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Abstract. The precision of the contact model for a joint interface strongly depends on the fractal 
dimension and fractal roughness coefficient. In this paper, an improved deep neural network 
method was adopted to predict the surface appearance parameters. In order to meet the high 
accuracy requirements for the prediction results of the contact model, a novel surface appearance 
prediction model was established utilizing a regularized deep belief network. The Bayesian 
regularization strategy was used to reduce the network weights during unsupervised training, 
which can effectively restrain the contribution of unimportant neurons. This allows to limit the 
occurrence of overfitting, and the layer-by-layer training was performed for each hidden layer 
based on a continuous transfer function. Meanwhile, the surface appearance parameters of the 
joint interface could be obtained by plugging arbitrary machining parameters into the training 
model. The specific contact model was then established based on fractal theory by applying the 
above-mentioned prediction results. The parameters of the joint interface were used to simulate 
the frequencies and vibration modes of frame-shaped structural parts. The contact model was 
validated by comparing the simulation results with experimental data. The proposed model is 
expected to provide a theoretical basis for optimizing the structure and improving the accuracy of 
computerized numerical control machines. 
Keywords: regularization, deep belief network, fractal theory, joint interface. 

1. Introduction 

High-strength bolting is the main type of fixed connection for the structural parts of 
computerized numerical control (CNC) machines. The dynamic and static characteristics of their 
joint parts are the key factors influencing the accuracy and reliability of heavy CNC machine tools. 
Studies on the influence of the joint part on the overall performance of the machine tool have 
shown that it reduces the integral rigidity and increases the damping [1]. About 30 to 50 % of the 
rigidity of the machine tool depends on the stiffness of the joint part, while more than 90 % of the 
damping of the machine tool is also due to the joint part. 

The joint interface consists of two rough surfaces in contact with each other. At present, in 
theoretical models, the joint interface is commonly simplified to a contact problem between an 
equivalent rough surface and a rigid plane [2, 3]. Therefore, calculating the fractal parameters for 
the equivalent rough surface is essential for obtaining the contact stiffness of the joint interface. 
A variety of studies have been conducted to establish suitable contact models. For instance, based 
on statistical analysis, Greenwood and Williamson established the so-called G-W contact model 
for rough surfaces [4], which considers the appearance parameters of the rough surface. They 
found that the distribution of the surface height values of many rough surfaces can be described 
by a Gauss distribution and that a rough surface can be described as consisting of many 
micro-bulges with the same curve radius but different heights. 

Majumdar and Bhushan proposed the so-called MB contact model based on fractal geometry 
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[5]. The fractal dimension ܦ and the fractal roughness coefficient ܩ  were adopted in the MB 
model to represent the rough surface. The distribution function in the MB model describes the 
distribution of the size of the flat cross-sectional area in a single micro-bulge in case the two rough 
surfaces were in contact with each other. Zhang et al. [6] established an elastic-plastic fractal 
model to calculate the energy dissipation occurring in case of tangential contact damping at a joint 
interface as a function of the stretch factor in the distributed domains of the micro-contact area, 
and analyzed how the fractal dimension D influences the damping loss. 

Based on the three-dimensional fractal characterization method and the assumption that the 
cross-sectional contact area of the micro-bulges followed an exponential distribution, 
Komvopoulos established a rigid sphere and a semi-infinite finite element contact model for an 
elastic-plastic isotropic medium [7], which was used to determine the relationship between the 
actual contact area and the corresponding deformation under the average contact pressure and was 
successfully applied to model a multilayered medium. Tian et al. [8] reported on a method to 
identify the fractal dimension and fractal roughness of a joint part, and corrected the formula for 
calculating the normal gross load on the joint part. Jiang et al. [9] calculated the fractal parameters 
of a rough surface by utilizing the structure function on the basis of three dimensional fractal 
contact theory. Considering the distribution function of the micro-bulge’s cross-sectional area, the 
total normal and tangential contact rigidities of the joint interface were computed by calculating 
the normal and tangential contact rigidity of a single micro-bulge. Furthermore, they compared 
the theoretical total normal and tangential contact rigidities of a joint interface with experimental 
results. 

Yan expanded the two-dimensional characterization of a rough surface to a three-dimensional 
characterization method, combining it with the elastic-plastic contact mechanism [10]. He derived 
the relationship between the total normal force and the actual contact area, as well as the 
relationships between the three-dimensional characterization and the fractal parameters, the 
material characteristics and the average distance between the surfaces. Wen et al. proposed a 
calculation method on the assumption that the interface parameters of the joint part are equivalent 
to the fractal parameters of the profile of the rough surface, and established a model for the 
tangential contact rigidity of a joint part. By studying the contacting process between two rough 
surfaces, Liou [12] observed that the fractal dimension ܦ and the fractal roughness parameter ܩ 
are related to the relative distance d between the two surfaces. Wang further corrected the 
distribution function for the contact area of the micro-bulges in the MB model [13], and performed 
a three-dimensional appearance analysis on the profile of the rough surface. An accurate model of 
the surface appearance of a joint interface is the most important premise for studying the contact 
parameters of a joint interface. However, applying traditional statistical analysis methods results 
in a low accuracy of the predicted appearance of the machined surface. Therefore, in this paper, a 
regularized deep belief network (rDBN) surface appearance prediction model was first established 
based on the deep neural network (DNN) method, and arbitrary data collected by a high-precision 
topography instrument was then plugged into the model to determine the surface appearance 
parameters of the joint interface. The precision of the prediction model was verified by comparison 
with the test samples. Then, by adopting fractal theory and the Hertz contact theory, the finite 
element method (FEM) was employed to establish a model for the contact rigidity, and a damping 
model of the joint interface was derived. These models were then applied to the simulation 
software. Finally, the contact model was validated by comparing the theoretical data with the 
frequencies and vibration modes of frame-shaped structural parts determined through modal 
testing experiments under different pretension forces. 

