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Abstract. The traditional bearing fault detection method is achieved often by sampling the bearing 
vibration data under the Shannon sampling theorem. Then the information of the bearing state can 
be extracted from the vibration data, which is used in fault detection. A long-term and continuous 
monitoring needs to sample and store large amounts of raw vibration signals, which will burden 
the data storage and transmission greatly. For this problem, a new bearing fault detection method 
based on compressed sensing is presented, which just needs to sample and store a small amount 
of compressed observation data and uses these data directly to achieve the fault detection. Firstly, 
an over-complete dictionary is trained, on which the vibration signals corresponded to normal 
state can be decomposed sparsely. Then, the bearing fault detection can be achieved based on the 
difference of the sparse representation errors between the compressed signals in normal state and 
fault state on this dictionary. The fault detection results of the proposed method with different 
parameters are analyzed. The effectiveness of the method is validated by the experimental tests. 
Keywords: compressed sensing, bearing fault detection, dictionary learning, sparse 
representation error. 

1. Introduction 

Considering the material defects, manufacturing errors, working conditions and other factors 
like fatigue, aging etc., the damages and faults of the rotating machinery occur inevitably during 
operation. The bearing is one of the most common and most important key components of the 
rotating machinery, in case of failure, this will lead to the equipment downtime which affects 
productivity and results in economic loss. Moreover, it might lead to accidents with extreme 
danger, which will threaten the safety of the entire equipment, even the staff. Thus, it is particularly 
important for rotating machinery to execute bearing condition monitoring and fault diagnosis. 

The traditional monitoring method is achieved often by sampling the bearing vibration data 
under the Shannon sampling theorem. Then the bearing state information can be extracted from 
the vibration data, which is used in fault detection. The long-term and continuous monitoring 
needs to sample and store large amounts of raw vibration signal, which will burden the data storage 
and transmission greatly. The compressed sensing theory can provide a new idea in solving this 
problem. In 2006, Candès proved in mathematic principle that the original signal could be 
reconstructed using parts of its Fourier transform coefficients, which would be the theoretical 
foundation for compressed sensing [1]. Then Donoho and Candès et al proposed the concept of 
compressed sensing formally based on the related work [2, 3]. The main process of CS can be 
divided into two steps. First, combining the sampling with compressing, we can acquire the 
non-adaptive linear projections (or measurements) of the original signal. Then, the original signal 
can be reconstructed directly with these measurements by the appropriate recovery algorithms 
[4-7]. With this strategy, the amount of the data in monitoring will be reduced greatly and the 
burden in data transmission and storage will be alleviated effectively. Since it is possible to recover 
the original high-dimensional signal from the compressed measurements with low-dimension, 
which means that most of the bearing state information is contained in these low-dimensional 
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measurements, then we can consider achieving the bearing fault detection just using the 
compressed measurements directly, without recovering the original signal. This is the starting 
point of our proposed method. 

