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Abstract. For the system degradation process undergoing a sudden change, optimal maintenance 
policies were developed using the cumulative damage model and two-stage degradation modeling. 
Single shock damage value and the number of shock times are assumed to be normal distribution 
and homogeneous Poisson process, respectively. On this basis, average long-run cost rate of a 
renewal cycle was modeled with considering the probabilities of corrective, preventive and 
continuous monitoring, respectively. In order to develop an optimal policy, four types of 
maintenance policies (i.e., global, time-depended, adaptive and simplified adaptive policies) were 
analyzed with different alarm thresholds and inter-inspection time. Influence analysis of different 
parameters for maintenance policy was given, where different maintenance policies were 
compared in terms of average long-run cost rate. In addition, the impacts of degradation model 
parameters (i.e., change-point distribution, shock strength, shock frequency) on the average 
long-run cost rate were analyzed. Finally, maintenance policy for gearbox degradation experiment 
was analyzed in case study. 
Keywords: cumulative damage model, two-stage degradation, degradation level, maintenance 
policy. 

Nomenclature ܯ௞ System degradation mode for ݇th stage  ܺ௞௜ System damage value due to the ݅th shock in degradation mode ܯ௞ ௞ܰ The number of shock times that system arrived in degradation mode ܯ௞ ݐ௖ The change-point that degradation rate from nominal mode to accelerated mode ܻ(ݐ௜) System degradation level at time ݐ௜ߣ Homogeneous Poisson strength ௙ܻ Failure threshold  ௙ܶ The time that degradation level exceeds failure threshold ஺ܻ Alarm threshold ௡ܻ௢௠ Alarm threshold for nominal degradation mode ௔ܻ௖௖ Alarm threshold for accelerated degradation mode ∆ܶ Time length of inter-inspection  ∆ ௡ܶ௢௠ Time length of inter-inspection for nominal degradation mode ∆ ௔ܶ௖௖ Time length of inter-inspection for accelerated degradation mode ܧ(ܥஶ) Average long-run cost rate ܥூ Cost of a monitoring action ܥ௉ Cost of a preventive maintenance action ܥ஼ Cost of a corrective maintenance action ܧ[ܶ] Mean time length of renewal cycle ܶ ܧ[ ூܰ(ܶ)] Average number of monitoring actions in a renewal cycle ܶ ௉ܲ Probability of performing preventive maintenance in a renewal cycle ܶ ஼ܲ Probability of performing corrective maintenance in a renewal cycle ܶ 
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1. Introduction 

Performance degradation is a common phenomenon in many systems, especially in mechanical 
and structural systems. Deterioration modeling plays a more and more important role in maintenance 
decision-making. Many researchers have mainly studied intensively systems degradation with 
stationary processes to optimize maintenance problems [1-4]. However, the degradation processes 
for many systems are non-stationary due to internal mechanism or external environment influences 
etc. [5]. For example, some systems are deteriorating in a process of two stages [5-11], where the 
degradation rate is usually small in the first stage and large in the second stage.  

In order to study system degradation, it is necessary to establish corresponding degradation 
model. The deterioration process model with independent random increment is divided into two 
types, continuous time model and cumulative damage model. The continuous time model 
[12, 13, 14] presents system degradation in terms of continuous time stochastic process. The most 
representative models for continuous time model are Brownian motion model and Gamma process 
model. Whereas, in the cumulative damage model [15, 16, 17], it is assumed that system 
degradation process is discrete. The model describes the degradation process by cumulating a 
number of random increments caused by damage in the system operation. Existing studies for 
two-stage degraded system mainly focused on continuous time model. Application of cumulative 
damage model to two-stage degradation process was seldom investigated. 

Due to the discrepancy of different deterioration modes for a two-stage degraded system, 
maintenance decision-making methods for single-stage degradation process system cannot be 
applied to two-stage deteriorating mode system. In order to solve the problem, In order to solve 
the problem, studies have been done and a number of maintenance strategies were developed. An 
activation zone method for maintenance decision-making is presented by Saassouh [6] with 
considering the random change of degradation rate, but the degradation rate change time is 
assumed to be continuous and perfectly monitored. Ponchet [12] developed two maintenance 
decision-making methods with and without considering the deterioration mode change in system 
degradation processes, respectively. The results of numerical example show that it can bring 
considerable benefits if a policy with changeable thresholds was used. A predictive maintenance 
policy for a system with two deterioration mode based on process data was proposed by Zhao [18], 
and the maintenance actions were implemented based on different reliability thresholds. Some 
maintenance policies for two-stage deteriorating mode systems have been presented, but no much 
study has been done to investigate the performance of different maintenance polices with different 
thresholds and inspection intervals. 

In this paper, degradation modeling and maintenance decision-making methods for two-stage 
deteriorating mode system based on cumulative damage model will be investigated. The main 
contributions of this study are: (a) Cumulative damage model is used for two-stage degradation 
modeling, and it shows system degradation rate change through different shock strengths and 
shock frequencies. (b) An optimal policy of a two-stage degraded system is developed by 
analyzing and comparing four types of maintenance policies (global, time-depended, adaptive, 
simplified adaptive). 

The remainder of this paper is organized as follows. Section 2 is devoted to two-stage 
deteriorating modeling based on cumulative damage model. Section 3 studies four kinds of 
maintenance policies and analyzes maintenance policy evaluation method. Numerical examples 
are used to analyze the influence of different factors on maintenance policies in Section 4. 
Conclusions are made in Section 5. 

2. Two-stage deteriorating modeling 

2.1. System description 

The considered system is assumed to be an observable system which degrading stochastically. 
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The degradation level at time ݐ is supposed to be presented by a random variable ܻ(ݐ) [20 ,19]. 
The system degradation process is an increasing stochastic process with initial state ܻ(ݐ) = 0. 
System will be declared as failed when deterioration level ܻ(ݐ) exceeds a failure threshold ௙ܻ 
(namely ܻ(ݐ) ≥ ௙ܻ). ௙ܶ is defined as system failure time. System failed does not mean that the 
system cannot work, but implies that it’s economic and safety impacts will be unacceptable if it 
still in operation. 
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Fig. 1. Two-stage degradation process  

System degradation rate changes at time ݐ௖ during a life cycle (as shown in Fig. 1). It means 
that the parameters of system degradation process undergo transitions at change-point ݐ௖. The 
system is supposed to be in a nominal degradation mode and denoted by ܯଵ before ݐ௖. After ݐ௖, 
the system degradation mode evolves to an accelerated mode ܯଶ. Degradation rate is usually small 
in the first stage ܯଵ and large in the second stage ܯଶ. Therefore, system degradation process can 
be modeled by two stochastic processes under the same law but with different parameters [6]. 

Most physical degradation observation and the property of the Levy processes have shown that 
system deterioration can be thought as the accumulation of large numbers of small shocks [21], 
and deterioration level can be defined as the sum of damage values due to shock. When the system 
is in mode ܯ௞ , damage values ݔ௞௜  (݇ =  1, 2; ݅ =  0, 1, 2, …) are assumed to be normally 
distribution, ݔ௞௜~ܰ(ݑ௞, (௞ଶߪ ௞௜ݔ .  is a constant in mode ܯ௞  (see Fig. 1). Random variable ௌܰ 
represents the number of shock times during time [0, ݐ௦] and it obeys to homogeneous Poisson 
distribution with strength ߣ௞ in mode ܯ௞. Therefore, the probability of shock times ௌܰ just as ݊ 
in mode ܯ௞ is: 

ܲ( ௦ܰ = ݊) = !௡݊(௦ݐ௞ߣ) ݁ିఒೖ௧ೞ. (1)

For the convenience of expression, in this paper ݔ௞௜ is denoted as shock strength and 1 ⁄௞ߣ  is 
denoted as shock frequency. It is not difficult to find that shock strength and shock frequency 
decide the size of degradation rate. 