2. Regularized deep belief network model 

The relationship between processing parameters and surface morphology parameters is usually 
difficult to express as a mathematical formula. Ordinary models also fail to establish such a 
relationship; however, DBN presents good non-linear mapping capabilities and its internal 
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computing mechanism can serve as a black-box model which is not taken into account. By 
adjusting the weights of DBN during training, the non-linear mapping of input and output 
variables can be realised so as to indirectly acquire the surface morphology parameters (output 
variables) through known processing parameters (input variables). 

According to fractal theory, a rough surface can be described by the fractal dimension ܦ and 
the fractal roughness coefficient ܩ. Thus, a prediction model must be established consisting of the 
machining parameters as the input layer and the fractal dimension ܦ and the fractal roughness 
coefficient ܩ as the output layer. By plugging the machining parameters of the joint interface into 
the model, a prediction of fractal parameters can then be obtained. The contact parameters of the 
joint interface strongly depend on the accuracy of the fractal parameters. To achieve a high 
accuracy, a prediction model based on a regularized deep belief network (rDBN) is proposed in 
this paper.  

2.1. Structure of the neural network 

A rDBN consisting of several super-imposed Restricted Boltzmann Machines (RBMs) is 
proposed with an added regularization item and an output layer (Fig. 1) to compare the labels. The 
RBMs feature a visible layer V and a hidden layer H, as shown in Fig. 1. 

  
Fig. 1. Schematic illustration of the structure of the proposed rDBN 

The visible layer provides for the input part during the training process, in which we use a 
Simulated Annealing (SA) algorithm, while the output part (the layer that follows the hidden layer) 
is used for data comparison; its weights were determined through back propagation. The structure 
of the network consists of full two-way connections between ܸ and ܪ, whereas no connections 
exist between units of the same layer. The absence of intra-layer connections results in a  
“restricted” Boltzmann Machine. During the training process, each hidden layer extracts the 
previous layer’s data information and features in order to form a better but more abstract 
distributed representation of the input data. The last layer provides the output, and contains several 
units of classification. 

The training process of the rDBN can be described as follows: Firstly, each RBM is 
individually trained unsupervised. The input of each RBM is the output of the previous layer. 
Contrastive Divergence (CD) was applied to train one hidden layer at a time, while, at the same 
time, an improved Bayesian regularization item, i.e., the regularization term, was added to the 
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reasoning and generation processes. This special regularization term can help to reduce overfitting 
and comprises the sum of the squares of the weights. It ensures that the optimization process not 
only achieves the objective of the minimization of the error metric, but also that the objective is 
achieved with minimum-magnitude weights. Next, supervised training is then used to fine-tune 
the whole network after the BP in the last layer received a signal from the last RBM. The 
regularization term can be omitted in this training step because the unsupervised training already 
ensures that the initial area is good enough, and the iterations of the supervised training can then 
be evaluated empirically. 

2.2. The neural network algorithm 

In a rDBN, several RBMs are stacked layer by layer, and each RBM is trained individually 
during the unsupervised training using Markov Chain Monte Carlo (MCMC) and CD methods, 
and a new objective function responsible for weight-control and regularization will be introduced. 
Since there are no connections between hidden units in an rDBN, the behavior of the hidden units 
as a function of the behavior of the visible units can be expressed as: 

൫ℎ௝݌ = 1൯ = 11 + exp൫− ௝ܾ − ∑௜ݒ௜ݓ௜௝൯. (1)

Because the RBM in an rDBN is symmetrical and since there are no visible-visible connections, 
the behavior of the visible units as a function of the hidden units can be similarly expressed as: 

௜ݒ)݌ = 1) = 11 + exp(−ܿ௜ − ∑௝ℎ௝ݓ௝௜), (2)

where ݒ௜ is the value of unit ݅ in the visible layer, ℎ௝ is the value of unit ݆ in the hidden layer, ܾ 
and ܿ are the biases of ܸ and ܪ, respectively, ݓ௝௜ is the weight between the visible unit ݅ and the 
hidden unit ݆, and ݌() denotes the probability that the identified unit is in state “1”. 

In a binary RBM, the weights on the connections and the biases of the individual units define 
a probability distribution over the joint states of the visible and hidden units which can be written 
as an energy function: ݒ)ܧ, ℎ) = ℎ்ܹݒ + ݒ்ܾ + ்ܿℎ. The joint probability distribution of the 
characteristic vector ݒ in the visible layer ܸ and ℎ in the hidden layer ܪ can be expressed as: ܲ(ݒ, ℎ) ∝ exp൫−ݒ)ܧ, ℎ)൯ = ݁௛೅ௐ௩ା௕೅௩ା௖೅௛, (3)

where ܹ is the weight matrix between ܸ and ܪ, and ݒ)ܧ, ℎ) is the joint expectation of ݒ and ℎ; 
its absolute value corresponds to the amount of information ℎ  receives from ߙ . The ideal 
parameters ߠ = (ܹ, ܾ, ܿ) that result in a peak joint probability distribution ݒ)݌, ℎ) [14] can be 
calculated through the maximum likelihood method. However, this method often fails to yield the 
exact value of ߠ.  Therefore, an MCMC method that renews ܸ  and ܪ  individually is often 
employed. The parameter vector ߠ is gradually modified along the gradient of ݒ)݌, ℎ) according 
to the following equation: 

(ఛାଵ)ߠ = (ఛ)ߠ + ߟ ∂logܲ(ݒ, ℎ)∂ߠ , (4)

where ߬ is the iteration number, which depends on the network size (as large as ߬ = 100-2000), 
and ߟ is the learning speed that affects the speed of convergence. Choosing an appropriate value 
of ߟ can affect both the speed of convergence and the accuracy of the solution. 