Some related researches based on the compressed sensing theory have been studied in the past 
several years. In reference [8-11], signal processing problems such as detection, classification, 
estimation and filtering problems are analyzed mathematically using only low-dimensional 
compressive measurements and without ever reconstructing the signals involved. In reference  
[12], the smashed filter for compressive classification and target recognition using very few 
measurements is proposed, which operated directly on the compressive measurements without 
first reconstructing the image. Reference [13] presents a technique for array diagnosis using a 
small number of measured data acquired by a near-field system by making use of the concepts of 
compressed sensing technique in image processing. In reference [14], the vibration data collected 
from the SHM system is used to analyze the data compression ability of compressed sensing. In 
reference [15], compressed sensing techniques is used to detect damage in structures, the 
compressed coefficients are collected from measurements, and then sending them to an off-board 
processor for signal reconstruction with over-complete dictionaries. The presence of damage is 
detected while using a relatively small number of compressed coefficients. In reference [16], a 
framework for the detection of stochastic signals from optimized projections in a noisy 
environment is proposed based on compressed sensing theory, dimensionality reduction 
techniques and support vector machines, which has higher accuracy and lower complexity than a 
scheme performing signal reconstruction first, followed by detection based on the reconstructed 
signal. Reference [17] proposes a damage identification scheme based on sparse representation of 
time domain structural responses and compressed sensing techniques, which can identify multiple 
types of damages, damage locations and severities even under high noise levels with minimum 
numbers of vibration measurements. Reference [18] proposed a parallel FISTA-like proximal 
decomposition algorithm for reconstruction of sparse time-frequency representation from the 
limited noisy observations based on compressed sensing theory, which is verified by detecting 
bearings and gears defects in rotating machines. The ability of compressed sensing in data 
compression was used in remote and offline condition monitoring of rotating machines. In 
reference [19], the compressed sensing technique is used in remote data transmission and 
introduced to compressing the data in ship side, and then the compressed data is transmitted to the 
shore side, in which the compressed data is decompressed. Combustion fault detection is achieved 
by time-frequency spectrum analysis based on the decompressed instantaneous angular speed data 
of marine diesel engines. In reference [20], the compressed sensing theory is introduced in fault 
diagnosis of train rolling bearing. The compressed sensing is used to compress the original signal, 
and the fault diagnosis process is achieved based on the recovered signal from the compressed 
signal.  

The previous work which introduces compressed sensing in signal processing and fault 
diagnosis is mainly focus on two directions: one of them is the signal compression, and the main 
contribution of compressed sensing in these works is signal compression. The fault diagnosis is 
achieved based on the classical method with the reconstructed signal, which means that the 
original signal must be recovered first before fault diagnosing. Another direction is using the 
compressed signal directly in signal processing and fault diagnosis, without recovering the original 
signal. Most of these works are model-driven, which means that the information of the historical 
signals will not be used in these models.  

In our paper, we introduced compressed sensing theory in bearing fault detection, which can 
be achieved using the compressed low-dimensional signal directly, without recovering the original 
signal first. The dictionary learning method is introduced in training the over-complete dictionary. 
Therefore, the historical data is used in the proposed method, which means that the method could 
be data-driven and adaptive. Since the low-dimensional signal is used directly in bearing fault 
detection, then classical fault detection method will not be introduced any more. 

Firstly, a over-complete dictionary on which the signal corresponded to normal state can be 
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decomposed sparsely is trained by dictionary learning method with the bearing historical vibration 
data corresponded to normal state. According to the signal sparse decomposition theory, the 
low-dimensional signal can be reconstructed quite acceptably based on the dictionary and the 
corresponding compressed observation matrix when the bearing is in normal state, in which case 
the representation error of the compressed signal would be small. While the low-dimensional 
signal can’t be recovered well when the bearing is in fault state, in this case, the representation 
error of the compressed signal would be larger. The bearing fault detection can be achieved 
ultimately just for this difference of the representation errors between normal state and fault state.  

The other sections of this paper are organized as follows. In Section 2, we will briefly introduce 
the basic theory of the compressed sensing. The theory of the proposed bearing fault detection 
method using the compressed measurements directly will be presented in Section 3. In Section 4, 
the proposed method will be tested with different bearing vibration signals. Finally in Section 5, 
the paper will be summarized. 

2. Compressed sensing theory 

For a signal ܠ ∈  ே, in the frame of compressed sensing, we should get the linear projections܀
of signal ܠ first, which can be convert into an observation matrix  ∈  ெ×ே, where each row of܀
matrix   can be regarded as a sensor that multiplies with the signal and acquires parts of 
information of the signal. Carrying out the compressive measuring to ܠ as: ܡ = (1) .ܠ

Then we can acquire the compressed measurements (or observations) ܡ ∈ ெ܀ . If ܠ can be 
recovered from ܡ, which means that these fewer observations contain enough information to 
recover signal ܠ, then the compressed sensing can be achieved. According to the linear algebra 
theory, when ܯ is less than ܰ, then Eq. (1) should have infinitely many solutions and we can’t 
recover the original signal ܠ uniquely from the low-dimensional signal ܡ. However, if ܠ is sparse, 
meaning that there only has a few non-zero coefficients in ܠ, then the number of unknowns will 
decline greatly, which make it possible to recover ܠ from ܡ. 

