system parameters and the input forces with the Markov parameters, and they are 
not sensitive to the initial values and have no cumulative errors produced by the previous time 
step compared with many other time domain force identification methods. Law and Fang [16] 
presented a state space method for moving force identification. Kammer [17] and Law et al. [18] 
adopted the zeroth order system Markov parameters to identify the external forces. Nordberg and 
Gustafsson [19] proposed an explicit block inversion algorithm to invert the associated upper 
block triangular Toeplitz matrix for force identification using the state space method. Mao et al. 
[20] established a precise force identification model based on the precise time-step integration 
method for Markov parameters in the state space method, and Tikhonov regularization technique 
was adopted to obtain the regularization solution. Law and Yong [21] used the state space method 
to identify the interface forces and the external forces for structural condition assessment. The 
state space method was also adopted by the Kalman filter method [22] and the augmented Kalman 
filter method [23] for force estimation. Recently, a novel approach of force identification based 
on average acceleration discrete algorithm was presented in the state space [24]. In addition, sensor 
placement problem for force identification based on Markov parameters was also investigated in 
Ref. [25]. Two methods of sensor placement were proposed: One was based on the condition 
number of Markov parameter matrix, and the other was based on the correlation analysis of 
Markov parameter matrix. 

Although the state space method is widely used in force identification, it still has an important 
problem. The method is assumed that the force is a constant value during each time interval. The 
assumption can be satisfied only when the time step is small enough. A required high sampling 
frequency may not only lead a heavy computation, but also increase the ill-posedness of the 
Markov parameter matrix. Along with the increase of the sampling time step, the state space 
method is less accurate for force estimation. Referring to the finite element method in structural 
dynamics, one knows the shape function interpolation for space discretization of structural 
responses. Thus, a suitable interpolation function for time discretization of the input force may be 
practicable for establishing a more accurate model of force identification. In this paper, an idea 
based on the time discretization of the force is first introduced in the conventional state space 
method for force identification, and two types of the interpolation functions are employed: One is 
the linear interpolation, and the other type is the sigmoid curve interpolation. Then, Gauss 
numerical integration method is used for integration computation. Finally, a Tikhonov 
regularization technique is used to solve the ill-posed problem of force reconstruction, and the 
L-curve and the generalized cross-validation (GCV) criterion are both adopted to find the optimum 
regularization parameter. Additionally, the proposed method is extended for the case of high noise 
level. The idea is to divide the time step of measured responses into several smaller time steps to 
form an overdetermined equation of the inverse force identification, while the time step of the 
discrete force is still the original time step of the proposed method. Then, the least square 
algorithm is employed, which helps to smooth out the high random noise to improve the accuracy 
of identified force. 

This paper proceeds as follows. Section 2 first introduces the improved state space method 
based on the interpolation function method for force reconstruction. Then the Tikhonov 
regularization method is introduced briefly. Section 3 presents the extension version of the 
proposed method for dealing with the case of high noise level. In Section 4, numerical studies are 
conducted to demonstrate the effectiveness of the proposed methods. Effects of measurement 
noise (including high level of noise), multiple forces reconstruction and white noise excitations 
are also considerable. Finally, several conclusions and remarks are drawn based on the current 
study. In addition, the conventional force identification method based on the state space method 
is listed in Appendix. 

2. The theory of force identification 

The general equation of motion of a damped structure can be written as: 
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(ݐ)ሷܠۻ + (ݐ)ሶܠ۱ + (ݐ)ܠ۹ = f(ݐ), (1)

where ۱ ,ۻ and ۹ are the mass, damping and stiffness matrices of the structure, respectively;  ܠሷ ሶܠ ,(ݐ)  are, respectively, the nodal acceleration, velocity and displacement vectors of the (ݐ)ܠ ,(ݐ)
structure; (ݐ)  is the load vector. Rayleigh damping ۱ = ۻߙ + ۹ߚ  is assumed in this paper, 
where ߙ and ߚ are the Rayleigh damping coefficients. However, there is no limitation on the type 
of damping model adopted in the proposed method just as the conventional state space method. 

2.1. The improved state space method based on interpolation function 

The equation of motion of the structural system in Eq. (1) can be expressed in the state space 
as: ݖሶ(ݐ) = (ݐ)ܢۯ + (2) ,(ݐ)۰

where (ݐ)ܢ = ൬ܠ(ݐ)ܠሶ ۯ ,൰(ݐ) = ቀ 0 ଵ۹ିۻ−۷ ଵ۱ቁ, and ۰ିۻ− = ቀ .ଵቁିۻ0
 
 

Eq. (2) can be converted into the following discrete equation as: 

ାଵܢ = ܢ(ݐΔ)܂ + න ݁(௧ೖశభିఛ)۰(߬)݀߬௧ೖశభ௧ೖ , (3)

where ܂(Δݐ) =  in Eq. (3) is assumed (߬) ௧. In the conventional state space method, the forceۯ݁
to be constant in each time step (from ݐ to ݐାଵ). However, it is known that the solution is close 
to exact only when the time interval is very small. A very small time interval will lead to make a 
large size of Markov parameter matrix, which may form an ill-posed equation. In the improved 
method, the force (߬) is assumed as a function varying with time at each time interval, not just a 
constant value. This will make the model of force identification more accurate, and allow the time 
step being larger at some extent. Suppose the force being a function as: (ݐ) = (ݐ)ۼ ൬ ାଵ൰ , ݐ ≤ ݐ ≤ ାଵ. (4)ݐ

Substituting Eq. (4) into Eq. (3) has: 