Let ݒ௜௠ be the state vector of the visible unit ݅ at time ݐ = ݉. For example, ݒ଴ is the state 
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vector at ݐ = 0 (the input of the RBM), and ℎ଴ is the state vector of the hidden layer that is a 
function of ݒ଴ and obtained through Eq. (1). Then, ݒଵ is the state vector at ݐ = 1 depending on ℎ଴ 
and obtained through Eq. (2), and so on. ݒஶ  and ℎஶ  are the state vectors at ݐ = ∞  (steady  
state). The slope in Eq. (4) can be calculated as follows: ∂logܲ(ݒ, ℎ)∂ߠ௜௝ = 〈ℎ௝଴(ݒ௜଴ − 〈(௜ଵݒ + ௜ଵ൫ℎ௝଴ݒ〉 − ℎ௝ଵ൯〉 + ⋯ = 〈ℎ௝଴ݒ௜଴〉 − 〈ℎ௝ஶݒ௜ஶ〉, (5)

where 〈ℎ଴ݒ଴〉 is the dot product average of ݒ଴ and ℎ଴, and 〈ℎஶݒஶ〉, which is convergent, is the 
value at the end point of the MCMC. When applying the CD method [15], 〈ℎ௝଴ݒ௜଴〉 is the joint 
probability distribution of the data, and 〈ℎ௝ஶݒ௜ஶ〉 is in fact 〈ℎ௝ଵݒ௜ଵ〉, which means a reconstruction 
of the input data, because only one Gibbs sampling algorithm is used for the two layers. According 
to Eq. (5), the slope only depends on the initial state and the final state. Thus the formula to renew 
the weights can be expressed as: 

(ఛାଵ)ߠ = (ఛ)ߠ + ߟ ∂logܲ(ݒ, ℎ)∂ߠ = (ఛ)ߠ + 〈௜଴ݒℎ௝଴〉൫ߟ − 〈ℎ௝ଵݒ௜ଵ〉൯. (6)

Training a network using only a limited amount of samples is an ill-posed problem. There are 
many potential models that can meet the set performance (i.e., resulting in a response very close 
to the expected response). In order to choose one of the possible alternatives, the problem needs 
to be regularized by selecting additional conditions apart from the requirement that the response 
of the trained network must be in agreement with the expected response. In Bayesian 
regularization [16], the imposed additional objective ensures that the selected trained network not 
only minimizes the error metric but also achieves this objective with minimum-magnitude  
weights. In a rDBN, since the values the hidden units can attain are discrete, i.e., either 0 and 1 
during training, the regular form of Bayesian cannot be directly applied, and therefore the 
objective function presented in Eq. (3) above was modified as follows: ܨௐ = ܲߙ + ௐ, (7)ܧߚ

where ܨௐ  is the new objective function during unsupervised training, and ܲ  is the original 
objective function given in Eq. (3). In Eq. (7), ܧௐ  is the regularization item, ߙ  and ߚ  are 
performance parameters that need to be calculated during the iterations or must be set prior to the 
iteration. ܧௐ has the form of the mean square of the weights. ܲ and ܧௐ can be expressed as: ܲ = ,ݒ)ܲ ℎ) ∝ exp൫−ݒ)ܧ, ℎ)൯ = ݁௛೅ௐ௩ା௕೅௩ା௖೅௛, ௐܧ(8) = 1݉ × ݊ ∑௝ୀଵ௠ ∑௜ୀଵ௡ ௜௝ଶݓ , (9)

where ݓ௜௝ denotes the weight between ݅ in the visible layer and ݆ in the hidden layer. If ߙ ≫  ,ߚ
the first part of ܨௐ dominates, which means that the objective of the training is to decrease the 
training error. Specifically, if ߙ = ߚ ,1 = 0, then ܨௐ = ܲ . On the other hand, if ߙ ≪ ߚ , the 
training will focus on decreasing the weights. By introducing this regularization item, the weights 
not contributing to the response will be minimized, which ensures that only those parts of the 
network learning the “important” features that are common to all the input patterns will remain. 
Therefore, an improvement in the response of the trained network is expected for arbitrary test 
inputs. 

The traditional way of training Bayesian regularization is based on the calculation of ߙ and ߚ 
during the training process [17]. The weights are treated as random variables, and the prior 
probabilities of ܲ and ܧௐ are assumed to follow a Gaussian distribution. Then, ߙ and ߚ can be 
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obtained using the Bayes criterion. The hidden neurons in an RBM only attain discrete values (0 
and 1), and therefore the Hessian matrix cannot be calculated. The appropriate values of ߙ and ߚ 
must be determined experimentally. For this modified unsupervised training process, Eq. (7) must 
be transformed to: 

௪ᇱܨ = ∂logܲ(ݒ, ℎ)∂ߠ + 2݉ × ݊ ∑௝ୀଵ௠ ∑௜ୀଵ௡ ,௜௝ݓ (10)

and the behavior of the reasoning and output generation equations is given by: 

൫ℎ௝ܨ = 1൯ = 11 + exp(− ௝ܾ − ∑௜ݒ௜ݓ௜௝), ௜ݒ)ܨ(11) = 1) = 11 + exp(−ܿ௜ − ∑௝ℎ௝ݓ௝௜). (12)

In order to realize a prediction model for continuous numerical values, in this study, the 
unsupervised training transfer function of the rDBN and the transfer function were improved for 
the unsupervised training process. Furthermore, a continuous unsupervised operation approach is 
proposed. Here, ݏ௝ and ݏ௜ denote the neuron ݆ of the hidden layer and the neuron ݅ of the visible 
layer, respectively. Whereas the transfer functions of the sigmoid in Eqs. (1) and (2) are 
maintained, the discretization process is removed. Furthermore, a noise variable was added to 
realize the transformation to continuous numerical values. This yields: 

௝ݏ = ߮௝ ൭෍ ௜ݏ௜௝ݓ + ߪ ௝ܰ(0,1)௜ ൱, (13)

௜ݏ = ߮௜ ൭෍ ௝ݏ௜௝ݓ + ߪ ௜ܰ(0,1)௜ ൱, (14)

and: 