2.2. Degradation level modeling 

In the two-stage degradation process, the value of damage time ݐ௦ may be in the first stage  
(0 ≤ ௦ݐ ≤ ௦ݐ) ௖) or in the second stageݐ >  ௖). The calculation methods of degradation level areݐ
not alike in different degradation stage. According to the above notation, degradation level at time ݐ௦ can be written as: ܻ = ௧ܻೞଵ߇ሼ௧ೞஸ௧೎ሽ + ൫ ௧ܻ೎ଵ + ௧ܻೞି௧೎ଶ ൯߇ሼ௧ೞவ௧೎ሽ, (2)

where ௧ܻೞ௞stands for degradation level in mode ܯ௞ ሼாሽܫ , = 1 if ܧ is true and ܫሼாሽ = 0 otherwise. 
When 0 ≤ ௦ݐ ≤  :௖, the degradation level isݐ
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ܻ = ௧ܻೞଵ = ෍ ଵ௜ேభݔ
௜ୀ଴ . (3)

In this case, the probability of shock times equal to ݊ within time [0, ݐ௦] is the same to Eq. (1). 
Due to every shock damage is independently and unrelated, it can be known from the characters 
of normal distribution (the sum of normal distribution parameters still in line with normal 
distribution) that ܻ is obey to normal distribution, namely: ܻ = ௧ܻೞଵ~ܰ( ଵܰߤଵ, ଵܰߪଵଶ). (4)

When ݐ௦ >  ଵ and the damage inܯ ௖, degradation level consists of the damage in first stageݐ
second stage ܯଶ. In this case, degradation time length in the first stage is ݐ௖, ݐ௦–  ௖ to the secondݐ
stage. Hence, the system degradation level is: 

ܻ = ௧ܻ೎ଵ + ௧ܻೞି௧೎ଶ = ෍ ଵ௜ேభݔ
௜ୀ଴ + ෍ ଶ௝ேమݔ

௝ୀ଴ . (5)

Similar to the Eq. (4), system degradation level is in line with normal distribution, there is: ܻ = ௧ܻ೎ଵ + ௧ܻೞି௧೎ଶ ~ܰ( ଵܰߤଵ + ଶܰߤଶ, ଵܰߪଵଶ + ଶܰߪଶଶ). (6)

Because shocks between the two stages are independently, the probability of the number of 
shock times just as ݉ in mode ܯଵ and equal to ݊ in mode ܯଶ is: 

ܲ( ଵܰ = ݉, ଶܰ = ݊) = ܲ( ଵܰ = ݉) ⋅ ܲ( ଶܰ = ݊) = !௠݉(௖ݐଵߣ) ൫ߣଶ(ݐ௦ − !௖)൯௡݊ݐ ⋅ ݁ିఒభ௧೎ିఒమ(௧ೞି௧೎). (7)

2.3. Reliability modeling 

In engineering practice, the change-point ݐ௖ for degradation rate is not fixed, but is distributed 
in a certain time interval. Shown as Fig. 1, the time distribution interval of change-point ݐ௖ for 
degradation rate is [ݐ஺, ݐ஻], in other words, the deteriorating mode may change at any time from ܯଵ to ܯଶ when system works during time [ݐ஺, ݐ஻].  

System reliability is the probability for degradation level ܻ less than failure threshold ௙ܻ when 
damage time is ݐ௦. Shock strength, shock frequency and change-point should be considered in 
reliability modeling, which are main factors in cumulative damage model. Reliability modeling 
for two-stage degraded system is specific expressed as following. 

When 0 ≤ ௦ݐ ≤  :௖, system reliability isݐ

(௦ݐ)ܴ = ܲ൫ܻ ≤ ௙ܻ൯ = ܲ ቌ෍ ଵ௜ேೞݔ
௜ୀ଴ ≤ ௙ܻቍ = ෍ Φ ቆ ௙ܻ − ଵߪ݉√ଵߤ݉ ቇஶ

௠ୀ଴ ⋅ !௠݉(௦ݐଵߣ) ⋅ ݁ିఒభ௧ೞ 

      = ෍ Φ ቆ ௙ܻ − ଵߪ݉√ଵߤ݉ ቇஶ
௠ୀ଴ ⋅ !௠݉(௦ݐଵߣ) ⋅ ݁ିఒభ௧ೞ. (8)

When ݐ௦ >  :௖, system reliability isݐ
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(௦ݐ)ܴ = ܲ൫ܻ < ௙ܻ൯ = ܲ ቌ෍ ଵ௜ேభݔ
௜ୀ଴ + ෍ ଶ௝ேమݔ

௝ୀ଴ < ௙ܻቍ
      = ෍ ෍ Φ ቆ ௙ܻ − ଵߤ݉) + ଵଶߪଶ)ඥ݉ߤ݊ + ଶଶߪ݊ ቇஶ

௡ୀ଴
ஶ

௠ୀ଴ ⋅ ܲ( ଵܰ = ݉, ଶܰ = ݉) 
      = ෍ ෍ Φ ቆ ௙ܻ − ଵߤ݉) + ଵଶߪଶ)ඥ݉ߤ݊ + ଶଶߪ݊ ቇஶ

௡ୀ଴
ஶ

௠ୀ଴ ⋅ ଵ௠ߣ ⋅ !ଶ௡݉ߣ ⋅ ݊! ⋅ න ቀ݁ିఒభఛିఒమ(௧ೞିఛ)߬௠(ݐ − ߬)௡݃(߬)ቁ ݀߬௧ಳ௧ಲ , 
(9)

where ݃(ݐ) is the probability density distribution function for change-point during time [ݐ஺, ݐ஻]. 

3. Maintenance policies 

Research of maintenance decision-making is one of the focuses for system degradation 
modeling. Condition-based maintenance policy widely uses in various systems, which is 
structured according to the information available through on-line monitoring [12]. In order to 
reduce maintenance costs, preventive maintenance actions take place before system failure by 
monitoring. In other words, suitable monitoring method and maintenance policy can help to 
improve the efficiency and profitability of a system. 

The selections of alarm threshold and inter-inspection time are the keys to maintenance policy. 
According to different alarm thresholds and inter-inspection times, this paper considers four kinds 
of maintenance decision-making methods. The first kind of method is global maintenance policy. 
There are just one alarm threshold and one inter-inspection time in this method, which are 
constants and never change. The second kind of method is time-depended maintenance policy. 
There are also one alarm threshold and one inter-inspection time in this method, but the 
inter-inspection time is change with system working time. The next kind of method is adaptive 
maintenance policy. Different alarm thresholds and inter-inspection times corresponding to 
different degradation rates, that is say, there are two alarm thresholds and two inter-inspection 
times in this method. The finally kind of method is simplified adaptive maintenance policy. This 
method is similar to adaptive maintenance policy, but it just has one inter-inspection time. 

In the framework of this study, there are three possible maintenance actions, inspection, 
preventive maintenance and corrective maintenance, respectively. System is perfectly monitored 
through periodic monitor, and system state restores to be as good as new after preventive 
maintenance or corrective maintenance with negligible time. 

3.1. Global maintenance policy 

In order to show the importance of considering the changes of system degradation rate, 
traditional maintenance decision-making method is presented in the first place, which called 
global maintenance policy. The method just defines a single alarm threshold ஺ܻ  and a single 
inter-inspection time ∆ܶ, as done in Dieulle et al. [22]. It is not difficult to find that the method 
only pay attention to system degradation level and ignore the degradation rate. 

The possible maintenance actions which can put into practice after inspection time ௜ܶ  are 
defined as follows: 

• If ܻ( ௜ܶ) < ஺ܻ , do nothing and the system is left as it is until next inspection time  ௜ܶାଵ = ௜ܶ + ∆ܶ. 
• If ஺ܻ ≤ ܻ( ௜ܶ) < ௙ܻ , the system is too badly deteriorated so it is necessary to perform 

preventive maintenance. 
• If ܻ( ௜ܶ) ≥ ௙ܻ , the system is considered as failed and it has to be performed corrective 

maintenance. 
The rule of global maintenance policy is illustrated in Fig. 2. 



1591. MAINTENANCE POLICY FOR TWO-STAGE DETERIORATING MODE SYSTEM BASED ON CUMULATIVE DAMAGE MODEL.  
XIANGLONG NI, JIANMIN ZHAO, GUANGYAN WANG, HONGZHI TENG 

 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. MAY 2015, VOLUME 17, ISSUE 3. ISSN 1392-8716 1271 

fY

AY
 1kY T 

 kY T

 1jY T 

 jY T

jT 1jT  kT 1kT 

T T

ct  
Fig. 2. Global maintenance policy 

3.2. Time-depended maintenance policy 

As the degradation rate in mode ܯଶ larger than in mode ܯଵ, the inter-inspection time should 
be shorter and shorter in term of work time. This kind of maintenance decision-making method 
called time-depended maintenance policy. For example, the inter-inspection time of ݅th monitor 
is ∆ ௜ܶ, the next inter-inspection time is ∆ ௜ܶାଵ, ∆ ௜ܶାଵ = ݍ · ∆ ௜ܶ and ݍ < 1. 