ାଵܢ = ܢ(ݐΔ)܂ + න ߬݀(߬)ۼ۰(௧ೖశభିఛ)ۯ݁ ൬ ାଵ൰௧ೖశభ௧ೖ . (5)

The Lagrange linear interpolation is well-known, and it is adopted in this article. The linear 
interpolation function is defined as: (ݐ)ۼ = 1 − ݐ − ݐΔݐ ݐ − ݐΔݐ ൨. (6)

Therefore, the force is approximated as a linear function varying with time in each time step, 
which is represented as: (ݐ) = ൬1 − ݐ − ݐΔݐ ൰  + ݐ − ݐΔݐ ାଵ =  + ାଵ − ݐΔ ݐ) − ,(ݐ ݐ ≤ ݐ ≤ ାଵ. (7)ݐ

Substituting Eq. (6) into Eq. (5), we obtain: 
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ାଵܢ = ܢ(ݐΔ)܂ + න ۰(௧ೖశభିఛ)ۯ݁ 1 − ߬ − ݐΔݐ ߬ − ݐΔݐ ൨ ݀߬ ൬ ାଵ൰௧ೖశభ௧ೖ . (8)

The integration is computed by Gauss integration which is a well-known numerical integration 
algorithm. Then, one obtain: ܢାଵ = ܶ(Δݐ)ܢ       + Δ4ݐ  ߱લ ቆΔ2ݐ (1 − ܿ)ቇ ۰(1 − ܿ)

ୀଵ
Δ4ݐ  ߱܂ ቆΔ2ݐ (1 − ܿ)ቇ ۰(1 + ܿ)

ୀଵ ൩ ൬ =       ାଵ൰ ݖ(ݐΔ)܂ + ேଵ۰] [ேଶ۰ ൬ ାଵ൰, (9)

where ݊  is the number of the integration points, ߱  is the weight coefficient and ܿ  is the 
coordinate of the integration point. 

The output equation can be written as: (ݐ)ݕ = (ݐ)ሷܠ܀ + ሶܠ௩܀ (ݐ) + (10) ,(ݐ)ܠௗ܀

where ܀ ௩܀ , ௗ܀ , ∈ ௗ×௦ௗ܀  are the mapping matrices associate with the DOFs of the 
measured acceleration, velocity and displacement, respectively. ݂݉݀ is the number of sensor, ݂݀ݏ is the total number of DOFs in the structure.  

Vector ܡ can be rewritten as: ܡ = ܢ܀ + (11) ,۲

where ܀ = ௗ܀] − ௩܀ଵ۹ିۻ܀ − ଵ۹] and ۲ିۻ܀ =  .ଵିۻ܀
Eq. (11) can be converted into the following discrete equation as: ܡ = ܢ܀ + . (12)۲

The output ܡ can be solved from Eqs. (9) and (12) with the assumption of zero initial response 
of the structure and we have: 

ݕ = ۔ۖەۖ
,۶ۓ ݇ = 0,۶ + ۶ଵଵ, ݇ = 1,۶ +  ۶ଵିାଵ

ୀଶ + ۶ଵଵ, 2 ≤ ݇ ≤ ܰ − 1, (13)

where ۶ = ۲, ۶ = ேଵ۰, ۶ଵିଵ܂܀ = ቊ܀ேଶ۰ + ۲, ݆ = ேଶ۰ିଵ܂܀,1 + ேଵ۰ିଶ܂܀ ݆ ≥ 2. 
Eq. (13) can be rewritten in the matrix form as: ܇ = (14) ,۶

where: 
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۶ =
ێێۏ
ێێێ
ۍ ۶۶ଵ ۶ଵଵ۶ଶ ۶ଶଵ ۶ଵଵ۶ଷ ۶ଷଵ ۶ଶଵ ۶ଵଵ⋮ ⋮ ⋮ ⋮ ⋱۶ேିଵ ۶ேିଵଵ ۶ேିଶଵ ۶ேିଷଵ ⋯ ۶ଵଵۑۑے

ۑۑۑ
ې ܇      , = ൞ ேିଵൢܡ⋮ଵܡܡ      , = ൞  .ேିଵൢ⋮ଵ

Eq. (14) is the force identification model to estimate the time history of input force from the 
measured responses, and it is the same form as Eq. (A11) in the Appendix.  

The sigmoid curve is a well-known transfer function, which is often used in neural network 
[26-27]. The sigmoid function is a bounded differentiable real function with a threshold of (0, 1). 
In some extent, it can be regarded as an approximate linear function with slope. So, the sigmoid 
curve can be also used as an interpolation function. It is written as [28]: 

(ݐ)ۼ = [ܰ1 ܰ2] = ቈ 11 + ݁ቀ௧ି௧ೖ௧ ି.ହቁோ௧ 11 + ݁ቀ.ହି௧ି௧ೖ୲ ቁோ௧, (15)

where ܴ is the coefficient varying with Δݐ, in this paper, ܴΔݐ is equal to 12. 
Then, Substituting Eq. (15) into Eq. (5), and employing Gauss integration, one can obtain the 

following equation as: ܢାଵ = +       ܢ(ݐΔ)܂ Δ2ݐ  ߱લ ቆΔ2ݐ (1 − ܿ)ቇ ۰ 11 + ݁.ହோ௧
ୀଵ

Δ2ݐ  ߱܂ ቆΔ2ݐ (1 − ܿ)ቇ ۰ 11 + ݁ି.ହோ௧
ୀଵ ൩ ൬  ାଵ൰

      = ܢ(ݐΔ)܂ + ேଵ۰] [ேଶ۰ ൬ ାଵ൰. (16)

The following identification procedure is just the same as the above description about the linear 
interpolation method. The only difference is the terms of ேଵ and ேଶ. 