߮௝൫ݔ௝൯ = ௅ߠ + ுߠ) − (௅ߠ 11 + ݁ି௔ೕ௫ೕ, (15)߮௜(ݔ௜) = ௅ߠ + ுߠ) − (௅ߠ 11 + ݁ି௔೔௫೔. (16)

Eq. (13) and (14) describe the learning and reasoning processes of the rDBN, respectively. 
Here, ܰ(0,1) denotes the Gaussian random variable with an average value of 0 and a variance of 
 ௅. ܽ is theߠ ு andߠ is a constant, and ߮() is the sigmoid function with the asymptotic lines of ߪ .1
noise control variable, which controls the slope of the sigmoid function. According to the CD 
criterion, the update formula of the weights and the offset values can be written as: Δݓ௜௝ = 〈௝଴ݏ௜଴ݏ〉௪൫ߟ − ,൯〈௝ଵݏ௜ଵݏ〉 (17)Δܾ = ௕ܾଶߟ ቀ〈ݏ௝଴ଶ〉 − ,ቁ〈௝ଵଶݏ〉 (18)Δܿ = ௖ܿଶߟ ቀ〈ݏ௜଴ଶ〉 − ,ቁ〈௜ଵଶݏ〉 (19)

where ߟ௪, ߟ௕ and ߟ௖ are the learning rates, while the definition of 〈 〉 is as before. 
It is easy to notice that changing the object function will not change the two calculation 

processes between the visible layer and the hidden layer, which means that the upper and lower 
bounds of the output will not be affected, because the two parameters in Eq. (7) only affect their 
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proportion; they have no effect on the boundaries of the transfer functions. Therefore, the 
convergence of the rDBN is assured. 

3. Application of the prediction model 

3.1. Training samples 

For the same network structure, an increase of the number of training samples can improve the 
prediction accuracy to some extent but also increases the test time. The total number of samples 
is typically in the range from 30 to 300 [18]. In literature, a 7:3 ratio of the number of training 
samples to the number of test samples is usually recommended. Therefore, the total sample 
capacity was selected to 77 in this study, with 54 training samples and 23 test samples. The training 
experiment consisted of two parts. In the first part (group 1-36), an integrated model experiment 
with five exercise factors at mixed levels was adopted for the milling process (with ݒ௖ denoting 
the cutting speed, ௭݂ the feed per tooth, ܽ௣ the axial cutting depth, ݎ௘ the corner radius, and four 
factors). The feed and the rotating speed of the workpiece were arranged at three levels, 
respectively, and the axial cutting depth and the corner radius were arranged at two levels, 
respectively. For the other part of the training process (groups 37-54), an integrated model 
experiment with three exercise factors at mixed levels was applied to the grinding process (with ݒ௖ denoting the rotating speed of the workpiece, ௭݂ the feed, and ܽ௣ the axial cutting depth). The 
feed and the rotating speed of workpiece were arranged at three levels, respectively, whereas the 
axial cutting depth was arranged at two levels. Rectangular steel alloy blocks with dimensions of 
30 mm×30 mm×40 mm were used as test specimens in this study, and the top surface was selected 
as the measuring surface. 77 groups of training and learning samples were obtained by adopting 
different milling processes. After machining, the workpieces were first cleaned under ultrasound 
in an alcoholic solution for 15 min. After cleaning, the workpieces were blow-dried with 
compressed air [19]. Then, a three-dimensional test instrument (Taylor CCI-lite) was used to 
measure and analyze the surface appearance, and the power spectral density of the surface data 
was obtained using Matlab. Finally, the fractal dimension ܦ and the fractal roughness coefficient ܩ were obtained for the different cutting processes. As shown in Fig. 2, the slope is determined 
by the fractal dimension ܦ,  while the intercept is determined by the fractal roughness  
coefficient ܩ. 

 
Fig. 2. Calculation of the fractal parameters of the machined surfaces 

3.2. Experimental results 

The purpose of the experiments was to test the function approximation ability of the rDBN 
and obtain a more accurate fractal dimension ܦ and fractal roughness coefficient ܩ by using an 
rDBN for the prediction of the surface appearance parameters. In the experiments, the network 
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input was the real surface data in time sequence. In present theory, there is no unified method to 
determine the required number of hidden layer neurons for deep belief networks. Different issues 
require a different number of neurons, therefore the number of neurons is usually selected by 
experience during the experiment. Meanwhile, the network output is a neuron, which means the 
predicted data. For the experiments, the number of hidden layers was set to 2, and 20 neurons 
were included in every hidden layer. The number of unsupervised training iterations was selected 
to 50. After several trial runs, the regularization parameters were set to ߙ = ߚ ,0.8 = 0.2, and the 
number of supervised training steps was set to 100. The required training accuracy was 
MSE = 0.001. Fig. 3 shows the training error curve obtained for the rDBN model. 

 
Fig. 3. The training error curve obtained for the rDBN model 

The predicted values, the measured date and the relative errors of four test samples are shown 
in Table 1 for four test samples. It can be seen that the relative errors are controlled to be lower 
than 5 %; the maximum relative error between the measured and predicted values was 4.1 % and 
the minimum relative error was 0.47 %. This shows that the predicted surface appearance 
parameter values are comparatively accurate. A comparison of the results obtained for the test 
samples is shown in Fig. 1.  