Actually, the signal ܠ is not sparse in general, but it can be represented sparsely using proper 
ways such as orthogonal transformation etc. If we expand ܠ ∈ ே܀ on some orthogonal basis {ૐ}ୀଵே , where ૐ is a ܰ-dimensional column vector, then the signal ܠ can be represented as: 

ܠ =  ࡺૐߠ
ୀଵ , (2)

here the coefficient ߠ = ,ܠ〉 ૐ〉 = ૐ் ܠ :The Eq. (2) can be transferred into a matrix form as .ܠ = શદ, (3)

where શ = ሾૐଵ, ૐଶ, … , ૐேሿ ∈ ே×ே is defined as a dictionary matrix with orthogonal basis, and દ܀ = ሾߠଵ, ,ଶߠ … ,  ܠ is less than ܰ greatly, then the vector દ can be entitled as sparse representation coefficient of ܭ non-zero elements in દ and the value ܭ sparse on dictionary matrix શ, meaning that there has-ܭ ேሿ் is the expansion coefficient vector. Suppose that the coefficient vector દ isߠ
on dictionary matrix શ. Taking Eq. (3) into Eq. (1), while denoting  as શ, then we can get: ܡ = શદ = દ. (4)ۯ

The compressed measurements can be represented in matrix form as Fig. 1. Owing to that the 
vector દ is sparse, and then the number of the unknowns in Eq. (4) will be reduced greatly so that 
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it is possible to recover દ from ܡ. In order to reconstruct the sparse vector દ, Candès and Tao 
presented and also proved that the ۯ mentioned above must satisfy Restricted Isometry Property 
(RIP) [6, 21], and then Baraniuk proposed the idea that the irrelevance between the observation 
matrix  with the dictionary matrix શ was the equivalent conditions of RIP [22]. In case that 
these conditions satisfied, then we can reconstruct sparse representation coefficient vector દ 
according to the Eq. (4). After the vector દ being obtained, then the original signal ܠ can be easily 
recovered based on the Eq. (3). There have many kinds of algorithms to achieve the signal 
reconstruction, specifically in reference [23-33], etc. in detail. The Matching Pursuit (MP) 
algorithm will be used to reconstruct signals in our paper [23]. 

 
Fig. 1. Matrix representation to the compressed measurements 

In the previous introduction, the original signal ܠ is represented sparsely on the dictionary with 
orthogonal basis. However, this kind of dictionary has limited capacity to the signal sparse 
representation. Therefore, other types of the dictionaries such as a variety of over-complete 
dictionaries are often used in practice. According to the difference of the applications, 
over-complete dictionaries can be divided into two categories: fixed dictionaries which can be 
used for non-specific signals and trained dictionaries which only used for specific signal. 
Generally speaking, the fixed dictionary can be used for many different kinds of signals, but it is 
difficult to decompose the signal very sparsely and the signal representation error would be large. 
While the trained dictionary can decompose the signal very sparsely since the structure and 
characteristics information of the training samples is used in dictionary learning process, therefore, 
the signal sparse representation result can be very good. However, this kind of dictionaries can be 
used only for the signals which have the same state with the training samples. The most frequently 
used dictionary learning methods are the MOD (Method of Optimal Directions) [34, 35] and the 
KSVD (K-Singular Value Decomposition) method [36, 37], and so on. In this paper, the 
over-complete dictionary on which the signals corresponded to the bearing normal state can be 
represented sparsely will be trained by the K-SVD method. 

3. Fault detection method 

For the acquisition of the bearing vibration signal, we denote the collected high-dimensional 
signal by ܠ ∈  ே based on the traditional Nyquist sampling theorem. While the low-dimensional܀
compressed measurements is denoted by ܡ ∈ ெ܀  based on the compressed sampling theory. 
According to the compressed sensing theory, a high-dimensional signal ܠ should correspond to a 
one-to-one low-dimensional signal ܡ  (shown in Fig. 2). If we denote the observation matrix 
corresponded to the compressed sampling system by  ∈ ܡ ெ×ே, then we can get܀ = ܠ. 