2.2. Force identification with regularization technique 

Like many other inverse problems, the force identification problem is ill-posed. Regularization 
method would provide an improved solution to the ill-posed problem. The damped least-squares 
method proposed by Tikhonov [29] is widely used. Eq. (17) shows the application of the 
regularization method in force identification as: ۶்܇ = (۶்۶ + , (17)(۷ߣ

where ߣ is the non-negative damping coefficient governing the participation of the least-squares 
error in the solution. Solving Eq. (17) is equivalent to minimizing the function: ܬ = ฮ۶ − ฮଶ܇ + ฮଶ. (18)ฮߣ

The L-curve [30] and the generalized cross-validation (GCV) [31] criterions are the two 
famous methods to find the optimal regularization parameter ߣ. In this paper, both of them are 
adopted for force identification. 

To illustrate briefly in the following text, LISS represents the improved identification method 
based on linear function interpolation, and SISS represents the improved identification method 
based on sigmoid curve function interpolation. 
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3. Improvement of the proposed method for the case of high noise level 

In this section, the proposed LISS method for force identification is extended for the case of 
high noise level. We divide each time interval into two small sub-time intervals, according to 
Eq. (3), one can get the two following equations as: 

ାଵܢ ଶ⁄ = ܂ ൬∆2ݐ ൰ ܢ + න ൫௧ೖశభۯ݁ మ⁄ ିఛ൯۰(߬)݀߬௧ೖశభ మ⁄௧ೖ ାଵܢ(19) , = ܂ ൬∆2ݐ ൰ ାଵܢ ଶ⁄ + න ௧ೖశభ௧ೖశభ߬݀(߬)۰(௧ೖశభିఛ)ۯ݁ మ⁄ . (20)

Assuming the force ݂(ݐ) is still linear during [ݐ,  :ାଵ] as above, we haveݐ

ାଵܢ ଶ⁄ = ܂ ൬∆2ݐ ൰ +       ܢ ∆16ݐ  ߱લ ቆ∆4ݐ (1 − ܿ)ቇ (3 − ܿ)۰
ୀଵ

16ݐ∆  ߱܂ ቆ∆4ݐ (1 − ܿ)ቇ (1 + ܿ)۰
ୀଵ ൩ ൬  ାଵ൰

      = ܂ ൬∆2ݐ ൰ ܢ + ଵேଵ۰] [ଵேଶઠ ൬  ,ାଵ൰
(21)

ାଵܢ = ܂ ൬∆2ݐ ൰ ାଵܢ ଶ⁄        + ∆16ݐ  ߱લ ቆ∆4ݐ (1 − ܿ)ቇ (1 − ܿ)۰
ୀଵ

16ݐ∆  ߱܂ ቆ∆4ݐ (1 − ܿ)ቇ (3 + ܿ)۰
ୀଵ ൩ ൬  ାଵ൰

      = ܂ ൬∆2ݐ ൰ ାଵܢ ଶ⁄ + ଶேଵ۰] [ଶேଶઠ ൬  ,ାଵ൰
(22)

where: 

ଵேଵ = 16ݐ∆  ߱લ ቆ∆4ݐ (1 − ܿ)ቇ (3 − ܿ)
ୀଵ ଵேଶ      , = 16ݐ∆  ߱܂ ቆ∆4ݐ (1 − ܿ)ቇ (1 + ܿ)

ୀଵ , 
ଶேଵ = 16ݐ∆  ߱લ ቆ∆4ݐ (1 − ܿ)ቇ (1 − ܿ)

ୀଵ ଶேଶ       , = 16ݐ∆  ߱܂ ቆ∆4ݐ (1 − ܿ)ቇ (3 + ܿ).
ୀଵ  

The output vector can be written as: 

ାଵܡ ଶ⁄ = ାଵܢ܀ ଶ⁄ + ାଵ۾۲ ଶ⁄ ≈ ାଵܢ܀ ଶ⁄ + ۲ ൬12  + 12 ାଵܡାଵ൰, (23) = ାଵܢ܀ + ାଵ. (24)۲

With the knowledge of the recurrence matrices of the state vector and the above output 
matrices, one can obtain the force identification equation just as similar as the equation of the 
above proposed method in Eq. (14). The identification equation is expressed as: ܇ഥ = (25) ,۶

where: 
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ഥ܇ = ൞ ܇      ,ேିଵൢ܇⋮ଵ܇܇ = ൝ܡ, ݇ = 0,ቄܡିଵ/ଶܡ ቅ , 1 ≤ ݇ ≤ ܰ − 1. 
Assuming ܂ଵ = ݐ∆)܂ 2⁄ ), the differences between Eq. (14) and Eq. (25) are the matrices in: 

܇ = ۔ۖەۖ
,۶ۓ ݇ = 0,۶ଵ + ۶ଵଵ, ݇ = 1,۶ +  ۶ଵିାଵ

ୀଶ + ۶ଵଵ, 2 ≤ ݇ ≤ ܰ − 1, (26)

where: 

۶ = ۲,      ۶ଵ =  ଵேଵ۰܀ + 12 ۲ܴܶ  ଵ ଵ݃ேଵܤ + ܴ݃ଶேଵܤ,      ۶ଵଵ =  ଵேଶ۰܀ + 12 ଵேଶ۰ଵ܂܀۲ + ଶேଶ۰܀ + ۲, 
۶ = ܂܀ଵିଶଵேଵઠ + ଵேଵઠଵିଵ܂܀ଶேଵ۰ଵିଷ܂܀ + ，ଶேଵ۰൨ଵିଶ܂܀ ܽ = 2, (2 ≤ ݇ ≤ ܰ − 1), 
۶ଵ = ۔ۖەۖ