The possible maintenance actions which can put into practice after inspection time ௜ܶ  are 
defined as follows: 

• If ܻ( ௜ܶ) < ஺ܻ , do nothing and the system is left as it is until next inspection time  ௜ܶାଵ = ௜ܶ + ∆ ௜ܶାଵ. 
• If ஺ܻ ≤ ܻ( ௜ܶ) < ௙ܻ , the system is too badly deteriorated so it is necessary to perform 

preventive maintenance. 
• If ܻ( ௜ܶ) ≥ ௙ܻ , the system is considered as failed and it has to be performed corrective 

maintenance. 
The rule of time-depended maintenance policy is illustrated in Fig. 3. 
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Fig. 3. Time-depended maintenance policy 

3.3. Adaptive maintenance policy 

According to the characteristics of system degradation rate suddenly changes from nominal 
mode ܯଵ to accelerated mode ܯଶ, Saassouh et al. [6, 12] put forward adaptive maintenance policy. 
The method is different with global maintenance policy, it considers system degradation level and 
degradation rate. As a result, this maintenance decision-making method is more responsive to 
systems with two-stage deteriorating mode.  

The alarm threshold and inter-inspection time for adaptive maintenance policy are defined as 
follows: ܻ = ௡ܻ௢௠߇ሼ௧ೞஸ௧೎ሽ + ௔ܻ௖௖߇ሼ௧ೞவ௧೎ሽ, (10)
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ܶ߂ = ߂ ௡ܶ௢௠߇ሼ௧ೞஸ௧೎ሽ + ߂ ௔ܶ௖௖߇ሼ௧ೞவ௧೎ሽ. (11)

Set ௡ܻ௢௠ as the alarm threshold and ∆ ௡ܶ௢௠ is the inter-inspection time for nominal degradation 
mode ܯଵ . When the inspection time ௜ܶ  is less than change-point ݐ௖  ( ௜ܶ ≤ ௖ݐ ), the possible 
maintenance actions which can put into practice are defined as follows: 

• If ܻ( ௜ܶ) < ௡ܻ௢௠ , do nothing and the system is left as it is until next inspection time  ௜ܶାଵ = ௜ܶ + ∆ ௡ܶ௢௠. 
• If ௡ܻ௢௠ ≤ ܻ( ௜ܶ) < ௙ܻ , the system is too badly deteriorated so it is necessary to perform 

preventive maintenance. 
• If ܻ( ௜ܶ) ≥ ௙ܻ , the system is considered as failed and it has to be performed corrective 

maintenance. 
Set ௔ܻ௖௖  as the alarm threshold and ∆ ௔ܶ௖௖  is the inter-inspection time for accelerated 

degradation mode ܯଶ. When the inspection time ௝ܶ is greater than change-point ݐ௖ ( ௝ܶ >  ௖), theݐ
possible maintenance actions which can put into practice are defined as follows: 

• If ܻ൫ ௝ܶ൯ < ௔ܻ௖௖ , do nothing and the system is left as it is until next inspection time  ௝ܶାଵ = ௝ܶ + ∆ ௔ܶ௖௖. 
• If ௔ܻ௖௖ ≤ ܻ൫ ௝ܶ൯ < ௙ܻ , the system is too badly deteriorated so it is necessary to perform 

preventive maintenance. 
• If ܻ൫ ௝ܶ൯ ≥ ௙ܻ , the system is considered as failed and it has to be performed corrective 

maintenance. 
As the degradation rate for mode ܯଶ  is greater than mode ܯଵ , so the maintenance policy 

parameters ௔ܻ௖௖ < ௡ܻ௢௠  and ∆ ௔ܶ௖௖ < ∆ ௡ܶ௢௠ . The rule of adaptive maintenance policy is 
illustrated in Fig. 4. 

fY
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 1iY T 

 iY T

iT 1iT  jT 1jT 

nomT

accT

nomY

ct  
Fig. 4. Adaptive maintenance policy 

3.4. Simplified adaptive maintenance policy  

Adaptive maintenance policy so complex that not suitable for engineering application. 
Therefore, adaptive maintenance policy is simplified in application by some researchers [12]. 
Inter-inspection time ∆ܶ is a constant value and never changes in simplified adaptive maintenance 
policy. 

The maintenance policy rule (alarm threshold, possible maintenance action) is similar to 
adaptive maintenance policy, the only difference is that: no matter ܻ( ௜ܶ) < ௡ܻ௢௠ or ܻ( ௜ܶ) < ௔ܻ௖௖, 
the next inspection time always ௜ܶାଵ = ௜ܶ + ∆ܶ (namely ∆ ௡ܶ௢௠ = ∆ ௔ܶ௖௖ = ∆ܶ). 

3.5. Maintenance policy evaluation 

3.5.1. Evaluation method 

Maintenance cost occurs when a maintenance action is performed. In this study the average 
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long-run cost rate over an infinite time span is used to evaluate maintenance policy. As it has 
assumed that system state restores to as good as new if a preventive/corrective maintenance action 
performed, renewal reward theory [23] can be used to calculate the average long-run cost rate as 
follows: 

(ஶܥ)ܧ = ݈݅݉௧→ஶ ݐ[(ݐ)ܥ]ܧ = [ܶ]ܧ[(ܶ)ܥ]ܧ , (12)

where (ݐ)ܥ is the total maintenance cost at time ݐ, ܶ is the average time length of a renewal cycle. 
The total maintenance cost in a renewal cycle ܶ can be expressed as follows: [(ܶ)ܥ]ܧ = ]ܧூܥ ூܰ(ܶ)] + ௉ܥ ௉ܲ + ஼ܥ ஼ܲ. (13)

The expected time length of a renewal cycle ܶ is written as: ܧ[ܶ] = ௉ܲ ௉ܶ + ஼ܲ ௙ܶ. (14)

Adaptive maintenance policy is the most complex method relative to other three maintenance 
policies, which parameters obtained more difficult. In this paper, parameters obtained method of 
adaptive maintenance policy are mainly analyzed, parameters for other three maintenance policy 
can also be obtained as this method. 

3.5.2. Probability of corrective maintenance 

If any one event of the following events (ܣ஼ଵ, ܣ஼ଶ, ܣ஼ଷ) occurs, system is considered as failure. 
That is to say, system needs corrective replacement and it will cause corrective maintenance cost ܥ஼. Take the event ܣ஼ଵ as a example, system degradation process is in stage ܯଵ ( ௭ܶିଵ < ௭ܶ ≤  ,(௖ݐ
if the degradation level ܻ( ௭ܶିଵ) < ௡ܻ௢௠  for (ݖ − 1) th inspection and ܻ( ௭ܶ) > ௙ܻ  for ݖ th 
inspection, corrective maintenance action will be performed. ܣ஼ଵ = ቄܻ( ௭ܶିଵ) < ௡ܻ௢௠ ሩ ܻ( ௭ܶ) ≥ ௙ܻ ሩ ௭ܶିଵ < ௭ܶ ≤ ஼ଶܣ ,௖ቅݐ = ቄܻ( ௭ܶିଵ) < ௔ܻ௖௖ ሩ ܻ( ௭ܶ) ≥ ௙ܻ ሩ ௖ݐ < ௭ܶିଵ ≤ ௭ܶቅ, ܣ஼ଷ = ቄܻ( ௭ܶିଵ) < ௡ܻ௢௠ ሩ ܻ( ௭ܶ) ≥ ௙ܻ ሩ ௭ܶିଵ < ௖ݐ ≤ ௭ܶቅ. 