Table 1. Comparison of the predicted and measured results for four test samples 

 
Experiment number 

ܦ 38 37 2 1 ܩ ܦ ܩ ܦ ܩ  ܩ ܦ
Surface 

appearance 
parameter  

Measured 
value 2.3816 1.58e-12 2.3138 4.57e-12 2.4409 1.64e-11 2.3994 3.84e-11 

Predicted 
value 2.4755 1.64e-12 2.2318 4.38e-12 2.4911 1.67e-11 2.4106 3.88e-11 

Relative error % 2.5 3.7 –3.5 –4.1 2.05 1.8 0.47 1.04 

4. Contact model 

According to the predicted fractal dimensions and fractal roughness coefficient, fractal theory 
was used to simplify the joint interface contact into a stiffness and damping model by considering 
the influences of factors including the morphology of, the material properties of, and the external 
load on, the joint interface. To investigate the characteristics of the joint interface under 
non-uniform pressure, finite element analysis software was used to calculate the pressures on 
different elements in the joint interface, and the resulting pressures were taken as inputs to derive 
the stiffness and damping matrices. The process of deriving the stiffness and damping matrices is 
shown in Fig. 4 and can be described as: 

1) Based on the formula for the distribution of the sizes of the critical cross-sectional area and 
the distribution of the cross-sectional area of the micro-bulges, the real contact area of the joint 
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interface was deduced. Besides, the relationship between the total contact load and the maximum 
cross-sectional area of a single micro-bulge was also derived. 

2) By acquiring the pressures on the different elements of the joint interface by static finite 
element analysis, the total contact load can be obtained by multiplying the pressures by the real 
contact area. 

3) The total contact load found in Step 2, and the calculated relationship between the total 
contact load and the maximum cross-sectional area of a single micro-bulge found in Step 1, were 
combined to calculate the maximum cross-sectional area of single micro-bulge. 

4) According to the stiffness of a single micro-bulge derived from on the definition of stiffness, 
the global stiffness matrix of the contact elements can be found by taking the maximum 
cross-sectional area of a single micro-bulge, and the critical contact area as the upper and lower 
limits of the integral. 

5) By calculating the elasto-plastic strain energy in a single micro-bulge, the elasto-plastic 
strain energy of the contact element was found by taking the maximum cross-sectional area of a 
single micro-bulge, and the critical contact area as the upper and lower limits of the integral: the 
damping matrix was then deduced from the relationship between the damping and the stiffness. 

 
Fig. 4. process of deriving the stiffness and damping matrices 

4.1. The real contact area model for the joint interface 

According to the Hertz contact theory, the critical cross-sectional area, i.e., the area when the 
deformation mechanism of a micro-bulge changes from elastic deformation to plastic deformation, 
can be expressed as [20]: 

ܽ௖ᇱ = ቈ2ଵଵିଶ஽ܩଶ(஽ିଶ)(lnߛ)ܧ∗ଶߨସି஽(݇ܪ)ଶ ቉ ଵ஽ିଶ, (20)

where ܪ is the hardness of the softer material. Here, ܪ = 2.8ܻ, with ܻ denoting the yield strength 
of the softer material. In Eq. (20), ܧ∗  is the equivalent elastic modulus of the two different 
contacting materials, ݇ is the coefficient related to the Poisson’s ratio of the material, given by ݇ = 0.454 + ,ߥ0.41  where ߥ  is the Poisson’s ratio of the softer material. According to 
three-dimensional fractal theory, the distribution of the cross-sectional area of the micro-bulges is 
given by: 

݊(ܽᇱ) = ܦ − 12 ܽ௟ᇱ஽ିଵଶ ܽ′ି஽ିଵଶ , (21)
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where ܽ′ is the cross-sectional area of a micro-bulge, ܽ௟ᇱ is the maximum of ܽ′. 
According to Eq. (20) and Eq. (21), the total real contact area of the joint interface can be 

expressed as: 

௥ܣ = ۔ۖەۖ
නۓ ܽ௔೗ᇲ଴ ݊(ܽᇱ)݀ܽᇱ = ܦ − 12(3 − (ܦ ܽ௟ᇱ஽ିଵଶ ൬ܽ௟ᇱଷି஽ଶ + ܽ௖ᇱ ଷି஽ଶ ൰, ܽ௟ᇱ > ܽ௖ᇱ ,

න ܽ௔೎ᇲ଴ ݊(ܽᇱ)݀ܽᇱ = ܦ − 13 − ܦ ܽ௟ᇱ஽ିଵଶ ܽ௖ᇱ ଷି஽ଶ ,     0 < ܽ௟ᇱ < ܽ௖ᇱ , (22)

where ܽ is the critical real contact area of a single micro-bulge, and in fully elastic and plastic 
regime has different relationships with the cross-sectional area that can be expressed as ܽ = ܽ′ 2⁄ , ܽ = ܽ′, respectively.  

For a fully elastic contact, the normal load of a micro-bulge can be given as  ܨ௘ = 4 3⁄ ଵܴ∗ܧ ଶ⁄ ଷߜ ଶ⁄ . Then the total contact load perpendicular to the joint interface can be 
written as [21]: 

௘ܲ = න ௘௔೗ᇲ௔೎ᇲܨ ݊(ܽ′)݀ܽ′
      = ۔ۖەۖ

ଶ(ସି஽)ߨଶ3(ଵଵିଶ஽)2ۓ ⋅ ܦ − 15 − ܦ2 (lnߛ)ଵଶܩ(஽ିଶ)ܧ∗ܽ௟ᇱ஽ିଵଶ ൬ܽ௟ᇱହିଶ஽ଶ − ܽ௖ᇱ ହିଶ஽ଶ ൰ ܦ   , ≠ 2.5,
ଷସିߨ2 (lnߛ)ଵଶܩଵଶܧ∗ܽ௟ᇱଷସln ቆܽ௟′ܽ௖′ቇ , ܦ = 2.5,  (23)

and for a fully plastic contact, the normal load of a micro-bulge can be given as ܨ௣ =  Then .′ܽܪ
the total contact load perpendicular to the joint interface is given by: 

௣ܲ = න ௣௔೎ᇲ଴ܨ ݊(ܽ′)݀ܽ′ = ܦ)ܪ − 1)ܽ௟ᇱ஽ିଵଶ3 − ܦ ܽ௖ᇱ ଷି஽ଶ (24)

Thus, the total contact load perpendicular to the joint interface can be expressed as: 