ଵேଶ۰ଵଶ܂܀ۓ + ଶேଶ۰ଵ܂܀ + ଵேଵ۰܀ + 12 ଵேଶ۰ଵଷ܂܀۲ + ଶேଶ۰ଵଶ܂܀ + R܂ଵ ଵேଵ۰ + ଶேଵ۰܀ ,       ݆ = 2
ቈ܂܀ଵିଶேଶ۰ + ଶேଶ۰ଵିଷ܂܀ + ଵேଵ۰ଵିସ܂܀ + ଵேଶ۰ଵିଵ܂܀ଶேଵ۰ଵିହ܂܀ + ଶேଶ۰ଵିଶ܂܀ + ଵேଵ۰ଵିଷ܂܀ + ଶேଵ۰ଵିସ܂܀ ,       ݆ ≥ 3,      ܾ = 2݆. 

It should be noted that the force identification equation is over determinated, and the size of 
the matrix ۶ is (2ܰ − 1) × ܰ. This means that the least square algorithm is needed to solve this 
inverse problem, which can reduce the effect of the random noise to improve the accuracy of 
identified force, especially when the noise is loud. It is also necessary to point out that the output 
Eq. (23) has an approximation of the node force, and this will influence the identification accuracy 
when the acceleration response at the acting point of force is used as the measured response. In 
fact, the measured sensor is not placed at the location of force. 

Except for the case of the two sub-time intervals, the case of the four sub-time intervals is also 
studied. The derivation process is similar as the case of the two sub-time intervals, and the 
identification equation is the same as Eq. (25). The only difference is the values of the following 
several matrices. So only the final results are listed as follows: 

܇ = ۔ۖەۖ
,ܡۓ ݇ = 0,

൞ܡିଷ/ସܡିଵ/ଶܡିଵ/ସܡ ൢ , 1 ≤ ݇ ≤ ܰ − 1, (27)

۶ଵ =
ێێۏ
ێێێ
ۍ ଵேଵ۰܀ + 34 ଵேଵ۰ ଶ܂܀۲ + ଶேଵ۰܀ + 12 ଵேଵ۰ଶଶ܂܀۲ + ଵேଵ۰ ଶ܂܀ + ଷேଵ۰܀ + 14 ଵேଵ۰ଶଷ܂܀۲ + ଵேଵ۰ଶଶ܂܀ + ଷேଵ۰ଶ܂܀ + ۑۑےସேଵ۰܀

ۑۑۑ
ې
, (28)
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۶ଵଵ =
ێێۏ
ێێێ
ۍ ଵேଵ۰܀ + 14 ଵேଶ۰ ଶ܂܀۲ + ଶேଶ۰܀ + 12 ଵேଶ۰ଶଶ܂܀۲ + ଵேଶ۰ ଶ܂܀ + ଷேଶ۰܀ + 34 ଵேଶ۰ଶଷ܂܀۲ + ଵேଶ۰ଶଶ܂܀ + ଷேଶ۰ଶ܂܀ + ସேଶ۰܀ + ۑۑے۲

ۑۑۑ
ې
, (29)

۶ = ێێێۏ
ଵேଵઠଶିସ܂܀ۍ + ଶேଵઠଶିହ܂܀ + ଷேଵઠଶି܂܀ + ଵேଵઠଶିଷ܂܀ସேଵઠଶି܂܀ + ଶேଵઠଶିସ܂܀ + ଷேଵઠଶିହ܂܀ + ଵேଵઠଶିଶ܂܀ସேଵઠଶି܂܀ + ଶேଵઠଶିଷ܂܀ + ଷேଵઠଶିସ܂܀ + ଵேଵઠଶିଵ܂܀ସேଵઠଶିହ܂܀ + ଶேଵઠଶିଶ܂܀ + ଷேଵઠଶିଷ܂܀ + ۑۑۑےସேଵઠଶିସ܂܀

 ,ې
ܽ = 4݇,       (2 ≤ ݆ ≤ ܰ − 1), (30)

ଵܪ =

ەۖۖ
ۖۖۖ
ۖۖۖ
۔ۖۖۖ
ۖۖۖ
ۖۖۖ
ۖۖۖ
ۓ

ێێۏ
ێێێ
ێێێ
ଵேଶ۰ଶସ܂܀ۍێێ + ଶேଶ۰ଶଷ܂܀ + ଷேଶ۰ଶଶ܂܀ + ସேଶ۰ ଶ܂܀ + ଵேଵ۰܀ + 34 ۲

ቌ ଵேଶ۰ଶହ܂܀ + ଶேଶ۰ଶସ܂܀ + ସேଶ۰ ଶ܂܀+ଷேଶ۰ଶଷ܂܀ + ଵேଵ۰ଶ܂܀ + ଶேଵ۰܀ + 12 ۲ቍ
ቌ܂܀ଶଵேଶ۰ + ଶேଶ۰ଶହ܂܀ + ଷேଶ۰ଶସ܂܀ + ଵேଵ۰ଶଶ܂܀+ସேଶ۰ଶଷ܂܀ + ଶேଵ۰ଶ܂܀ + ଷேଵ۰܀ + 14 ۲ ቍ
ቆ܂܀ଶଵேଶ۰ + ଶேଶ۰ଶ܂܀ + ଷேଶ۰ଶହ܂܀ + ଵேଵ۰ଶଷ܂܀+ସேଶ۰ଶସ܂܀ + ଶேଵ۰ଶଶ܂܀ + ଷேଵ۰ ଶ܂܀ + ସேଵ۰܀ ቇ ۑۑے