The probability for a corrective maintenance in a renewal cycle is expressed as: 

஼ܲ = (஼ଵܣ)ܲ + (஼ଶܣ)ܲ + .(஼ଷܣ)ܲ (15)

System cumulative damage distribution is the probability for system degradation level ܻ less 
than a certain value ݕ when shock time is ݐ௦. The formula of cumulative damage distribution in 
stage ܯଵ can be denoted as: 

ܲ(ܻ ≤ (ݕ = ෍ ߔ ቆݕ − ଵߪ݊√ଵߤ݊ ቇஶ
௡ୀ଴ ⋅ ܲ( ௦ܰ = ݊). (16)

Therefore, the density function of cumulative damage distribution in stage ܯଵ is: 

(ݕ)݂ = ߨ2√1 ⋅ ෍ ݁ି(௬ି௡ఓభ)మଶ௡ఙ భమஶ
௡ୀ଴ ⋅ ܲ( ௦ܰ = ݊). (17)
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The specific analytic formula of the probability for corrective maintenance event ܣ஼ଵ  is 
expressed as follows: 

(஼ଵܣ)ܲ = ෍ ܲ൫ܻ( ௭ܶିଵ) < ௡ܻ௢௠, ܻ( ௭ܶ) ≥ ௙ܻ൯ ⋅ ܲ( ௭ܶ ≤ ௖)ஶݐ
௭ୀଵ  

      = ෍ ܲ ቀܻ( ௭ܶିଵ) < ௡ܻ௢௠, ܻ( ௭ܶ − ௭ܶିଵ) ≥ ௙ܻ − ܻ( ௭ܶିଵ)ቁ ⋅ ܲ( ௭ܶ ≤ ௖)ஶݐ
௭ୀଵ  

      = ෍ ܲ ቌ ෍ )ଵ௜ேݔ ೥்షభ)
௜ୀ଴ < ௡ܻ௢௠, ෍ )ଵ௝ேݔ ೥்ି ೥்షభ)

௝ୀ଴ ≥ ௙ܻ − ෍ )ଵ௜ேݔ ೥்షభ)
௜ୀ଴ ቍ ⋅ ܲ( ௭ܶ ≤ ௖)ஶݐ

௭ୀଵ  

      = ෍ ෍ ෍ ܲ ቌ෍ ଵ௜௠ݔ
௜ୀ଴ < ௡ܻ௢௠, ෍ ଵ௝௡ݔ

௝ୀ଴ ≥ ௙ܻ − ෍ ଵ௜௠ݔ
௜ୀ଴ ቍ ⋅ ܲ(ܰ( ௭ܶିଵ) = ݉) ⋅ ܲ(ܰ( ௭ܶ − ௭ܶିଵ) = ݊) ⋅ ܲ( ௭ܶ ≤ ௖)ஶݐ

௡ୀ଴
ஶ

௠ୀ଴
ஶ

௭ୀଵ  

      = ߨ12 ෍ ෍ ෍ න න ݁ି(௨ି௠ఓభ)మଶ௠ఙ భమ ି(ఛି௡ఓభ)మଶ௡ఙ భమ௒೑
௒೑ି௨

௒೙೚೘
଴

ஶ
௡ୀ଴

ஶ
௠ୀ଴ ݑ݀߬݀ ⋅ ܲ(ܰ( ௭ܶିଵ) = ݉) ⋅ ܲ(ܰ( ௭ܶ − ௭ܶିଵ) = ݊) ⋅ ܲ( ௭ܶ ≤ ௖)ஶݐ

௭ୀଵ , 

(18)

where, ܲ(ܰ( ௭ܶିଵ) = ݉) is the probability of the number of shock times just as ݉ during time [0, ௭ܶିଵ], ܲ(ܰ( ௭ܶ − ௭ܶିଵ) = ݊) is the probability of the number of shock times equal to ݊ within 
time [ ௭ܶିଵ, ௭ܶ], ܲ( ௭ܶ ≤  .ଵܯ ௖) is the probability for system degradation in the first stageݐ

The probability for corrective maintenance events ܣ஼ଶ, ܣ஼ଷ can be expresses as follows: 

(஼ଶܣ)ܲ = ෍ ܲ൫ܻ( ௭ܶିଵ) < ௔ܻ௖௖, ܻ( ௭ܶ) ≥ ௙ܻ൯ ⋅ ܲ( ௭ܶିଵ > ௖)ஶݐ
௭ୀଵ

      = 1√8πଷ ෍ ෍ ෍ ෍ ۈۉ
ۇ න න න eି(୳ି୫ஜభ)మଶ୫஢ భమ ି(னି୬ஜమ)మଶ୬஢ మమ ି(தି୬ஜమ)మଶ୬஢ మమஶ

ଢ଼౜ି୳ିன dτdωdu ⋅ଢ଼౗ౙౙି୳
଴

ଢ଼౗ౙౙ
଴P(N(tୡ) = m) ⋅ P(N(T୸ିଵ − tୡ) = n) ⋅ P(N(T୸ − T୸ିଵ) = l) ⋅ P(T୸ିଵ > tୡ)ۋی

ஶۊ
୪ୀ଴

ஶ
୬ୀ଴

ஶ
୫ୀ଴

ஶ
୸ୀଵ , (19)

(஼ଷܣ)ܲ = ෍ ܲ൫ܻ( ௭ܶିଵ) < ௡ܻ௢௠, ܻ( ௭ܶ) ≥ ௙ܻ൯ ⋅ ܲ( ௭ܶିଵ < ௖ݐ ≤ ௭ܶ)ஶ
௭ୀଵ  

      = ଷߨ8√1 ෍ ෍ ෍ ෍ ۈۉ
ۇ න න න ݁ି(௨ି௠ఓభ)మଶ௠ఙ భమ ି(ఠି௠ఓభ)మଶ௠ఙ భమ ି(ఛି௡ఓమ)మଶ௡ఙ మమ ݑ݀߱݀߬݀ ⋅ஶ

௒೑ି௨ିఠ
ஶ

௒೑ି௨
௒೙೚೘

଴ܲ(ܰ( ௭ܶିଵ) = ݉) ⋅ ௖ݐ)ܰ)ܲ − ௭ܶିଵ) = ݊) ⋅ ܲ(ܰ( ௭ܶ − (௖ݐ = ݈) ⋅ ܲ( ௭ܶିଵ < ௖ݐ ≤ ௭ܶ)ۋی
ஶۊ

௟ୀ଴
ஶ

௡ୀ଴
ஶ

௠ୀ଴
ஶ

௭ୀଵ . (20)

3.5.3. Probability of preventive maintenance 

If any one event of the following events (ܣ௉ଵ, ܣ௉ଶ, ܣ௉ଷ) occurs, it is considered that preventive 
replacement needs to be performed and it will cause preventive maintenance cost ܥ௉. When a 
twice continuous monitoring just happened before and after the change-point for degradation rate 
( ௭ܶିଵ < ௖ݐ ≤ ௭ܶ ), if the degradation level ܻ( ௭ܶିଵ) < ௡ܻ௢௠  for ( ݖ − 1 )th inspection and  ܻ( ௭ܶ) ≥ ௙ܻ for ݖth inspection, preventive maintenance action will be performed. ܣ௉ଵ = ቄܻ( ௭ܶିଵ) < ௡ܻ௢௠ ሩ ௡ܻ௢௠ ≤ ܻ( ௭ܶ) < ௙ܻ ሩ ௭ܶିଵ < ௭ܶ ≤ ௉ଶܣ ,௖ቅݐ = ቄܻ( ௭ܶିଵ) < ௔ܻ௖௖ ሩ ௔ܻ௖௖ ≤ ܻ( ௭ܶ) < ௙ܻ ሩ ௖ݐ < ௭ܶିଵ ≤ ௭ܶቅ, ܣ௉ଷ = ቄܻ( ௭ܶିଵ) < ௡ܻ௢௠ ሩ ௔ܻ௖௖ ≤ ܻ( ௭ܶ) < ௙ܻ ሩ ௭ܶିଵ < ௖ݐ ≤ ௭ܶቅ. 

The probability for a preventive maintenance in a renewal cycle is expressed as: 

஼ܲ = (஼ଵܣ)ܲ + (஼ଶܣ)ܲ + .(஼ଷܣ)ܲ (21)
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The probability for preventive maintenance events ܣ௉ଵ, ܣ௉ଶ, ܣ௉ଷ can be written as follows: 

(௉ଵܣ)ܲ = ෍ ܲ൫ܻ( ௭ܶିଵ) < ௡ܻ௢௠, ௡ܻ௢௠ < ܻ( ௭ܶ) < ௙ܻ൯ ⋅ ܲ( ௭ܶ ≤ ௖)ஶݐ
௭ୀଵ  

      = ߨ12 ෍ ෍ ෍ න න ݁ି(௨ି௠ఓభ)మଶ௠ఙ భమ ି(ఛି௡ఓభ)మଶ௡ఙ భమ௒೑ି௨
௒೙೚೘ି௨

௒೙೚೘
଴

ஶ
௡ୀ଴

ஶ
௠ୀ଴ ݑ݀߬݀ ⋅ ܲ(ܰ( ௭ܶିଵ) = ݉)ܲ(ܰ( ௭ܶ − ௭ܶିଵ) = ݊)ܲ( ௭ܶ ≤ ௖)ஶݐ

௭ୀଵ , (22)

