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Abstract. A wind tunnel test is conducted in this study on the scaled model of the Guangzhou 
International Sports Arena (GISA). Simultaneous pressure measurements are conducted in a 
simulated suburban boundary layer flow field. A numerical simulation approach using Fuzzy 
Neural Networks (FNNs) is developed for the predictions of wind-induced pressure time series at 
roof locations which are not covered in the wind tunnel measurements. On the other hand, the 
wind-induced response of the roof are presented and discussed, which are directly calculated by 
the Complete Quadratic Combination (CQC) approach. Furthermore, the correlations between the 
background and resonant response components are discussed in detail, and the results show that 
neglecting the correlations between the two components would result in considerable error in the 
response estimation. Finally, the Equivalent Static Wind Load (ESWL) approach is used to 
estimate the wind-induced responses of the roof, which are compared with those obtained from 
the CQC approach to examine the effectiveness of the proposed ESWL approach in the design 
and analysis of large-span roof structures. It is shown through the example that the FNN and 
ESWL approaches can successfully predict the wind-induced pressures and responses 
respectively. 
Keywords: long-span steel structure roof, wind tunnel test, fuzzy neural network, equivalent static 
wind load. 

1. Introduction 

In recent years, more and more large-span roof structures have been built or are being planned 
with increasing span and structural refinement throughout the world. Such roof structures usually 
have the characteristics of light mass, high flexibility, slight damping and low natural frequency. 
Consequently, these structures have become progressively more wind sensitive than most 
conventional roof structures, and wind loads generally control the design of these structures. In 
designing such large-span roof structures, it is usually necessary to conduct wind tunnel tests to 
determine wind loads on rigid models by taking pressure measurements. In these wind tunnel 
experiments, it needs to install as more pressure taps as possible on model surfaces in order to 
capture the detailed characteristics of wind loads on the structures; since variations of 
wind-induced pressures at different locations on surfaces of a roof are quite large [1]. Recent 
technological advances have made it possible to simultaneously measure surface pressures at more 
than 1000 locations on a building model [2], but such experimental arrangements may still not be 
able to cover the whole surfaces of a large-span roof structure. According to the requirement of 
wind tunnel tests, the density of arrangement in the pressure taps for long roof structures in the 
model test should be measured at a sufficient number of locations so that no significant 
aerodynamic events are missed. For a long span roof structure this may involve measurements at 
some 300 to 1000 or more locations, depending on the complexity of the exterior geometry. Some 
limitations exist for the High-Frequency Pressure-Integration (HFPI) method in the wind tunnel 
test. As for buildings with very complex shapes, or with many fine-scale features, such as long 
span roof with complex geometry, it is not possible to install enough pressure taps in all the 
required locations to accurately resolve the overall forces on the building. Until further experience 
is accumulated, the requisite number of simultaneously measured pressure taps ought to be judged 
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with particular care and on a case by case basis.  
Meanwhile a finite element model is often utilized for the numerical analysis of wind-induced 

response of large span roof structure. Normally the number of element nodes in finite element 
model is very large than the number of pressure taps arranged in the wind tunnel test. In order to 
obtain the information of aerodynamic wind load for unresolved element nodes in finite element 
model, the numerical interpolation or extrapolation methods is normally adopted. However the 
approximation accuracy for the kind of method could not be guaranteed as the physical phenomena 
of wind load distribution could difficultly obtained by the simple numerical interpolation or 
extrapolation method. Based on the above two mentioned requirements in wind tunnel test and/or 
wind-induced response analysis, there is a need to explore an effective approach for the prediction 
the wind-induced pressures which were not covered in the wind tunnel measurements and/or finite 
element model. Thus the wind-induced pressures on an entire large-span roof structure could be 
obtained from the pressure measurements with limited number of pressure taps in the wind tunnel 
test.  

There are several useful ways to predict or simulate time series of random data such as 
wind-induced pressure. Among them there are the autoregressive moving average (ARMA) 
method [38, 39], the Fourier transform methods [40], and the wavelet transform method [41, 42], 
etc. The ARMA method has been well developed and successfully used for generation of 
wind-speed time series [38, 39]. However, the model was found to be inappropriate for generating 
time series of random data with non-Gaussian features. Another standard approach, the Fourier 
transform method [40], shows good performance for autocorrelation and power spectrum 
simulation, but it is also limited to the case of a Gaussian probability distribution. The wavelet 
transform method can capture the non-Gaussian and non-stationary features of time series of 
random data and it has been used for simulating the time series of pressure and velocity data 
[41, 42], but this method would be difficult for predicting pressure time series, especially when 
there are a large number of variables involved (e.g., incident wind direction and pressure tap 
location, etc.). Comparing with the above-mentioned techniques, Artificial Neural Networks 
(ANNs) are capable of capturing complex, nonlinear functional relationships via training with the 
informative input-output example data pairs which are computational or experimental results.  