ۑۑۑ
ۑۑۑ
ېۑۑ

,       ݆ = 2,

ێێۏ
ێێێ
ێێێ
൭ۍێێ 1ܰ4−2ܾ܂܀ 2ઠ + 2ܰ5−2ܾ܂܀ 2ઠ + 3ܰ6−2ܾ܂܀ 2ઠ + 4ܰ7−2ܾ܂܀ 2ઠ+1ܰ8−2ܾ܂܀ 1ઠ + 2ܰ9−2ܾ܂܀ 1ઠ + 3ܰ10−2ܾ܂܀ 1ઠ + 4ܰ11−2ܾ܂܀ 1ઠ൱

൭ 1ܰ3−2ܾ܂܀ 2ઠ + 2ܰ4−2ܾ܂܀ 2ઠ + 3ܰ5−2ܾ܂܀ 2ઠ + 4ܰ6−2ܾ܂܀ 2ઠ+1ܰ7−2ܾ܂܀ 1ઠ + 2ܰ8−2ܾ܂܀ 1ઠ + 3ܰ9−2ܾ܂܀ 1ઠ + 4ܰ10−2ܾ܂܀ 1ઠ൱
൭ 1ܰ2−2ܾ܂܀ 2ઠ + 2ܰ3−2ܾ܂܀ 2ઠ + 3ܰ4−2ܾ܂܀ 2ઠ + 4ܰ5−2ܾ܂܀ 2ઠ+1ܰ6−2ܾ܂܀ 1ઠ + 2ܰ7−2ܾ܂܀ 1ઠ + 3ܰ8−2ܾ܂܀ 1ઠ + 4ܰ9−2ܾ܂܀ 1ઠ൱
൭ 1ܰ1−2ܾ܂܀ 2ઠ + 2ܰ2−2ܾ܂܀ 2ઠ + 3ܰ3−2ܾ܂܀ 2ઠ + 4ܰ4−2ܾ܂܀ 2ઠ+1ܰ5−2ܾ܂܀ 1ઠ + 2ܰ6−2ܾ܂܀ 1ઠ + 3ܰ7−2ܾ܂܀ 1ઠ + 4ܰ8−2ܾ܂܀ 1ઠ൱ ۑۑے

ۑۑۑ
ۑۑۑ
ېۑۑ

,       ݆ ≥ 3,
 

ܾ = 4݆, 

(31)

in which: 

ଶ܂ = ܂ ൬∆4ݐ ൰, ଵேଵ = 64ݐ∆  ߱લ ቆ∆8ݐ (1 − ܿ)ቇ (7 − ܿ)
ୀଵ ଵேଶ       , = 16ݐ∆  ߱܂ ቆ∆4ݐ (1 − ܿ)ቇ (1 + ܿ)

ୀଵ , 
ଶேଵ = 64ݐ∆  ߱લ ቆ∆8ݐ (1 − ܿ)ቇ (5 − ܿ)

ୀଵ ଶேଶ       , = 16ݐ∆  ߱܂ ቆ∆4ݐ (1 − ܿ)ቇ (3 + ܿ)
ୀଵ , 

ଷேଵ = △ 64ݐ  ߱લ ቆ∆8ݐ (1 − ܿ)ቇ (3 − ܿ)
ୀଵ ଷேଶ       , = 16ݐ∆  ߱܂ ቆ∆4ݐ (1 − ܿ)ቇ (5 + ܿ)

ୀଵ , 
ସேଵ = 64ݐ∆  ߱લ ቆ∆8ݐ (1 − ܿ)ቇ (1 − ܿ)

ୀଵ ସேଶ       , = 16ݐ∆  ߱܂ ቆ∆4ݐ (1 − ܿ)ቇ (7 + ܿ)
ୀଵ . 
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To illustrate briefly in the following text, ILISS2 and ILISS4 represent the improved methods 
of the two sub-time intervals and four sub-time intervals, respectively. 

4. Numerical studies 

In this section, numerical studies are considered to evaluate the performance of the proposed 
method with comparison to the conventional state space method. A 12-bay plane truss structure is 
taken as the numerical model. This truss structure is modeled using 61 planar truss finite elements 
without internal nodes giving 52 DOFs. Node 1 is pin-supported and Node 26 is roller-supported, 
as shown in Fig. 1. The cross-sectional area of all elements is 0.0016 m2, and all horizontal and 
vertical members are of 1.0 m length. The first eight natural frequencies of the structure are 1.579, 
5.266, 7.066, 12.662, 18.500, 21.295, 29.016 and 32.349 Hz, respectively. Rayleigh damping is 
assumed, and the two damping coefficients are ߙ = 0.1523 and ߚ = 4.6503×10-4. The mass 
density and elastic modulus of material are 7.85×103 kg/m3 and 2.06 GPa, respectively. 

 
a) 

 
b) 

Fig. 1. a) Truss structure, b) node number, the external forces and sensors placement 

4.1. The accuracy of force identification  

This case is used to validate the accuracy of the proposed methods. In order to express briefly, 
the SS method represents the conventional state space method. 

One excitation force is considered in this case, which is applied at Node 3 in the negative 
direction of ݕ axis. It is described as: ܨଵ(ݐ) = 50൫1 − cos(10ݐߨ)൯sin(30ݐߨ). (32)

Three different sampling frequencies are studied, which are 2000, 1000, and 500 Hz, 
respectively. The time duration of measurement varies from 0.2 s to 0.6 s with 0.2 s increment. 
The ‘measured’ acceleration responses are represented by the analytical responses which are 
computed by the modal superposition method and Duhamel integration. The acceleration signals 
at DOF-4 and 5 in the vertical direction are used for force identification. No noise terms are added 
to the measured signals. The force is identified directly by inversion computation without any 
regularization techniques. 