(௉ଶܣ)ܲ = ෍ ܲ൫ܻ( ௭ܶିଵ) < ௔ܻ௖௖, ௔ܻ௖௖ ≤ ܻ( ௭ܶ) < ௙ܻ൯ ⋅ ܲ( ௭ܶିଵ > ௖)ஶݐ
௭ୀଵ

      = ଷߨ8√1 ෍ ෍ ෍ ෍ ۇۉ න න න ݁ି(௨ି௠ఓభ)మଶ௠ఙ భమ ି(ఠି௡ఓమ)మଶ௡ఙ మమ ି(ఛି௡ఓమ)మଶ௡ఙ మమ௒೑ି௨ିఠ
௒ೌ ೎೎ି௨ିఠ ݑ݀߱݀߬݀ ⋅௒ೌ ೎೎ି௨

଴
௒ೌ ೎೎

଴ܲ(ܰ(ݐ௖) = ݉) ⋅ ܲ(ܰ( ௭ܶିଵ − (௖ݐ = ݊) ⋅ ܲ(ܰ( ௭ܶ − ௭ܶିଵ) = ݈) ⋅ ܲ( ௭ܶିଵ > ۊی(௖ݐ
ஶ

௟ୀ଴
ஶ

௡ୀ଴
ஶ

௠ୀ଴
ஶ

௭ୀଵ , (23)

(௉ଷܣ)ܲ = ෍ ܲ൫ܻ( ௭ܶିଵ) < ௡ܻ௢௠, ௔ܻ௖௖ ≤ ܻ( ௭ܶ) < ௙ܻ൯ ⋅ ܲ( ௭ܶିଵ < ௖ݐ ≤ ௭ܶ)ஶ
௭ୀଵ  

      = ଷߨ8√1 ෍ ෍ ෍ ෍ ۈۉ
ۇ න න න ݁ି(௨ି௠ఓభ)మଶ௠ఙ భమ ି(ఠି௠ఓభ)మଶ௠ఙ భమ ି(ఛି௡ఓమ)మଶ௡ఙ మమ௒೑ି௨ିఠ

௒ೌ ೎೎ି௨ିఠ ݑ݀߱݀߬݀ ⋅௒೑ି௨
௒ೌ ೎೎ି௨

௒೙೚೘
଴ܲ(ܰ( ௭ܶିଵ) = ݉) ⋅ ௖ݐ)ܰ)ܲ − ௭ܶିଵ) = ݊) ⋅ ܲ(ܰ( ௭ܶ − (௖ݐ = ݈) ⋅ ܲ( ௭ܶିଵ < ௖ݐ ≤ ௭ܶ)ۋی

ஶۊ
௟ୀ଴

ஶ
௡ୀ଴

ஶ
௠ୀ଴

ஶ
௭ୀଵ . (24)

3.5.4. Probability of continuous monitoring 

If any one event of the following events (ܣூଵ, ܣூଶ) occurs, the system is left as it is until next 
inspection time and it will cause monitoring cost ܥூ. ܣூଵ = ቄܻ( ௭ܶ) < ௡ܻ௢௠ ሩ ௭ܶ ≤ ூଶܣ ,௖ቅݐ = ቄܻ( ௭ܶ) < ௔ܻ௖௖ ሩ ௭ܶ >  .௖ቅݐ

The probability for system left until next inspection in a renewal cycle can be expressed as: 

ூܲ = (ூଵܣ)ܲ + .(ூଶܣ)ܲ (25)

The probability for continuous monitoring events ܣூଵ, ܣூଶ can be written as follows: 

(ூଵܣ)ܲ = ෍ ܲ(ܻ( ௭ܶ) < ௡ܻ௢௠) ⋅ ܲ( ௭ܶ ≤ ௖)ஶݐ
௭ୀ଴  

      = ߨ2√1 ෍ ෍ න ݁ି(௨ି௠ఓభ)మଶ௠ఙ భమ௒೙೚೘଴
ஶ

௠ୀ଴ ݑ݀ ⋅ ܲ(ܰ( ௭ܶ) = ݉) ⋅ ܲ( ௭ܶ ≤ ௖)ஶݐ
௭ୀ଴ , (26)

(ூଶܣ)ܲ = ෍ ܲ(ܻ( ௭ܶ) < ௔ܻ௖௖) ⋅ ܲ( ௭ܶ > ௖)ஶݐ
௭ୀ଴  

      = ߨ12 ෍ ෍ න න ݁ି(௨ି௠ఓభ)మଶ௠ఙ భమ ି(ఛି௠ఓమ)మଶ௠ఙ మమ௒ೌ ೎೎ି௨
଴

௒ೌ ೎೎
଴

ஶ
௠ୀ଴ ݑ݀߬݀ ⋅ (௖ݐ)ܰ)ܲ = ݉) ⋅ ܲ(ܰ( ௭ܶ − (௖ݐ = ݊) ⋅ ܲ( ௭ܶ > ௖)ஶݐ

௭ୀ଴ . (27)

Average number of monitoring actions in a renewal cycle ܶ is: 

]ܧ ூܰ(ܶ)] = ෍ ݖ ூܲஶ
௭ୀ଴ . (28)
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3.5.5. Expected time length of renewal cycle 

As Eq. (14) shown, expected time length of renewal cycle ܧ[ܶ] is affected by system life ௙ܶ 
and average work time length ௉ܶ when system ends with preventive replacement. If system faults, 
it is considered that system will not work any time. Therefore, the expected time length ௙ܶ when 
system ends with corrective maintenance is the time interval for degradation level from initial 
value 0 to failure threshold ௙ܻ. However, the expected time length ௉ܶ when system ends with 
preventive maintenance is different. System will no longer work if monitoring shows preventive 
replacement should be performed, so system life when system ends with preventive maintenance 
is times of inter-inspection time ∆ܶ. 

System fault occurs in the second stage when system degradation with two-stage mode. System 
life ௙ܶ is affected by shock strength ݔଵ௜, ݔଶ௝ and change-point ݐ௖. The system mean time to failure 
is: 

ൣܧ ௙ܶ൧ = න ஶݐ݀(ݐ)ܴ
௧೎  

      = ෍ ෍ Φ ቆ ௙ܻ − ଵߤ݉) + ଵଶߪଶ)ඥ݉ߤ݊ + ଶଶߪ݊ ቇஶ
௡ୀ଴

ஶ
௠ୀ଴ ⋅ ଵ௠ߣ ⋅ !ଶ௡݉ߣ ⋅ ݊! ⋅ න න ቀ݁ିఒభఛିఒమ(௧ିఛ) ⋅ ߬௠ ⋅ ݐ) − ߬)௡ ⋅ ݃(߬)ቁஶ

ఛ ௧ಳ௧ಲ߬݀ݐ݀ . (29)

The average system life when system ends with preventive maintenance is: 

]ܧ ௉ܲ ௉ܶ] = ߂௉ଵݖ(௉ଵܣ)ܲ ௡ܶ௢௠ + (௉ଶܣ)ܲ ቆݐ௖ + න ߱ ఠ݂݀߱௱ ೙்೚೘଴ + ߂௉ଶݖ ௔ܶ௖௖ቇ       +ܲ(ܣ௉ଷ) ቆݐ௖ + න ߱ ఠ݂݀߱௱ ೙்೚೘଴ ቇ. (30)

ct

1M

2M

1zT  zT



 
Fig. 5. The definition of ߱ 

Where ݖ௣ଵ  is the number of monitoring in mode ܯଵ  for event ܣ௣ଵ ௣ଶݖ ,  is the number of 
monitoring in mode ܯଶ for event ܣ௣ଶ, the time length from ݐ௖ to next inspection time is ݓ (as 
shown in Fig. 5), ௪݂ is the distribution density function of w during [ ௭ܶିଵ, ௭ܶ]. 

4. Influence analysis of different parameters for maintenance policy 

This section aims to find some characteristics for two-stage deteriorating mode system: (a) 
Making a comparison of the average long-run cost rate for different maintenance policies in the 
same situation in order to raise the awareness of monitoring method. (b) Studying the influence of 
parameters in the degradation model and average long-run cost model, for the purpose of 
improving the understanding in two-stage deteriorating modeling and developing an optimal 
maintenance policy. 
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4.1. Choice of parameters values 

In this study, the time distribution of change-point ݐ௖ is assumed to follow uniform distribution. 
In order to emphasize the influence of distribution of change-point ݐ௖ , different uniform 
distribution parameters are considered as follows: 

• Change-point of two-stage degradation mode: ݐ௖~ܷ(1, 200). 
• Early change-point of two-stage degradation mode: ݐ௖~ܷ(1, 100). 
• Middle change-point of two-stage degradation mode: ݐ௖~ܷ(50, 150). 
• Late change-point of two-stage degradation mode: ݐ௖~ܷ(100, 200). 
The upper limit of change-point distribution 200 is considered that a majority of system 

failures occur in degradation mode ܯଶ and seldom in degradation mode ܯଵ. Early and late time 
distributions present the first and second half of full change-point distribution, respectively. 