We define ۲ as the over-complete dictionary trained by dictionary learning method with 
the bearing historical vibration data corresponded to normal state. This dictionary can be used in 
sparse representation for the signals in normal state, but not available for the signals in fault state. 
Expanding the high-dimensional signal ܠ on the dictionary ۲ as: 
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ܠ = ۲ ∙ (5) ,܋

where ܋  is the expansion coefficient vector. According to the relation between ܠ  and ܡ , as  ܡ = ܠ, we can get: ܡ =  ∙ ۲ ∙ .܋ (6)

 
Fig. 2. The relationship between the traditional sampling and compressed sampling 

When the vibration signal ܠ is in normal state, it can be decomposed sparsely on the dictionary ۲. In this case, the coefficient vector ܋ would be sparse, and it is possible to solve ܋ from 
the compressed signal ܡ. Defining  ܋ as the estimate of the coefficient vector ܋, then the 
representation error of the compressed signal ܡ can be calculated as: ઼ = ܡ‖ −  ∙ ۲ ∙ .‖܋ (7)

In this case, the error ઼ should be relatively small. Ideally, it should be close to zero. 
When the vibration signal x is in fault state, considering that the dictionary ۲ is trained 

using the data in normal state, therefore, it is hard to decompose the signal ܠ sparsely. In this case, 
it should be unable to get a sparse coefficient vector c from the compressed measurements ܡ. As 
the way we solve  ܋ in the case with normal state, the estimate of the coefficient vector ܋ 
can be obtained as ܋௨௧ . Then the representation error of the compressed signal ܡ  can be 
calculated as: ઼௨௧ = ฮܡ −  ∙ ۲ ∙ .௨௧ฮ܋ (8)

Therefore, compared to ઼௨௧, the value of ઼௨௧ should be more great. 
According to the analysis above, the bearing fault detection can be achieved just using a small 

amount of compressed measurements directly, which based on the fact that the representation error 
of the compressed signal ܡ in normal state is smaller than that in fault state. The process of the 
fault detection is shown in Fig. 3, and the corresponding steps are as follows: 

1) Acquiring the high-dimensional vibration signals when the bearing works in normal state. 
The set of these signals can be denoted by {ܜ|ܜ ∈  ;ே}, which will be used as the training samples܀

2) Training the over-complete dictionary ۲ with the training samples {ܜ|ܜ ∈  ;{ே܀
3) Acquiring the low-dimensional vibration signals ܡ ∈ ெ by compressed sampling. Taking ܀ ∈ ெ×ே܀ as the observation matrix, then the high-dimensional signal corresponded to 

low-dimensional signal ܡ can be denoted by ܠ ∈ ܡ ே, and܀ = ܠ; 
4) Setting the threshold (઼) of the representation error; 
5) Calculating the representation error ઼  of the low-dimensional compressed signal ܡ  on 

dictionary ۲, viz. ઼ = ܡ‖ −  ∙ ۲ ∙   estimates the expansion coefficient܋ ‖, where܋
vector of the compressed signal ܡ on dictionary ۲; 

6) Estimating the state of the bearing: 
In the case that the representation error ઼ is more than the threshold ઼, then the bearing is 

determined in fault state. 
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In the case that the representation error ઼ is less than or equal to the threshold ઼, then the 
bearing is determined in normal state. 

As can be seen from the fault detection process, the effectiveness of the proposed method is 
mainly related to the following factors: the principle to determine the fault, the signal 
reconstruction algorithm and the compressed sampling way and so on. The signal reconstruction 
algorithm is used to solve the expansion coefficient vector ܋, and the MP algorithm will be used 
in this paper. Accordingly, the main parameters which affect the fault detection results include the 
threshold (઼) of the signal representation error, the sparsity set in MP algorithm, the amount (ܯ) 
of the compressed measurements and the type of the observation matrix . In next section, the 
impacts of these parameters to the fault detection results will be analyzed respectively. 