The relative error of identification for all the methods are defined as: 

ܧܴ = ௗܨ‖ − ‖ܨ‖‖ܨ × 100 %, (33)

where ܨௗ, ܨ are the identified and real force time histories, respectively.  
The REs of the three approaches are listed in Table 1. As seen from Table 1, the RE slightly 
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increases when the time duration of measurement increases at the same sampling frequency for 
all the methods, while the RE quickly increases when the sampling frequency decreases. All the 
REs of the LISS and SISS methods are very small, and the largest RE value is 2.40 % as the 
sampling frequency is low to 500 Hz. The identified REs of the SS method are much larger than 
them of the two proposed methods for any situation especially when the sampling frequency is 
equal to 500 Hz. In this situation, the RE is 21.23 % with a time duration of 0.6 s, while the REs 
of the LISS and SISS methods are 2.17 % and 2.40 %, respectively. We also find that the REs of 
the proposed methods at a 500 Hz sampling frequency are even smaller than those of the SS 
method at 2000 Hz. In addition, Table 1 presents the condition number (CN) of the Markov 
parameter matrix for the three identification methods together with the RE. It can be observed that 
all the CN values of the SS method are larger than those of the two proposed methods. Figs. 2-4 
show the identified forces of the three methods together with the real force time histories at 
different sampling frequencies for a 0.6 s time duration. From them, we can see that the identified 
errors of the SS method increase with a reduction in the sampling frequency more quickly than 
those of the two proposed methods for the same time duration. All the observations indicate that 
the proposed methods based on the interpolation function method are more accurate than the SS 
method especially when the sampling frequency is low. 

Table 1. Related errors (%) in the identified force and the condition numbers (CN) of different methods 

Sampling frequency (HZ) Time duration (second) LISS SISS SS 
RE CN RE CN RE CN 

2000 
0.2 0.08 240.4 0.07 241.2 3.27 251.2 
0.4 0.12 557.5 0.13 559,2 4.19 584.7 
0.6 0.14 1287.2 0.14 1290.8 5.02 1366.3 

1000 
0.2 0.33 235.5 0.31 238.5 6.83 259.5 
0.4 0.47 546.9 0.50 553.4 8.62 607.5 
0.6 0.57 1263.3 0.56 1277.4 10.35 1438.2 

500 
0.2 1.25 218.1 1.65 229.0 15.58 275.5 
0.4 1.75 512.7 1.84 537.1 17.99 654.0 
0.6 2.17 1169.6 2.40 1228.5 21.23 1586.1 

SS: the conventional state space method. 
LISS: the improved state space method based on linear shape function interpolation. 
SISS: the improved state space method based on sigmoid curve function interpolation. 

 
Fig. 2. Identified force with different methods at a 2000 Hz sampling frequency 

4.2. Force identification with noise 

To investigate the effect of the noise level on the performance of the identification method, 
environment noise is added to the original measured signal. The noise is defined as a normally 
distributed random noise with zero mean and unit standard deviation, which can be written as: 
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(ݐ)௦ݔ = ݊ ܰ݀ݐݏ ቀݔ(ݐ)ቁ, (34)

where ݔ௦(ݐ) is the added noise to the original measured signal; ݊ is the noise level; ܰ  is a 
standard normal distribution vector with zero mean and unit standard deviation and ݀ݐݏ ቀݔ(ݐ)ቁ is the standard deviation of the original measured response. 5 % random noise is 
adopted. 

 
Fig. 3. Identified force with different methods at a 1000 Hz sampling frequency 

 
Fig. 4. Identified force with different methods at a 500 Hz sampling frequency 

Table 2. Related errors (%) in the identified force under 5 % noise with different regularization methods 
Sampling 
frequency 

(HZ) 

Time 
duration 
(second) 

LISS SISS SS 

NR L-C GCV NR L-C GCV NR L-C GCV 

2000 
0.2 3.05 3.26 3.26 2.61 2.35 2.35 5.49 4.92 4.92 
0.4 5.83 4.26 3.84 4.89 3.77 3.52 8.26 6.16 6.12 
0.6 5.30 3.85 3.06 4.96 3.44 2.92 9.89 6.20 6.14 

1000 
0.2 2.48 2.48 2.48 3.56 3.71 3.71 7.51 6.72 6.71 
0.4 4.85 4.12 3.81 3.31 3.12 3.02 13.10 9.68 8.57 
0.6 9.08 3.36 2.73 9.81 5.21 4.32 15.75 9.96 8.96 

500 
0.2 1.98 2.46 2.42 2.94 2.96 2.96 16.77 15.87 15.72 
0.4 9.76 5.27 4.12 9.36 6.17 4.83 16.05 15.81 15.45 
0.6 13.17 6.12 5.08 12.36 5.69 4.98 19.30 16.81 15.11 

NR: no regularization. 
L-C: L-curve criterion. 

In this case, Tikhonov regularization technique is used due to the effect of the random noise. 
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Two types of criterion for obtaining an optimal regularization parameter are employed, which are 
the L-curve and the GCV criterion respectively. The REs of different identified methods with 
L-curve and GCV criterion are listed in Table 2, and the REs without any regularization of the 
three methods are also listed. As seen from Table 2, the REs without regularization heavily 
increase compared with those presented in Section 4.1 due to the effect of the random noise, and 
the REs with regularization techniques are smaller than those without any regularization, 
especially in the situation of a low sampling frequency. The REs of all the methods with GCV 
criterion are a little smaller than them with the L-curve criterion for this case. Otherwise, it can be 
observed that the identification REs of the SS method are larger than those of the two proposed 
methods for the same sampling frequency and time duration, which indicates that the proposed 
methods based on the function interpolation have higher accuracy than the SS method in the 
presence of measurement noise especially when a low sampling frequency is taken.  