Actually Artificial Neural Networks (ANNs) have been successfully applied to solve a number 
of wind engineering problems. For example, Turkkan and Srivastava [3] used the neural network 
approach to predict the wind load distribution for air-supported structures. Khanduri et al. [4] 
applied the backpropagation neural networks to investigate the wind interference problem among 
tall buildings. Sandri and Mehta [5] adopted neural networks for predicting wind-induced damage 
to buildings. Chen et al. [6-8] employed an artificial neural work approach for the prediction of 
mean, root-mean-square and peak pressure coefficients on gable roofs of low-rise buildings. On 
the other hand, fuzzy system based on the pioneering work of Zadeh [9] in fuzzy set theory has 
been an active research area with wide applications in civil engineering such as earthquake 
intensity evaluation [10], and a fuzzy model for load combinations [11]. In practice, there is a very 
close relationship between neural networks and fuzzy systems, since they both work with degrees 
of imprecision in a space that is not defined by sharp deterministic boundaries. Hence, fuzzy and 
neural technologies can be fused into a unified methodology known as a Fuzzy Neural Network 
(FNN). In fact, there have also been various applications of FNNs in wind engineering [12, 13].  

On the other hand, the ESWL is also an extremely important aspect in the design of large-span 
roof structures. For design use, the ESWLs is generally expressed in a separated form in terms of 
the background component and the resonant component of structural modes [14]. The background 
load component can be treated as a quasi-static load, its result mainly be obtained from the 
influence function and the external wind load. It can be determined based on the  
Load-Response-Correlation (LRC) approach proposed by Kasperski et al. [15, 16]. The resonant 
load component follows the distribution of the inertial load and can be expressed in terms of the 
inertial load for each structural mode, which depends on the mass distribution and mode shape 
[17-19]. Once the background component and the resonant component for each structural mode 
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have been determined, the corresponding peak background and resonant responses can be 
calculated from static analysis approach. Then the total peak response can be calculated by 
utilizing the Square Root of the Sum of Squares (SRSS) combination approach or the CQC 
approach [14]. This approach provides a more efficient response prediction framework and a 
physically more meaningful description of load distribution [20-23], and its successful application 
in evaluation of the ESWLs on bridges was presented by Davenport and King [24] with the section 
model test results. However, the correlations between the background and resonant components 
in this approach were neglected; this would result in considerable error in the response estimation. 

In fact, it is not necessary to separate the wind-induced responses into background and resonant 
components for evaluating ESWLs on buildings and structures [14]. Fu et al. [25] proposed a 
method based on the LRC approach for estimation of ESWLs for large-span roof structures, in 
which the wind-induced dynamic response was directly calculated from the CQC approach; i.e., 
the correlations between the background and resonant components in this approach have been 
taken into consideration in the response estimation. This implies that the proposed methodology 
in Fu et al. [25] might provide a more accurate response prediction. 

This paper presents some selected results from a combined numerical simulation and ESWL 
study of wind effects on Guangzhou International Sports Arena, which mainly contains three parts. 
(1) The first part introduces the wind tunnel experiment arrangements and the associated data 
analysis method. (2) Then, based on the wind tunnel test data, a FNN approach is developed for 
predicting the wind pressure time series on the large-span steel roof. (3) The wind-induced 
response distributions on the roof are presented and discussed, which are directly calculated by 
the CQC approach. Furthermore, the correlations between the background and resonant response 
components are discussed in detail, the numerical analyzed results show that neglecting the 
correlations between the two components would result in considerable error in the response 
estimation. Finally, the ESWL approach proposed by the authors [25] is used to estimate the 
wind-induced responses of the roof, which are compared with those obtained by the CQC 
approach to examine the effectiveness of the proposed ESWL approach in the design and analysis 
of large-span roof structures. 

2. Wind tunnel experiments 

2.1. Introduction of Guangzhou International Sports Arena (GISA)  

GISA is an indoor arena located in Guangzhou, China that was completed in September of 
2010, as shown in Fig. 1 [26]. Designed by MANICA Architecture in partnership with the 
Guangzhou Design Institute, the GISA will not only host Asian Games events in 2010, but will 
be home to a wide variety of world class events such as basketball, international ice events, and 
major music concerts and stage shows, etc. The sport annex’s design specifically confirms to the 
rigorous NBA standards, thus allow it to extend NBA league’s affect throughout Asia. 