ܲ = ቊ ௘ܲ + ௣ܲ,           ܽ௟ᇱ > ܽ௖ᇱ ,௣ܲ,                     0 < ܽ௟ᇱ < ܽ௖ᇱ . (25)

4.2. Normal contact rigidity model for the joint interface 

The curvature radius and the normal deformation of a single micro-bulge can be expressed  
as [21]: 

ܴ = ܽ′(஽ିଵ)ଶ2ହି஽ߨ(஽ିଵ)ଶ ,ଵଶ(ߛln)஽ିଶܩ (26)

ߜ = ,ଷି஽(′ݎ2)ଵଶ(ߛln)஽ିଶܩ2 (27)

respectively, where ߛ  denotes the scale parameter. Considering the surface flatness and the 
spectral distribution density, ߛ = 1.5. In Eq. (27), ݎ′ is the radius of the cross-sectional area, which 
satisfies ݎ′ଶ = ܴ) ߜ2ܴ ≫   .(′ݎ
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Therefore, when the micro-bulge is subject to a fully elastic contact, the normal contact rigidity 
of a single micro-bulge can be written as: 

݇௡௘ = ߜ௘݀ܨ݀ = ′௘݀ܽܨ݀ ݀ܽᇱ݀ߜ = 4)∗ܧ4 − 3)ߨ√3(ܦ − (ܦ ܽଵଶ. (28)

Integrating Eq. (28) then yields the total contact rigidity normal to the joint interface for a fully 
elastic contact: 

௡௘ܭ = න ݇௡௘௔೗ᇲ௔೎ᇲ ݊(ܽᇱ)݀ܽᇱ = 4)∗ܧ2√2 − ܦ)(ܦ − 3)ߨ√3(1 − 2)(ܦ − (ܦ ܽ௟ᇱ஽ିଵଶ ൬ܽ௟ᇱଶି஽ଶ − ܽ௖ᇱ ଶି஽ଶ ൰. (29)

As a result, the total contact rigidity normal to the joint interface can be expressed as: 

௡ܭ = ൜ܭ௡௘,    ܽ௟ᇱ > ܽ௖ᇱ ,0,         0 < ܽ௟ᇱ < ܽ௖ᇱ . (30)

4.3. Tangential contact rigidity model for a joint interface 

The tangential deformation at the joint interface for a micro-bulge can be expressed as [21]: 

௧ߜ = ݎ∗ܩ16݌ߤ3 ൥1 − ൬1 − ,൰ଶଷ൩݌ߤݐ (31)

where ܩ∗ is the equivalent shear modulus of the contacted material, ߤ is the friction coefficient, ݎ 
is the radius of the real contact region, ݌ is the normal load acting on a single micro-bulge, and ݐ 
is the tangential load acting on a single micro-bulge. The ratio of the tangential load and normal 
load can be expressed as [22] ݐ ⁄݌ = ܶ ܲ⁄ , and ܶ is the total tangential load witch can be given as ܶ = ߬௕ܣ௥ (߬௕ is the shear strength).  

Therefore, the tangential contact rigidity of a single micro-bulge is given by [23]: 

ݐ = ݌ߤ ቎1 − ൬1 − ݌ߤ௧3ߜݎ∗ܩ16 ൰ଷଶ቏. (32)

Integrating Eq. (32) yields the total contact rigidity tangential to the joint interface for a fully 
elastic contact: 

௧௘ܭ = ܦ)∗ܩ2√4 − ଵଶ(2ߨ(1 − (ܦ ൬1 − ൰ଵଷܲߤܶ ܽ௟ᇱ஽ିଵଶ ൬ܽ௟ᇱଶି஽ଶ − ܽ௖ᇱ ଶି஽ଶ ൰. (33)

Thus, the total contact rigidity tangential to the joint interface can be expressed as: 

௧ܭ = ൜ܭ௧௘,    ܽ௟ᇱ > ܽ௖ᇱ ,0,        0 < ܽ௟ᇱ < ܽ௖ᇱ . (34)

4.4. Normal contact damping model for a joint interface 

Assuming that ߜᇱ is the transient deformation of a single micro-bulge, the elastic strain energy 
can be expressed as: 
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߱௘ = න ௘ఋܨ
଴ ′ߜ݀ = 3)∗ܧ2√2 − 7)3(ܦ − (ܦ2 ቌ ଵଶቍ(ߛln)஽ିଶܩ2ସି஽ߜ ଵ(ଷି஽)

      = 2(ଵଽିସ஽)ଶ 3)∗ܧ(ߛln)ଶ(஽ିଶ)ܩ − ଶ(଻ିଶ஽)ߨ3(ܦ (7 − (ܦ2 ܽ′(଻ିଶ஽)ଶ . (35)

Therefore, the total elastic strain energy of the joint interface contact area can be written as 
follows: 

௘ܹ = න ߱௘݊(ܽ′)௔೗ᇲ௔೎ᇲ ݀ܽ′
       = 2(ଵଽିସ஽)ଶ 3)(ߛln)ଶ(஽ିଶ)ܩ∗ܧ − ܦ)(ܦ − 7)(଻ିଶ஽)ߨ3(1 − 8)(ܦ2 − (ܦ3 ܽ௟ᇱ(஽ିଵ)ଶ ൬ܽ௟ᇱ(଼ିଷ஽)ଶ − ܽ௖ᇱ (଼ିଷ஽)ଶ ൰. (36)

Then, the plastic deformation energy of a single micro-bulge is given by: 

߱௣ = න ௣ఋܨ
଴ ᇱߜ݀ = 2(ଷି஽)ܩܪ(஽ିଶ)(lnߛ)ଵ ଶ⁄ ܦ) − 1)(5 − ଶ(ଷି஽)ߨ(ܦ ܽ௟ᇱ(஽ିଵ)ଶ ܽ௖ᇱ (ଷି஽). (37)

Thus, the total plastic strain energy of the joint interface contact are amounts to: 