4.3. Multiple forces identification 

In this case, another three external forces are considered to act on the structure together with ܨଵ as shown in Fig. 2: ܨଶ = 65sin(20ݐߨ) + 60sin(80ݐߨ) + 55sin(160ݐߨ), (35)ܨଷ(ݐ) = 50൫1 − cos(20ݐߨ)൯sin(40ݐߨ), (36)ܨସ = 50sin(18ݐߨ) + 55sin(70ݐߨ) + 50sin(150ݐߨ). (37)

The acceleration sensors are arranged near these four excitations, and they are also shown in 
Fig. 2 as the nodes marked with a dark square, which denote the vertical measurements. A 
sampling frequency of 1000 Hz and a time duration of 0.6 s are used to have less discretization 
effect. Only the GCV criterion is adopted for the regularization due to its accuracy of this case. 

The noise of 5 % level is added to the measured responses. The REs are listed in Table 3. The 
identified REs of the proposed methods are smaller than those of the SS method, which proves 
that the proposed methods based on the function interpolation have the better capability than the 
SS method for the case of multiple forces identification. Moreover, the CN values are computed 
as shown in Table 3. It is observed that as for this case of identifying multiply forces, the CN 
values increase 10 times more than those of identifying single force in Section 4.1, the SS method 
makes the CN much larger than the proposed methods, which indicates the SS method has a 
stronger ill-posedness. 

Table 3. Related errors (%) in the identified force and the condition numbers (CN) of different methods 

Force LISS SISS SS 
RE CN RE CN RE CN 

F1 15.57 

15736 

15.21 

15135 

17.29 

21809 F2 12.23 11.41 16.96 
F3 12.78 13.36 15.90 
F4 9.50 9.27 16.98 

4.4. White noise excitation 

In this case, four forces are adopted as Section 4.3 except that the excitations are replaced with 
four white noise excitation having a magnitude of 75 N. A level of 5 % random noise is added to 
the measured responses. The REs of different methods are shown in Table 4. The REs of the LISS 
and SISS methods are smaller than those of the SS method, which indicates that the proposed 
methods are capable for the case of white noise excitations. 
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Table 4. Related errors (%) in the identified force with white noise excitations 
Force LISS SISS SS 

F1 13.28 11.12 31.39 
F2 9.00 11.76 28.86 
F3 9.76 13.30 28.21 
F4 13.13 10.46 28.14 

4.5. High noise level 

This case is to validate the effectiveness of the improved version of the LISS method presented 
in Section 3 for dealing with the situation of high noise level. Three different high noise levels are 
adopted, which are 10 %, 25 %, and 50 %. Four forces are adopted as the last study. The identified 
REs are listed in Table 5. From Table 5, we can see the RE increases with the high noise levels. 
The REs obtained by the ILISS2 and ILISS4 methods are the smaller than those of the LISS 
method, and the REs of the ILISS4 method are the smallest among all the methods. Table 5 lists 
the computation time of all the methods. As seen from Table 6, the most accurate ILISS4 method 
has the maximum computation time, which is almost 5 times than that of the LISS method. 
However, given the better results, the computational effort is justified. 

From the case, it can be concluded that applying the improved LISS method is better than 
employing the LISS method with a smaller time step to obtain a more accurate result.  

Table 5. Related errors (%) in the identified force for high levels of noise 
Noise level Force LISS (%) LISS2 (%) ILISS2 (%) ILISS4 (%) 

10 % 

F1 27.32 30.23 21.48 17.86 
F2 17.75 18.52 14.95 12.60 
F3 22.69 25.53 19.72 15.89 
F4 16.84 17.84 13.33 11.42 

25 % 

F1 52.65 56.94 45.76 34.19 
F2 33.33 33.14 25.20 20.93 
F3 42.70 48.64 38.78 30.88 
F4 30.34 32.16 26.11 21.46 

50 % 

F1 73.45 77.89 63.11 52.12 
F2 47.88 47.90 37.66 30.89 
F3 58.41 69.07 53.42 45.43 
F4 45.74 46.04 34.83 29.04 

LISS2: represents the LISS method with a time step of 0.5Δݐ (Δݐ represents the time step of the LISS 
method) 

Table 6. Required computation time for different methods 
Noise level LISS (s) LISS2 (s) ILISS2 (s) ILISS4 (s) 

10 % 16.52 133.08 30.77 82.30 
25 % 17.37 133.54 30.39 82.76 
50 % 16.65 133.62 30.35 82.42 

5. Experimental validation 

A rectangle steel plate is validated in the section as shown in Fig. 6. The size of the plate is 
650×450×1.9 mm. The physical parameters of the steel plate are as follows: The modulus of 
elasticity is 201 GPa, Poisson ratio is 0.3, density is 7900 kg/m3. The boundary conditions are 
taken as simply supported at four edges of the plate. Fig. 6 and Fig. 7 show the layout of the 
experimental system which includes LMS SCADAS Mobile front end, power amplifier, 
PCB086C03 force hammer head and PCB acceleration sensors. Modal test is firstly carried out to 
validate the simply supported boundary condition. Table 7 compares the frequencies of the first 8 
modes between the FEM and the experiment. It can be seen the boundary condition of the plate 
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under test well meets the requirement of simply supported condition. 
Then, identification of impact force is conducted. The impact force of the force hammer is 

applied at the center of the plate (325 mm, 225 mm). Two acceleration signals obtained from the 
PCB acceleration sensors are used for force identification, and the layout of sensors is shown in 
Fig. 8. According to the proposed LISS method, the impact force is identified as shown in Fig. 9. 
From it, it can be seen that the identified value is close to the actual measured value, which 
demonstrates the effectiveness of the proposed identification method.  