 
Fig. 1. Picture of Guangzhou International Sports Arena (GISA) 

The basic plan form of the GISA roof is essentially elliptical with a mean roof height of 34.5 m 
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above ground. The lengths of the two diameters of the ellipse are 169.98 m and 145 m,  
respectively. The roof of the GISA consists of steel trusses spanning the arena in the short direction, 
supported on concrete columns at the perimeter of the building. These trusses consists of steel 
wide-flange shapes with the webs oriented horizontally and are supported by steel columns that 
extend to the mechanical level where these columns align with concrete columns below. These 
trusses support the scoreboard, rigging grid, lighting, speaker array, fall protection system, and 
hockey net support system, etc. Integrated within the truss will be catwalks and spotlight  
platforms. The primary lateral force resisting systems will consist of steel braced frames at the 
roof level and then concrete shear walls from the mechanical level down to the foundation.  

On the other hand, Guangzhou is close to the most active typhoon generating area in the world; 
hence, the GISA may be susceptible to severe wind forces induced by strong typhoons. This makes 
a detailed study of wind effects on the GISA of particular importance and necessity. Since the 
boundary layer wind tunnel has been a basic tool of wind engineering research on wind effects on 
buildings and structures, it would be quite useful to conduct wind tunnel investigation to evaluate 
wind effects on the GISA to provide valuable information for the design and construction of other 
large-span roof structures in the future. 

2.2. Experimental arrangements 

Wind tunnel experiments were carried out in the boundary layer wind tunnel at Shantou 
University with a working section 3 m wide × 2 m high and 20 m long. A rigid model with a 
geometric length scale of 1:200 was made. Fig. 2 shows a photo of the model mounted in the wind 
tunnel. Spires and roughness elements were used to simulate a boundary layer wind flow of 
suburban terrain type stipulated in the Load Code of China [27] as exposure B category. 

 
Fig. 2. The model in the wind tunnel tests 
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b) Turbulence intensity profile 

Fig. 3. Mean wind speed and turbulence intensity profiles 
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This terrain type specifies a mean wind speed profile with a power law exponent of ߙ = 0.16. 
The measured mean wind speeds and turbulence intensities at various heights over the test section 
are illustrated in Fig. 3(a) and Fig. 3(b), respectively. Meanwhile, the turbulence intensity profile 
specified in the Japanese Load Code [28] is also shown in Fig. 3(b) for comparison purposes. The 
spectrum of longitudinal wind speed at the height of 45 m (0.225 m above the wind tunnel test 
section table) is shown in Fig. 4, which agrees with the von Karman spectrum well. 

In fact, only the upper surface of the GISA roof is exposed to wind actions. Therefore, in order 
to obtain the wind pressures on the upper surface of the roof, 307 pressure taps were installed on 
its surface, which are marked with ⊗ shown in Fig. 5, for the pressure measurements. The layout 
of the pressure taps on the upper roof surface is shown in Fig. 5. 

 
Fig. 4. Spectra of longitudinal wind velocity at the height of 45 m in full-scale 

 
Fig. 5. Layout of the pressure taps on the upper roof surface 

2.3. Pressure measurements and data analysis 

In the wind tunnel tests, pressures were measured simultaneously from all the taps on the upper 
roof surface, and data sampling frequency was 312.5 Hz with sampling length of 20480. Wind 
direction was defined as an angle ߚ starting from the east with anti-clockwise direction, thus ߚ 
varied from 0° to 360° with incremental step of 10°, as shown in Fig. 5. 

The pressure measurements were carried out at a wind velocity with ௥ܷ௘௙ = 11.37 m/s at a 
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reference height with ݖ௥௘௙ = 60 cm. The pressure coefficient of the pressure tap ݅ on the roof 
surface is defined as follows: 

(ݐ)௣௜ܥ = (ݐ)௜݌ − ଴݌ஶ݌ − ஶ݌ , (1)

where ݌௜(ݐ) is the measured surface pressure at Tap ݅; ݌଴ and ݌ஶ are the total pressure and the 
static pressure at the reference height, respectively. 

The design wind speed with 100-year return period for GISA is about 47.06 m/s at the height 
of 120 m. Therefore, the velocity scale in the wind tunnel test is 1/4.14; and the time scale becomes 
1/48.31. Then, the sampling frequency and the record length ௧ܶ௢௧௔௟  for the tested building are 
6.47 Hz and 52.75 minutes in full scale, respectively. The period for evaluating the statistics of 
pressure fluctuations is specified as 10 min, which is usually used for the averaged time in wind 
speed measurements in China. The record time is divided into consecutive 10 min periods and the 
pressures at Tap ݅  are analyzed as mean, rms, maximum and minimum pressure coefficients, ܥ௣௜௠௘௔௡, ܥ௣௜௥௠௦, ܥ௣௜௠௔௫ and ܥ௣௜௠௜௡ for each period. The averaged values from these five groups’ 
data are used in the following analysis. The wind tunnel experimental results indicate that the wind 
loads on the large-span roof structure are mainly dominant by relatively high negative wind 
pressures. Therefore, the peak factor, ݃, corresponding to the minimum pressure coefficient can 
be defined as follows: 