 
Fig. 3. The flow chart of the proposed bearing fault detection method 

4. Experimental tests 

The proposed fault detection method is validated using the vibration signals from the 
6205-2RS JEK SKF deep groove ball bearings (data sources from [38], and the signal sampling 
frequency is 12 K). The data used in our tests can be divided into two types: the training samples 
used in dictionary learning and the test samples used for the fault detection validation. The signals 
sampled in traditional way should be high-dimensional. For dictionary learning, the 
high-dimensional samples can be used directly. While the test samples should be low-dimensional, 
in our tests, they will be obtained by simulating the compressed sampling. Defining  ∈  ெ×ே܀
as the observation matrix, then each high-dimensional signal has ܰ  data points and each 
low-dimensional signal has ܯ data points. In our tests, we set ܰ as 512. 

The vibration signals of the bearing in normal state are taken as the training samples, which 
can be used to training the dictionary ۲. There are 20480 signals contained in the training 
samples, and the data length of each signal is 512. These samples can be divided into four groups 
and each group contains 5120 signals according to different motor speeds and loads, which are 
shown in Table 1 below.  

Table 1. The training samples 
Motor load (hp) Approx. motor speed (rpm) Number of signals 

0 1797 5120 
1 1772 5120 
2 1750 5120 
3 1730 5120 

Then the over-complete dictionaries ۲ corresponded to the normal state can be trained 
by the K-SVD dictionary learning method using the training samples in Table 1. The parameters 
in dictionary learning are set as follows. The quantity of atoms is set to 1024. The sparsity is set 
to 10. The number of loops is set to 20, and the initial dictionary is selected from the training 
samples. 

The original high-dimensional test samples contain 800 signals corresponded to normal state 
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and 1200 signals corresponded to fault states. The fault can be divided into three categories: the 
inner ring fault, the outer ring fault and the rolling element fault. For each type of fault, we acquire 
400 signals. In accordance with different motor speeds and loads, the test samples corresponded 
to each bearing state contain four groups of signals, as shown in Table 2 below. The faults were 
designed as single point in inner ring, outer ring and rolling element, which were introduced to 
the test bearings using electro-discharge machining with fault diameter of 0.021 inches and fault 
depth of 0.011 inches. 

Taking the Gaussian random matrix [39] as the observation matrix in compressed sensing, and 
setting the amount (ܯ ) of the compressed measurements as 40, then we can obtained the 
low-dimensional observations corresponded to the original test samples shown in Table 2. In our 
proposed method, the bearing states can be determined just using these low-dimensional 
observations directly. The expansion coefficients vector is solved by the MP algorithm. Setting 
the sparsity of the coefficients vector as 10, then the fault detection results with different error 
thresholds are calculated and shown in Fig. 4. The test results can be described using fault 
detection rate and false alarm rate. The fault detection rate characterizes the ratio of the number 
of the samples identified as fault state accurately to the number of all the fault samples used in 
test. The false alarm rate describes the ratio of the number of the samples recognized as fault state 
which actually should be normal state to the number of all the normal state samples used in test. 

Table 2. The original high-dimensional test samples 

State of signal Parameters Number of signals Motor load (HP) Motor speed (rpm) 

Normal state 

0 1797 200 
1 1772 200 
2 1750 200 
3 1730 200 

Inner ring fault 

0 1797 100 
1 1772 100 
2 1750 100 
3 1730 100 

Outer ring fault 

0 1797 100 
1 1772 100 
2 1750 100 
3 1730 100 

Rolling element fault 

0 1797 100 
1 1772 100 
2 1750 100 
3 1730 100 

It can be seen from Fig. 4 that the bearing fault detection can be achieved effectively when 
setting a proper error threshold, and we can get a higher fault detection rate with a very low false 
alarm rate. Compared to the traditional high-dimensional signal with 512 data points, we can get 
a satisfying detection result just using the compressed signal with 40 data points, which 
demonstrates the effectiveness of the proposed method.  