௣ܹ = න ߱௣݊(ܽ′)௔೎ᇲ଴ ݀ܽᇱ = 2(ଶି஽)1)ܪ − ଶ(ଷି஽)ߨଵଶ(ߛln)(ୈିଶ)ܩ(ܦ (5 − (ܦ ܽ௟ᇱ(஽ିଵ)ଶ ܽ௖ᇱ ଷ(ଷି஽)ଶ . (38)

Finally, the contact damping factor of the joint interface can be written as: 

௡ߟ = ቐ ௘ܹܹ௣ ,     ܽ௟ᇱ > ܽ௖ᇱ ,0,         0 < ܽ௟ᇱ < ܽ௖ᇱ . (39)

Suppose that the mass of the entity containing the joint surface is ܯ. Then, the normal contact 
damping coefficient can be written as: ܥ௡ = ௡. (40)ܭܯ௡ඥߟ

4.5. Tangential contact damping model for the joint interface 

Assuming that ߜ௧ᇱ is the transient tangential deformation of the joint interface contact area, 
when the tangential force ݐ acts on a single micro-bulge for one cycle, the accumulated energy 
can be expressed as [23]: 

߱௘ = ߨ2 න ఋ೟଴݀ݐ ௧ᇱߜ = ݎ∗ܩଶ8݌ଶߤߨ3 ቎35 − ൬1 − ൰ଶଷ݌ߤݐ + 25 ൬1 − .൰ହଷ቏݌ߤݐ (41)

Within the completely elastic region, the normal load acting on a single micro-bulge is ݌ =  .௘ܨ
Thus, the energy accumulated in the fully elastic region of the joint interface contact area is given by: 
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௘ܹ = න ߱௘݊(ܽ′)݀ܽ′ = 2(ଵ଻ିସ஽)ଶ ܦ)ଶ(஽ିଶ)ܩ(ߛln)ଶ∗ܧଶߤ − ଶ(ହିଶ஽)ߨ∗ܩ3(1 (8 − ∙     ௔೗ᇲ௔೎ᇲ(ܦ3 ቎35 − ൬1 − ൰ଶଷܲߤܶ + 25 ൬1 − ൰ହଷ቏ܲߤܶ ܽ௟ᇱ(஽ିଵ)ଶ ൬ܽ௟ᇱ(଼ିଷ஽)ଶ − ܽ௖ᇱ (଼ିଷ஽)ଶ ൰. (42)

In the presence of a tangential force, the energy consumption of a single micro-bulge during 
one cycle can be written as: 

߱ௗ = ∗ܩݎଶ10݌ଶߤ9 ቐ1 − ൬1 − ൰ହଷ݌ߤݐ − ݌ߤ6ݐ5 ൥1 − ൬1 − .൰ଶଷ൩ቑ݌ߤݐ (43)

Then, the energy consumption in the fully elastic region of the joint interface contact can be 
expressed as: 

ௗܹ = න ߱ௗ݊(ܽ′)݀ܽ′௔೗ᇱ
௔೎ᇱ = 2(ଶଵିସ஽)ଶ ܦ)ଶ(஽ିଶ)ܩ(ߛln)ଶ∗ܧଶߤ − ଶ(଻ିଶ஽)ߨ∗ܩ5(1 (8 − ∙      (ܦ3 ቐ1 − ൬1 − ൰ହଷܲߤܶ − 5ℎ6ߤ ቎1 − ൬1 − ൰ଶଷ቏ቑܲߤܶ ܽ௟ᇱ(஽ିଵ)ଶ ൬ܽ௟ᇱ(଼ିଷ஽)ଶ − ܽ௖ᇱ (଼ିଷ஽)ଶ ൰. (44)

Therefore, the contact damping factor of the joint interface is given as follows: 

௡ߟ = ቐ ௘ܹܹௗ ,    ܽ௟ᇱ > ܽ௖ᇱ ,0,        0 < ܽ௟ᇱ < ܽ௖ᇱ . (45)

Suppose that the mass of the entity containing the joint surface is ܯ, then, the normal contact 
damping coefficient can be written as: ܥ  ௧ = ௧. (46)ܭܯ௧ඥߟ

5. Experimental analysis 

The pressures acquired by using the finite element analysis software were input into the contact 
model to obtain the stiffness and damping matrices of each node on the joint interfaces. To 
determine the influence of the distribution of the contact pressure on the joint parts, and to verify 
the precision of the contact model of such joint interfaces, a frame-shaped specimen for the contact 
interface with adjustable and controllable pressures was designed. Then, interface morphology 
parameters, including fractal and roughness dimensions predicted by the improved deep neural 
network, were used to calculate static pressure values using the finite element analysis software. 
The stiffness and damping of each element were then calculated under uneven loads by 
introducing the contact model of the joint interface. Afterwards, a finite element model for the 
frame-shaped specimen was established by considering the influence of the joint interface under 
uneven pressure. Based on the finite element model, a modal analysis was performed to compare 
the natural frequencies and vibration modes in the simulation and those found experimentally. 
Finally, the influence of the joint interface on the dynamic characteristics was investigated to 
verify the correctness of the contact model (Fig. 5). 
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Fig. 5. Flow chart illustrating the model validation process 

The finite model of the frame-shaped specimen considering the influence of the joint interface 
under uneven pressure was realised as follows: firstly, summation, clipping, and projection were 
carried out with HYPERMESH mesh generation so as to make all the unit nodes match  
one-to-one on the contact parts of the finite element model. Moreover, the nodes needed to be 
renumbered, thus constructing nodal sets with continuous serial numbers. Then, the pre-processed 
model was run through ANSYS software and a static analysis performed to find the pressure on 
each node under the effect of the pre-load. Afterwards, the pressures were introduced into the 
contact model program in MATLAB to calculate the stiffness and damping values of the nodes 
with those specific serial numbers. Finally, the units of stiffness and damping for the nodes and 
the node contact for the joint interface were established by using the matrix unit MATRIX27, and 
a finite element structural model, including the influence of the joint interface, was constituted. 