In order to make the influence analysis of different parameters more close to the actual 
situation of gearbox degradation process, the selection of failure threshold ௙ܻ is based on the actual 
value of gearbox life-cycle experiment in Section 5. Therefore, the failure threshold is evaluated 
as ௙ܻ =  10000 g2 in this study. Meanwhile, for the purpose of ensuring the credibility of 
optimization results for global maintenance policy (the optimization results will be regarded as a 
basis of comparison), the unit maintenance costs are evaluated as other literatures [1, 12, 24], so ܥூ = 5, ܥ௉ = 50, ܥ஼ = 100. 

4.2. Influence of maintenance policy 
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Fig. 6. ܧ(ܥஶ) is affected by adaptive maintenance policy parameters 

For the purpose of studying on the influence of different monitoring methods, the four kinds 
of condition-based maintenance policies (global, time-depended, simplified adaptive and  
adaptive) presented in Section 3 are assessed. Because adaptive maintenance policy is the most 
complex in the four methods, an example focusing on adaptive policy analyzing is presented to 
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show the approach of obtaining minimal average long-run maintenance cost rate ܧ(ܥஶ). When  ݔଵ௜~ܰ(10, 202), ݔଶ௝~ܰ(40, 802) and ߣଵ = ଶߣ =  is affected by adaptive maintenance (ஶܥ)ܧ ,1
policy parameters ௡ܻ௢௠, ௔ܻ௖௖, ௡ܶ௢௠, ௔ܶ௖௖, as shown in Fig. 6. It illustrates that ௡ܻ௢௠, ௔ܻ௖௖, ௡ܶ௢௠, ௔ܶ௖௖ should be considered at the same time when optimizing ܧ(ܥஶ). Contour map (Fig. 7) shows ܧ(ܥஶ)  for different values of ௔ܻ௖௖  and ௔ܶ௖௖  under adaptive maintenance decision when  ௡ܻ௢௠  = 8000, ∆ ௡ܶ௢௠  in the same contour are equal. It can be seen that optimal (ஶܥ)ܧ .70 = 
parameter values which minimize the cost rate (ܧସ(ܥஶ) = 0.3547) are ௔ܻ௖௖ = 7000 and ∆ ௔ܶ௖௖ = 37 
when ௡ܻ௢௠ = 8000, ∆ ௡ܶ௢௠ = 70. 
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Fig. 7. ܧ(ܥஶ) under adaptive maintenance policy parameters ( ௡ܻ௢௠ = 8000, ∆ ௡ܶ௢௠ = 70) 

As shown in Table 1, for the global maintenance policy, the optimal inter-inspection time ܶ߂ଵ 
falls in between ߂ ௡ܶ௢௠ସ  and ߂ ௔ܶ௖௖ସ  for adaptive maintenance policy. The situation of ܶ߂ଷ  for 
simplified adaptive maintenance policy is in between ߂ ௡ܶ௢௠ସ  and ߂ ௔ܶ௖௖ସ , too. ܶ߂ଶ , the first 
inter-inspection time for time-depended maintenance policy, is the largest optimal inter-inspection 
time for the four kinds of condition-based maintenance policies. 

The expected costs for the four kinds of maintenance policies are different because they are 
impacted by alarm thresholds and inter-inspection times. As the monitoring method for global 
maintenance policy does not consider the influence of degradation rate changes, taking the 
expected cost ܧଵ(஼ಮ) of global maintenance policy as a basis of comparison, the expected cost ܧଶ(஼ಮ) for time-depended maintenance policy have a decrease of 0.0286, the optimal value is  
7.69 % of ܧଵ(஼ಮ). As shown in Table 1, it is obviously that the expected costs for other three 
maintenance policies are optimized compare with the average cost for global maintenance policy. 
Adaptive maintenance policy is better than simplified adaptive maintenance policy. 
Time-depended maintenance policy is the best replacement strategy for the system with two-stage 
degradation process. 

4.3. Influence of change-point distribution ܧ(ܥஶ) for different change-point distributions are computed, see results in Table 1. It can be 
noticed that the decreases of expected costs for different maintenance policies (time-depended, 
simplified adaptive, adaptive) are 3.94 %, 1.59 %, 3.14 %, respectively, when the change-point is 
in early distribution ܷ(1, 100). The impact of average long-run maintenance costs rate when the 
change-point is in middle distribution ܷ(50, 150) and late distribution ܷ(100, 200) are also given 
in Table 1. These results show that more the time of change-point occurs late, more the 
maintenance policies have a decrease on ܧ(ܥஶ). 

As seen previously, decreases of 7.69 %, 2.71 %, 4.68 % can be obtained respectively for 
different maintenance policies when the change-point distribution is ܷ(1, 200), and they are 
6.53 %, 2.61 %, 4.34 %, respectively for the case that the change-point distribution is ܷ(50, 150). 
It is not difficult to find that the decreases for former are larger than latter. Meanwhile, in the two 
situations, the mean value of change-point distribution is the same, both equal to 100. Therefore, 
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it is shown that more profits can be obtained in using different maintenance policies for a larger 
interval of time distribution.  

The results show that the distribution of change-point impact on expected costs for different 
maintenance policies. More late for change-point occurs and more a large time interval of 
change-point distribution, more benefits can be obtained.  

4.4. Influence of shock strength 

In degradation modeling based on cumulative damage model, degradation rate is decided by 
shock strength and shock frequency. The degradation rate is in direct proportion to shock strength 
and shock frequency. Hence, the degradation rate can be expressed by shock strengths if the shock 
frequencies are the same.  

The influence of different maintenance policies and change-point distribution have been 
analyzed for a two-stage degraded system in Table 1 when ݔଵ௜~ܰ(10, 202), ݔଶ௝~ܰ(40, 802). The 
same computed results with ݔଵ௜~ܰ(10, 202) and ݔଶ௝~ܰ(20, 402) are shown in Table 2. The 
degradation rate size of mode ܯଶ is four times superior than the mode ܯଵ in Table 1, while it is 
twice in Table 2. From Table 1 and Table 2, it can be known that the decreases are more 
considerable in Table 1. That is say, the profits is more considerable when degradation rate 
changes more significantly between mode ܯଶ and mode ܯଵ. 

Table 1. Influence of different maintenance policies and change-point time distribution  
ଵߣ ,ଶ௝~ܰ(40, 802)ݔ ,ଵ௜~ܰ(10, 202)ݔ) = ଶߣ = 1) 

Time 
distribution Policy structure Optimal parameters Expected cost Impact 

 ௖~U(1, 200)ݐ

Global ஺ܻଵ = 4700, Δܶଵ = (ஶܥ)ଵܧ 66 = 0.3721  

Time-depended ஺ܻଶ = 5300, Δܶଶ = ݍ ,111 = 0.66 (ஶܥ)ଶܧ = 0.3435 0.0286 
(7.69 %) 

Simplified 
Adaptive 

௡ܻ௢௠ଷ = 7750, ௔ܻ௖௖ଷ = 5250, Δܶଷ = 60 (ஶܥ)ଷܧ = 0.3620 0.0101 
(2.71 %) 

Adaptive ௡ܻ௢௠ସ = 8000, Δ ௡ܶ௢௠ସ = 70, ௔ܻ௖௖ସ = 7000, Δ ௔ܶ௖௖ସ = (ஶܥ)ସܧ 37 = 0.3547 0.0174 
(4.68 %) 

 ௖~ܷ(1, 100)ݐ

Global ஺ܻଵ = 5300, Δܶଵ = (ஶܥ)ଵܧ 62 = 0.4268  

Time-depended ஺ܻଶ = 7100, Δܶଶ = ݍ  ,84 = 0.66 (ஶܥ)ଶܧ = 0.4100 0.0168 
(3.94 %) 

Simplified 
Adaptive 

௡ܻ௢௠ଷ = 7750, ௔ܻ௖௖ଷ = 5000, Δܶ = 66 (ஶܥ)ଷܧ = 0.4200 0.0068 
(1.59 %) 

Adaptive ௡ܻ௢௠ସ = 8400, Δ ௡ܶ௢௠ସ = 68, ௔ܻ௖௖ସ = 6800, Δ ௔ܶ௖௖ସ = (ஶܥ)ସܧ 38 = 0.4134 0.0134 
(3.14 %) 

 ௖~ܷ(50, 150)ݐ

Global ஺ܻଵ = 4700, Δܶଵ = (ஶܥ)ଵܧ 74 = 0.3598  

Time-depended ஺ܻଶ = 6100, Δܶଶ = ݍ  ,95 = 0.72 (ஶܥ)ଶܧ = 0.3363 0.0235 
(6.53 %) 