The test results in Fig. 4 also show us a fact that the detection results would be affected by the 
error threshold directly, therefore, setting a reasonable threshold appears to be particularly 
important. The error threshold can be set by referring to the prior knowledge. We can select some 
training samples randomly in Table 1, taking 1000 signals for instance, and then the corresponding 
low-dimensional signal can be obtained by simulating the compressed sampling. The sampling 
way for these training samples is the same with that for the test samples. The parameters set here 
are also the same with that in fault detection. The representation errors of these low-dimensional 
training samples on the dictionary ۲ are solved and the results are shown in Fig. 5. We 
suggest that the error threshold can be set as the values slightly larger than the maximum of the 
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data in Fig. 5. For example, if we set the error threshold as 1.6, then the fault detection result will 
be good referring to the Fig. 4, which indicating that we have set an appropriate threshold. In other 
cases, we can also select an appropriate threshold by referring to the way described above. 

 
Fig. 4. The bearing fault detection results with different error thresholds (ܯ = 40) 

 
Fig. 5. The representation errors of some low-dimensional samples on ۲ 

In the previous analysis, we just used 40 compressed measurements in fault detection. The 
following analysis will focus on the bearing fault detection results with different amount of 
compressed measurements. For the cases with different amount of measurements, the threshold 
will always be set by the principle as ઼ = 1.2઼௫ , where ઼௫  is defined as the maximal 
representation error in the results like Fig. 5. In this test, the Gaussian random matrix is taken as 
the observation matrix. The expansion coefficients vector is solved by MP algorithm and the 
sparsity of the coefficients vector is set as 10. Then the fault detection rates and false alarm rates 
with different amount (ܯ) of the compressed measurements are calculated and the results are 
shown in Fig. 6. 

As can be seen from Fig. 6, setting the error threshold based on the above-described principle, 
the false alarm rate can be very low no matter how many the amount of compressed measurements 
is. With the increase of the measurements, the fault detection rate will improve gradually, and then 
finally tend to one, which should be consistent with the theoretical results. With the increase of 
the compressed observations, more information of the bearing state will be contained in the 
low-dimensional signal, which benefits the fault detection consequentially. 

0
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Fig. 6. The fault detection results in different  

amount of the compressed measurements 

 
Fig. 7. The fault detection results when setting 

different sparsity in MP algorithm 

In the above tests, the sparsity of the expansion coefficients vector in MP algorithm was always 
set as 10, meaning that the number of the atoms involved in signal decomposition would be 10. In 
fact, this value is not limited to 10. The fault detection results corresponded to different sparsity 
in MP algorithm will be calculated and analyzed. In our tests, the thresholds are always set by the 
principle as ઼ = 1.2઼௫ , where ઼௫  is defined as the maximal representation error in the 
results like Fig. 5. Taking the Gaussian random matrix as the observation matrix, and the number 
( ܯ ) of the compressed measurements is set as 25, 30, 35 and 40 respectively, then the 
corresponding fault detection rates when setting different sparsity in MP algorithm are solved. 
The fault detection results are shown in Fig. 7. Considering that the false alarm rates can be always 
guaranteed in a very low level when setting the proper thresholds, therefore, we just plot the fault 
detection rates in Fig. 7. 

As can be seen from Fig. 7, for fewer compressed measurements, the fault detection rates will 
fluctuate obviously with the spasity increasing. Moreover, the general trend would be downward. 
While for more measurements, the detection rates would be higher and stabilized. In summary, if 
we obtained fewer compressed measurements, then a small sparsity in MP algorithm should be 
appropriate. If we get more measurements, then the spasity can be set relatively larger. However, 
we must notice that the sparsity should not be very large, for a too large sparsity will bring in the 
increasing of the computation, which should be a disadvantage to bearing fault detection. 
Generally speaking, the sparsity in MP algorithm can be set as the value which is equal to the 
sparsity in training the dictionary ۲, just as what we did in this paper. 