Aiming at the bolted joint parts of frame-shaped structural subassemblies, the hammering 
method was selected for the modal testing experiments in this study to obtain the dynamic 
characteristics, the inherent frequency, the vibration mode and the frequency response of the metal 
structure in the bolted joint parts. A knocking hammer equipped with a force sensor was used for 
the modal testing and analysis of the impact of the hammering method on the impulse-excited 
structure. The hammering point was located at Point 1, and the pretension force was selected to 
9 kN, 12 kN and 15 kN, respectively. The specific sensor arrangement is shown in Fig. 6. 

 
Fig. 6. Illustration of the sensor arrangement 

The inherent frequency and vibration mode of the structure basically determine the structural 
dynamics, and strongly depend on the contact rigidity at the joint interface. Thus, the accuracy of 
model can be validated by comparing the inherent frequency and vibration mode of the structure 
measured in the experiments with the corresponding values obtained through the simulation. A 
comparison of the simulation results is shown in Table 2. 
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a) First-order deformation 

 
b) Second-order deformation 

 
c) Third-order deformation 

 
d) Fourth-order deformation 

Fig. 7. Comparison of the results of the simulation and the experimental data  
for the deformation of a bolted joint interface 
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Table 2. Comparison of the simulation results for the natural frequency of bolted joints under uniform load 
 1st order 2nd order 3rd order 4th order 5th order 6th order 

9 kN 549.74 625.6 821.13 840.55 1280.9 1463.1 
12 kN 553.0 625.8 821.6 843.1 1282.2 1470.0 
15 kN 555.26 625.92 821.88 844.73 1283.3 1474.5 

For each order of the inherent frequency, the simulation results are in good agreement with the 
experimental results. The maximum error of 7.53 % was obtained for the 5th order inherent 
frequency under a uniform load of 15 kN. This is because the frame-shaped rack is not completely 
unrestrained, especially because the deformation mainly occurred on the beam where the ropes 
are attached, which will introduce a certain error. Meanwhile, the minimum error of 0.44 % was 
found for the 1st order inherent frequency under a uniform load of 15 kN All the errors are in an 
acceptable range. The results show that the contact rigidity model for the bolted joint interface can 
yield relatively accurate results for each order of the inherent frequency for different uniform  
loads. In order to more accurately verify the accuracy of the contact rigidity and damping model 
for a bolted joint interface, the theoretically and experimentally obtained principal vibration modes 
corresponding to each order of the inherent frequency are compared in Fig. 7. The results show 
that the simulation results are again in good agreement with the experimental results for each order 
of the principal vibration mode, which demonstrates the high accuracy of the contact rigidity 
model for the bolted joint interface, and the vibration-deformation of the joint part can be 
simulated with a high degree of accuracy. 

To compare the simulated results with the vibration modes seen in the experiment, the centres 
of the adjacent sensor points arranged were used to construct correlation points by using LMS: 
then, all adjacent sensor points and correlation points were connected. Lastly, adjacent segments 
were used to form a polygon, which were further formed a plane through polygon filling. 
According to the results of the analysis, the simulation results under uneven pressure were superior 
to those under even pressure, which were closer to the experimental results, as shown in Fig. 7. 
Under the same conditions, the vibration modes and natural frequency were in the same order in 
both simulations and experiments: they were basically consistent. With increasing preload, the 
natural frequency, of the same order, increased, whereas the maximum vibration amplitude 
decreased (relatively). Moreover, the stiffness of the joint interface increased with increasing 
pre-load: both were quasi-linearly related. 

According to formulae from Eqs. (20) to (46), the method can rapidly acquire the complex 
relationships among the contact parameters of a rough surface, and the normal force acting on the 
rough surface, the material properties parameters including: stiffness, yield strength, and 
equivalent elastic modulus, as well as the fractal dimension and fractal roughness of the rough 
surface. Among which, ܦ and ܩ can be obtained by using the prediction model. Afterwards, by 
using the model for predicting the surface morphology parameters in this study, an analysis of the 
structural properties of the joint interface can be realised by inputting an arbitrary processing 
parameter. Based on comparative tests and the natural frequencies and vibration modes of the joint 
interface, the precision of the contact model based on the improved deep neural network for 
predicting surface morphology parameters was verified. 

6. Conclusions 

1) In order to determine the influence of cold machining parameters on the surface appearance 
of rough surfaces, a surface appearance prediction model was established utilizing a regularized 
deep belief network. This model was demonstrated to effectively limit the overfitting problem and 
improve the accuracy of the prediction. The surface appearance parameters of the joint interface 
could be obtained by plugging arbitrary machining parameters into the model. Through training 
on the test samples and by comparing the measured values with the predicted values, the prediction 
model could predict the surface appearance parameters more accurately because the test data was 
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provided by a high-precision topography instrument, and therefore a higher accuracy and a higher 
engineering value could be achieved. 

2) The total and real contact area as well as the contact load of the joint interface were derived 
based on fractal theory and the Hertz contact theory. According to the definition of rigidity, a 
normal and a tangential contact rigidity model were established for the joint interface.  
Furthermore, according to the theory of energy consumption, the normal contact damping model 
was established based on the assumption that the energy consumption is related to the plastic 
deformation of the micro-bulges during the contact process. Meanwhile, the tangential contact 
damping model was established based on the assumption that the energy consumption can be 
attributed to friction in the micro-slip area of the micro-bulges. 

3) The rigidity and damping matrixes of the joint interface were established in the FEM 
software using ANSYS and the Matlab software interface. Furthermore, frame-shaped test 
specimens were designed and built to represent the bolted joint parts of CNC machine tools. The 
simulation results were compared with experimental data for three different pretension forces, and 
the maximum error was found to be 7.53 %, which proves the reliability of the contact model 
proposed in this paper. 
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