Simplified 
Adaptive 

௡ܻ௢௠ଷ = 7750, ௔ܻ௖௖ଷ = 5000, Δܶଷ = 69 (ஶܥ)ଷܧ = 0.3504 0.0094 
(2.61 %) 

Adaptive ௡ܻ௢௠ସ = 7800, Δ ௡ܶ௢௠ସ = 76, ௔ܻ௖௖ସ = 7000, Δ ௔ܶ௖௖ସ = (ஶܥ)ସܧ 37 = 0.3442 0.0156 
(4.34 %) 

 ௖~ܷ(100, 200)ݐ

Global ஺ܻଵ = 4300, Δܶଵ = (ஶܥ)ଵܧ 76 = 0.3104  

Time-depended ஺ܻଶ = 5000, Δܶଶ = ݍ  ,125 = 0.69 (ஶܥ)ଶܧ = 0.2810 0.0294 
(9.47 %) 

Simplified 
Adaptive 

௡ܻ௢௠ଷ = 7500, ௔ܻ௖௖ଷ = 5000, Δܶଷ = 69 (ஶܥ)ଷܧ = 0.3017 0.0087 
(2.80 %) 

Adaptive ௡ܻ௢௠ସ = 8400, Δ ௡ܶ௢௠ସ = 84, ௔ܻ௖௖ସ = 6600, Δ ௔ܶ௖௖ସ = (ஶܥ)ସܧ 43 = 0.2942 0.0162 
(5.22 %) 
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Table 2. Influence of different maintenance policies and change-point time distribution  
ଵߣ ,ଶ௝~ܰ(20, 402)ݔ ,ଵ௜~ܰ(10, 202)ݔ) = ଶߣ = 1) 

Time distribution Policy structure Optimal parameters Expected cost Impact 

 ௖~ܷ(1, 200)ݐ

Global ஺ܻଵ = 6600, Δܶଵ = (ஶܥ)ଵܧ 89 = 0.2395  

Time-depended YA2=6500, Δܶଶ = ݍ  ,105 = 0.96 (ஶܥ)ଶܧ = 0.2297 0.0098 
(4.09 %) 

Simplified Adaptive ௡ܻ௢௠ଷ = 8000, ௔ܻ௖௖ଷ = 7000, Δܶଷ = 84 (ஶܥ)ଷܧ = 0.2348 0.0047 
(1.96 %) 

Adaptive ௡ܻ௢௠ସ = 8000, Δ ௡ܶ௢௠ସ = 95, ௔ܻ௖௖ସ = 7000, Δ ௔ܶ௖௖ସ = (ஶܥ)ସܧ 75 = 0.2304 0.0091 
(3.80 %) 

 ௖~ܷ(1, 100)ݐ

Global ஺ܻଵ = ଵܶ߂ ,6600 = (ஶܥ)ଵܧ 92 = 0.2513  

Time-depended ஺ܻଶ = 6100, Δܶଶ = ݍ  ,126 = 0.96 (ஶܥ)ଶܧ = 0.2427 0.0086 
(3.42 %) 

Simplified Adaptive ௡ܻ௢௠ଷ = 8000, ௔ܻ௖௖ଷ = 6750, Δܶଷ = 91 (ஶܥ)ଷܧ = 0.2484 0.0029 
(1.15 %) 

Adaptive ௡ܻ௢௠ସ = 8000, Δ ௡ܶ௢௠ସ = 85, ௔ܻ௖௖ସ = 7500, Δ ௔ܶ௖௖ସ = (ஶܥ)ସܧ 65 = 0.2440 0.0073 
(2.99 %) 

 ௖~ܷ(50, 150)ݐ

Global ஺ܻଵ = 6900, Δܶଵ = (ஶܥ)ଵܧ 95 = 0.2314  

Time-depended ஺ܻଶ = 6700, Δܶଶ = ݍ  ,114 = 0.90 (ஶܥ)ଶܧ = 0.2217 0.0097 
(4.19 %) 

Simplified Adaptive ௡ܻ௢௠ଷ = 7750,  ௔ܻ௖௖ଷ = 6500, Δܶଷ = (ஶܥ)ଷܧ 99 = 0.2272 0.0042 
(1.82 %) 

Adaptive ௡ܻ௢௠ସ = 8000, Δ ௡ܶ௢௠ସ = 90, ௔ܻ௖௖ସ = 7500, Δ ௔ܶ௖௖௡௢௠ = (ஶܥ)ସܧ 65 = 0.2228 0.0086 
(3.72 %) 

 ௖~ܷ(100, 200)ݐ

Global ஺ܻଵ = 6000, Δܶଵ = (ஶܥ)ଵܧ 110 = 0.2125  

Time-depended ஺ܻଶ = 7300, Δܶଶ = ݍ  ,128 = 0.81 (ஶܥ)ଶܧ = 0.2012 0.0113 
(5.32 %) 

Simplified Adaptive ௡ܻ௢௠ଷ = 8500,  ௔ܻ௖௖ଷ = 6250, Δܶଷ = (ஶܥ)ଷܧ 106 = 0.2080 0.0045 
(2.12 %) 

Adaptive ௡ܻ௢௠ସ = 8000, Δ ௡ܶ௢௠ସ = 95, ௔ܻ௖௖ସ = 7000, Δ ௔ܶ௖௖ସ = (ஶܥ)ସܧ 70 = 0.2042 0.0083 
(3.91 %) 

4.5. Influence of shock frequency 

As the previously analysis, ܧ(ܥஶ) for different shock frequencies can be obtained when shock 
strengths are the same. When ݔଵ௜~ܰ(10, 202), ݔଶ௝~ܰ(40, 802), ݐ௖ ∈ [50, 150], shock frequency 
parameters are ߣଵ = ଶߣ = ଵߣ ,0.5  = ଶߣ = ଵߣ ,1  = ଶߣ =  2, respectively, ܧ(ܥஶ)  obtained in 
Table 3. As results obtained in Section 4.2, it can be known that adaptive maintenance policy is 
better than simplified adaptive maintenance policy, time-depended maintenance policy is the best 
replacement strategy for the system with two-stage degradation process. 

Further analysis, ܧ(ܥஶ) for different maintenance policies are respectively 2.64 %, 4.78 %, 
8.28 % when degradation model parameters ߣଵ ଶߣ ,1 =  ଶ௝~ܰ(40, 802)ݔ ,ଵ௜~ܰ(10, 202)ݔ ,0.5 =
and respectively 5.38 %, 1.38 %, 2.54 % when degradation model parameters ߣଵ ଶߣ ,1 =  ଶ isܯ ଶ௝~ܰ(40, 802) as shown in Table 3. The degradation rate size of modeݔ ,ଵ௜~ܰ(10, 202)ݔ ,2 =
eight times superior than the mode ܯଵ in the former, while it is twice in the latter. It can be known 
from the results that adaptive replacement policy is always better than simplified adaptive 
maintenance policy, especially under the situation that degradation rate undergoes change hugely. 
But the time-depended monitor method is no suitable for a system which the degradation rate in 
mode ܯଶ is significantly larger than the degradation rate in mode ܯଵ. 
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Table 3. Influence of different maintenance policies and shock frequencies  
௖ݐ ,ଶ௝~ܰ(40, 802)ݔ ,ଵ௜~ܰ(10, 202)ݔ) ∈ [50, 150]) 

Time 
distribution Policy structure Optimal parameters Expected cost Impact 

ଵߣ = =ଶߣ 0.5 

Global ஺ܻଵ = 4200, Δܶଵ = (ஶܥ)ଵܧ 54 = 0.5305  

Time-depended ஺ܻଶ = 6300, Δܶଶ = ݍ ,67 = 0.65 (ஶܥ)ଶܧ = 0.5019 0.0286 
(5.39 %) 

Simplified Adaptive ௡ܻ௢௠ଷ = 7000, ௔ܻ௖௖ଷ = 4500, Δܶଷ = 50 (ஶܥ)ଷܧ = 0.5152 0.0153 
(2.88 %) 

Adaptive ௡ܻ௢௠ସ = 7400, Δ ௡ܶ௢௠ସ = 52, ௔ܻ௖௖ସ = 6400, Δ ௔ܶ௖௖ସ = (ஶܥ)ସܧ 26 = 0.5046 0.0259 
(4.88 %) 