In the experimental tests of this section, we obtained the compressed measurements by taking 
the Gaussian random matrix as the observation matrix. Actually, different compressed sampling 
system will correspond to different observation matrix, and we can also use other compressed 
sampling ways. To validate our proposed method with different compressed sampling ways, we 
will analyze and compare the fault detection results in several typical compressed sampling ways 
(based on Gaussian random matrix, partial orthogonal matrix [6] and Toeplitz and circulant matrix 
[40] respectively). As that in above tests, the thresholds are always set by the principle as  ઼ = 1.2઼௫, where ઼௫ is defined as the maximal representation error in the results like Fig. 5. 
The expansion coefficients vector is solved by MP algorithm and the sparsity is set as 10. Then 
the fault detection rates when using different observation matrix are calculated and the results are 
shown in Fig. 8. Considering that the false alarm rates can be always guaranteed in a very low 
level when setting the proper thresholds, therefore, we just plot the fault detection rates in Fig. 8. 

It can be seen from Fig. 8 that with the increasing of the compressed measurements, the fault 
detection results will improve gradually in all of the three compressed sampling ways. Moreover, 
when ܯ is larger than 35, the detection rate will gradually approach one. This results show that 
the proposed method is effective when taking any one of the three compressed sampling ways. 
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The Fig. 8 also indicates that the fault detection result when using Toeplitz and circulant matrix is 
better than that using other two observation matrix. While the other two compressed sampling 
ways have the similar ability in bearing fault detecting with our propose method. 

 

Fig. 8. The fault detection results corresponded to 
different observation matrix 

 
Fig. 9. The fault detection results corresponded to 

different noise level 

In practice, the compressed signals are often contaminated by external noise, which will affect 
the fault detection results. Therefore, we will discuss how the proposed method can withstand 
external noise. As that in above tests, the thresholds are always set by the principle as  ઼ = 1.2઼௫, where ઼௫ is defined as the maximal representation error in the results like Fig. 5. 
The expansion coefficients vector is solved by MP algorithm and the sparsity is set as 10. Suppose 
the compressed signals were contaminated by white Gaussian noise, and then the fault detection 
results corresponded to different SNR (signal-to-noise ratio) are calculated and the results are 
shown in Fig. 9.  

It can be seen from Fig. 9 that the noise has little effect on the fault detection rate, which will 
be stable at a very high level no matter how strong the noise is. While the false alarm rate is 
affected by the noise obviously. With the decreasing of the SNR of the compressed signals, the 
false alarm rate will increase gradually. When the SNR is equal to 0 dB, the false alarm rate will 
be 100 %, which means that all the signals in normal state actually will be determined in fault 
state. When the SNR of the signals is more than 11 dB, the fault detection rate will tend to 100 %, 
and the false alarm rate will drop to 0. Therefore, weak noise will not obviously affect the fault 
detection results of the proposed method, while strong noise will have great effect on the false 
alarm rate. 

5. Conclusions 

A bearing fault detection method based on the low-dimensional compressed measurements is 
proposed in this paper. In the proposed method, it is not necessary to reconstruct the original 
high-dimensional signals. The bearing fault detection can be achieved using a small amount of 
compressed measurements directly, which based on the difference of the representation errors 
between the compressed signals in normal state and in fault state on a over-complete dictionary. 
The main parameters which affect the fault detection results include the threshold of signal 
representation error, the sparsity set in MP algorithm, the amount of the compressed measurements 
and the type of the observation matrix. The impacts of these parameters to the fault detection 
results are analyzed respectively, and the effectiveness of the proposed method in bearing fault 
detecting is validated. The error threshold can be set by referring to the prior knowledge. The 
sparsity in MP algorithm can be set as the value which is equal to the sparsity in dictionary  
learning. More compressed measurements are propitious to the bearing fault detection. The 
Toeplitz and circulant matrix in compressed sampling has better performance in fault detection. 
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Weak noise will not obviously affect the fault detection results of the proposed method, while 
strong noise will have great effect on the false alarm rate. 

In the proposed method, the bearing fault detection can be achieved just using the 
over-complete dictionary corresponded to bearing normal state. Actually, if we can collect the 
vibration signals in different fault states, then the over-complete dictionaries corresponded to 
different fault types can be trained, which will be the foundations for the fault recognition. 
Therefore, how to use the low-dimensional compressed measurements directly to achieve the 
bearing fault diagnosis will be the interests of our further research. 
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