 
Fig. 5. The experimental rectangle steel plate 

 
Fig. 6. The test front end and power amplifier 

Table 7. Mode frequency of a simply supported plate 
 FEM (Hz) Experiment (Hz) Error (%) 
1 33.1 34.4 –3.8 
2 65.6 66.8 –1.79 
3 100.0 97.2 2.9 
4 118.3 116.3 1.7 
5 130.3 130.2 0.08 
6 181.3 185.6 –2.3 
7 194.0 203.4 –4.62 
8 211.6 210.1 0.7 

 

 
Fig. 8. The layout of the impact force  

and sensors 

 
Fig. 9. The actual and identified values  

of the impact force 

6. Conclusions 

The main work of this paper is introducing the function interpolation of the force in time 
domain into the conventional force identification method based on the state space method for the 
first time, and presenting two types of the interpolation functions to identify force: One is linear 
interpolation, and the other is sigmoid curve interpolation. Using the function interpolation of the 
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external force, the proposed improved SS methods have better performance in force identification 
compared with the conventional SS method especially when the time step is large at some extent. 
Another contribution of this paper is extending the LISS method to deal with the case of high 
noise level. The least square algorithm is employed to solve the overdetermined formulation of 
the ILISS method. The advantage of optimal fitting of the least square algorithm is adopted to 
reduce the effect of the random noise to improve the accuracy of the original LISS method, which 
is the key point of the ILISS method.  

In the future, the effect of sensor placement is required to be studied, it is reported that a good 
arrangement of sensors can reduce the ill-posedness of inversion computation [25, 32, 33]. In 
addition, this paper just considers the two points interpolation of input forces, the more points 
interpolation methods are also required to be studied later. 
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Appendix 

The conventional force identification method based on the state space method is illustrated in 
the appendix. 

The motion equation of the structural system in Eq. (1) can be expressed in the state space as 
Eq. (2). Both sides of Eq. (2) multiplying by ݁ିۯ௧ can be obtained as: ݁ିۯ௧ܢሶ(ݐ) = (ݐ)ܢۯ௧൫ۯି݁ + ൯, (A1)(ݐ)۰

۔ۖەۖ
නۓ (߬)ሶܢ௧ۯି݁) − ௧߬݀((߬)ܢۯ௧ۯି݁

௧బ = න ௧߬݀(߬)ఛ۰ۯି݁
௧బ ,

න ௧((߬)ܢ௧ۯି݁)݀
௧బ = න ௧߬݀(߬)ఛ۰ۯି݁

௧బ .  (A2)

Then, one can get: 

(ݐ)ܢ = (ݐ)ܢ(௧ି௧బ)ۯ݁ + න ௧߬݀(߬)۰(௧ିఛ)ۯ݁
௧బ . (A3)

Eq. (A3) can be converted into the following discrete equation as: 
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ାଵܢ = ݖ௧ۯ݁ + න ௧ೖశభ௧ೖ߬݀(߬)۰(௧ೖశభିఛ)ۯ݁ . (A4)

Supposing that the external force in time step of integration is constant, then Eq. (A4) can be 
expressed as: ܢାଵ = ܢ(ݐΔ)܂ + ۰, (A5)

where ܂(Δݐ) = ௧, ۰ۯ݁ = ௧ۯ݁)ଵିۯ − ۷)۰. 
The output equation can be written as: (ݐ)ܡ = (ݐ)ሷܠ܀ + ሶܠ௩܀ (ݐ) + (A6) ,(ݐ)ܠௗ܀

where ܀ ௩܀ , ௗ܀ , ∈ ௗ×௦ௗ܀  are the mapping matrices associate with the DOFs of the 
measured acceleration, velocity and displacement, respectively. ݂݉݀ is the number of sensor, ݂݀ݏ is the total number of DOFs in the structure.  

Vector ܡ can be rewritten as: ܡ = ܢ܀ + (A7) ,۲

where ܀ = ௗ܀] − ௩܀ଵ۹ିۻ܀ − ଵ۹] and ۲ିۻ܀ =   .ଵିۻ܀
Eq. (A7) can be converted into the following discrete equation as: ܡ = ܢ܀ + . (A8)۲

The output can be solved from Eqs. (A5) and (A8) with the assumption of zero initial response 
of the structure in terms of the previous input ݂ as: 

ܡ = ۲ +  ିିଵ۰(܂)܀
ୀଵ . (A9)

Let ۶ = ۲ and ۶ =  :ିଵ۰܂܀

ܡ =  ۶ି
ୀ . (A10) 

Eq. (A10) can be rewritten into a matrix form as: ܇ =  (A11) ,۶

where: 

۶ = ൦ ۶ 0 ⋯ 0۶ଵ ۶ ⋯ 0⋮ ⋮ ⋱ ⋮۶ேିଵ ۶ேିଶ ⋯ ۶൪ ܇      , = ൞ ேିଵൢܡ⋮ଵܡܡ ,      ݂ = ൞   .ேିଵൢ⋮ଵ

Similar to Eq. (14), the force can be reconstructed form Eq. (A11) with the Tikhonov 
regularization method. 
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