ଵߣ = ଶߣ = 1 

Global ஺ܻଵ = 4700, Δܶଵ = (ஶܥ)ଵܧ 74 = 0.3598  

Time-depended ஺ܻଶ = 6100, Δܶଶ = ݍ  ,95 = 0.72 (ஶܥ)ଶܧ = 0.3363 0.0235 
(6.53 %) 

Simplified Adaptive ௡ܻ௢௠ଷ = 7750, ௔ܻ௖௖ଷ = 5000, Δܶଷ = 69 (ஶܥ)ଷܧ = 0.3504 0.0094 
(2.61 %) 

Adaptive ௡ܻ௢௠ସ = 7800, Δ ௡ܶ௢௠ସ = 76, ௔ܻ௖௖ସ = 7000, Δ ௔ܶ௖௖ସ = (ஶܥ)ସܧ 37 = 0.3442 0.0156 
(4.34 %) 

ଵߣ = ଶߣ = 2 

Global ஺ܻଵ = 6000, Δܶଵ = (ஶܥ)ଵܧ 107 = 0.2168  

Time-depended ஺ܻଶ = 6900, Δܶଶ = ݍ ,160 = 0.69 (ஶܥ)ଶܧ = 0.2051 0.0117 
(5.40 %) 

Simplified Adaptive ௡ܻ௢௠ଷ = 7500, ௔ܻ௖௖ଷ = 6500, Δܶଷ = 103 (ஶܥ)ଷܧ = 0.2135 0.0033 
(1.52 %) 

Adaptive ௡ܻ௢௠ସ = 8000, Δ ௡ܶ௢௠ସ = 110, ௔ܻ௖௖ସ = 7000, Δ ௔ܶ௖௖ସ = (ஶܥ)ସܧ 80 = 0.2097 0.0071 
(3.27 %) 

ଵߣ = ଶߣ1 = 0.5 

Global ஺ܻଵ = 4500, Δܶଵ = (ஶܥ)ଵܧ 53 = 0.4841  

Time-depended ஺ܻଶ = 5800, Δܶଶ = ݍ  ,71 = 0.69 (ஶܥ)ଶܧ = 0.4713 0.0128 
(2.64 %) 

Simplified Adaptive ௡ܻ௢௠ଷ = 7000, ௔ܻ௖௖ଷ = 4500, Δܶଷ = 45 (ஶܥ)ଷܧ = 0.4611 0.0230 
(4.78 %) 

Adaptive ௡ܻ௢௠ସ = 8200, Δ ௡ܶ௢௠ସ = 59, ௔ܻ௖௖ସ = 5800, Δ ௔ܶ௖௖ସ = (ஶܥ)ସܧ 26 = 0.4440 0.0401 
(8.28 %) 

ଵߣ = ଶߣ1 = 2 

Global ஺ܻଵ = 6800, Δܶଵ = (ஶܥ)ଵܧ 100 = 0.2323  

Time-depended ஺ܻଶ = 6400, Δܶଶ = ݍ ,155 = 0.75 (ஶܥ)ଶܧ = 0.2198 0.0125 
(5.38 %) 

Simplified Adaptive ௡ܻ௢௠ଷ = 8250, ௔ܻ௖௖ଷ = 6750, Δܶଷ = 98 (ஶܥ)ଷܧ = 0.2291 0.0032 
(1.38 %) 

Adaptive ௡ܻ௢௠ସ = 8300, Δ ௡ܶ௢௠ସ = 104, ௔ܻ௖௖ସ = 6500, Δ ௔ܶ௖௖ସ = (ஶܥ)ସܧ 94 = 0.2264 0.0059 
(2.54 %) 

5. Case study 

A case study is carried out for a gearbox deterioration modeling and decision-making on 
maintenance using experiment data. In the case study, a gearbox life-cycle experiment has done 
to obtain the degradation data that a gearbox ran from new to failure. The experiment rig is shown 
in Fig. 8, where four accelerometers are fitted onto the casing of gearbox to record vibration data. 
In the experiment, the sampling frequency is 20 kHz. Lots of equal-spaced vibration monitoring 
performed in the test process. Each vibration monitoring provides a date file collected in 2 seconds 
at every 5 minutes, twelve groups of date files are collected in every hour. The magnetic brake 
provide about 2-2.5 times of the rated torque of gearbox in order to accelerate the test and reduce 
the lifetime of gearbox. 
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Fig. 8. Experiment rig (1 – load, 2 – accelerometers, 3 – sensor of speed and torque,  

4 – electromotor, 5 – test bed, 6 – gearbox system) 

 
Fig. 9. Gear after experiment 
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Fig. 10. Special frequency band energy of vibration signal 

The total experimental time is 450 hours, the gear after experiment is shown in Fig. 9. As 
shown in Fig. 10, the special frequency band energy of vibration signal presents that degradation 
process of gearbox is obviously two-stage process. Using linear fitting analysis, degradation 
parameters of gearbox are obtained as follows: ݔଵ௜~ܰ(12, 252), ݔଶ௜~ܰ (76, 1302), ݐ௖ ଵߣ ,[450 ,0] ∋ = ଶߣ = 1. Meanwhile, the failure threshold is evaluated as ௙ܻ = 10000g2. 

Based on the proposed model and maintenance policies, optimal results for different 
maintenance policies of gearbox are shown in Table 4. Because the degradation rate of second 
stage for two-stage deteriorating mode system is faster than the first stage, the alarm threshold and 
inter-inspection time for the second stage should be smaller than the first stage. The initial 
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inter-inspection time of time-depended maintenance policy ∆ܶଶ is larger than the inter-inspection 
time of global maintenance policy ∆ܶଵ, but inter-inspection time of time-depended maintenance 
policy is smaller and smaller with working time, as a result the expected cost ܧଶ(ܥஶ) make a 
decrease of 0.0108 from ܧଵ(ܥஶ) . The alarm thresholds of the first stage for adaptive and 
simplified adaptive maintenance policy ௡ܻ௢௠ସ , ௡ܻ௢௠ଷ  are both larger than alarm threshold of global 
maintenance policy ஺ܻଵ, but the alarm thresholds of the second stage ௔ܻ௖௖ସ , ௔ܻ௖௖ଷ  are both smaller 
than ஺ܻଵ. Meanwhile, the inter-inspection times ∆ܶଵ, ∆ܶଶ both between Δ ௡ܶ௢௠ସ  and Δ ௔ܶ௖௖ସ . These 
phenomena conform to the conjecture in modeling. If use adaptive or simplified adaptive 
maintenance policy, the average long-run cost can reduce 9.29 %, 6.43 %, respectively. It can be 
seen that adaptive maintenance policy is the best method for gearbox. 

Table 4. Optimal results for different maintenance policies 
Policy structure Optimal parameters Expected cost Impact 

Global ஺ܻଵ = ଵܶ߂ ,6400 = (ஶܥ)ଵܧ 130 = 0.2971  

Time-depended ஺ܻଶ = 7500, Δܶଶ = ݍ ,142 = (ஶܥ)ଶܧ 0.72 = 0.2863 0.0108 
(3.64 %) 

Simplified 
Adaptive ௡ܻ௢௠ଷ = 7200, ௔ܻ௖௖ଷ = 6100, Δܶଷ = (ஶܥ)ଷܧ 115 = 0.2780 0.0191 

(6.43 %) 

Adaptive ௡ܻ௢௠ସ = ߂ ,8000 ௡ܶ௢௠ସ = 138, ௔ܻ௖௖ସ = ߂ ,6000 ௔ܶ௖௖ସ = 103 (ஶܥ)ସܧ = 0.2695 0.0276 
(9.29 %) 

6. Conclusions 

This paper is meant to investigate degradation modeling and maintenance decision-making 
methods for two-stage deteriorating mode system, where the degradation rate is usually small in 
the first stage and large in the second stage. To this purpose, degradation level modeling and 
reliability modeling based on cumulative damage model are studied at first place, then four kinds 
of maintenance policies (global, time-depended, adaptive, simplified adaptive) are studied and 
evaluated through their average long-run cost rate. The four kinds of maintenance policies are 
differentiated from alarm threshold and inter-inspection time.  

Moreover, influence analysis of different parameters for maintenance policy is studied and 
proves that: (a) It is necessary to consider degradation process undergoing a sudden change in 
maintenance policy, suitable maintenance policy can help to improve system efficiency. (b) It is 
obvious that the average long-run cost rate is impacted by change-point distribution, shock 
strength and shock frequency.  

The case study of degradation data analysis for gearbox life-cycle experiment shows that 
degradation process of gearbox presents obviously two-stage feature. In addition, it is helpful to 
reduce the average maintenance cost by choosing appropriate maintenance policy. 
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