݃ = ቤܥ௣௠௜௡ − ௣௥௠௦ܥ௣௠௘௔௡ܥ ቤ. (2)

3. Numerical simulation 

By taking the GISA roof as an example, the present work mainly focuses on the development 
of an effective tool to accurately estimate the time series of wind-induced pressures in the 
unresolved area of long-span roof structure by neural network prediction method. There are a 
diverse range of neural networks, such as multilayer perceptron networks, Carpenter networks and 
Hopfield networks etc. The feedforward multilayer neural networks using a backpropagation 
training algorithm (BPNN) is probably the most widely used ANNs because of its proven 
performance for functional approximations, optimization and classification, etc. [36]. On the other 
hand, fuzzy system based on the pioneering work of Zadeh [9] in fuzzy set theory has been an 
active research area with wide applications in civil engineering such as earthquake intensity 
evaluation. However, a literature search indicates that generally the previous applications of 
ANNs or FNNs to wind engineering have concentrated their studies on the predictions of pressure 
coefficient distributions over various building models, but the usage of the ANN or FNN method 
to predict wind-induced pressure time series on buildings and structures has received little 
attention in the past. 

Some further research studies [13] have shown that FNN approach has better convergence 
ability and impending speed than the BPNN approach in predicting the mean and RMS coefficient 
of wind-induced pressure on large roof structures. In other words, the FNN approach seems to be 
easier in training than the BPNN approach. FNN yields better prediction performance than the 
BPNN. The reason for this may be attributed to the fuzzy systems of the FNN. As the fuzzy 
systems in the FNN can convert the seeming irregular training data into an acceptable form using 
the membership function and ݇-mean clustering technique [10], and then obtain proper fuzzy rules 
from the training data. In fact, the input of the FNN is the result of fuzzification with the obtained 
fuzzy rules, thus the FNN has stronger ability to capture the underlying nonlinear relationships 
than simplex BPNN. As a result, the FNN can produce more accurate results than the BPNN. 
Therefore, by taking the GISA roof as an example, this study adopted FNN method for the 
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prediction of the time series of wind-induced pressure on the large-span roof structure on the basis 
of wind tunnel pressure measurements.  

3.1. Fuzzy neural networks (FNN) 

The topology of the fuzzy neural network (FNN ݊-݉ ⋅  used in the present research is (݋-݉-݊
shown in Fig. 6, which is comprised of four different layers: an input layer, a membership layer, 
an inference layer and a defuzzification layer (an output layer). The network consists of ݊ input 
variables with ݊ neurons in the input layer, ݋ output variables with ݋ neurons in the output layer, 
and ݉ number of rules with ݉ neurons in the inference layer; thus the number of neurons in the 
membership layer is ݊×݉. However, for a given network structure, the numbers of neurons in the 
hidden layers can significantly affect the prediction performance of the FNN [7]. If there is 
insufficient number of hidden nodes, it may be difficult to reach convergence during the training 
process, as the network may be unable to create adequately complex decision boundaries. On the 
other hand, if too many hidden nodes are used, the network may lose its ability to be generalized; 
in addition, keeping the number of hidden layer nodes to a minimum reduces the number of 
weights that need to be adjusted, and hence reduces the computational time needed for training 
[37]. Therefore, in this study, several four-layer network structures with different numbers of 
hidden neurons have been considered by using a trial-and-error approach [7, 29] which starts with 
a small number of hidden neurons and then increasing the size until the training performance is 
acceptable. In this way ݉ can be generated by using ݇-mean clustering technique [10], of course, 
the values of ݉ can also be adjusted with practical requirements. 
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Fig. 6. Topology of the four-layer fuzzy neural network (FNN ݊-݉ ⋅  (݋-݉-݊

In the membership layer, each node performs a membership function, and the activation 
function of ݑ௜  consists of a set of membership functions, i.e., ݑ௜ = ,௜ଵݑ) ,௜ଶݑ … , (௜௠ݑ . The 
Gaussian function is adopted as the membership function. For the ݆th node of ݑ௜: ݑ௜௝ = exp ቆ− ௜ݔ) − ݉௜௝)ଶߪ௜௝ଶ ቇ , 1 ≤ ݅ ≤ ݊, 1 ≤ ݆ ≤ ݉, (3)

where ݑ௜௝ is the value of the fuzzy membership function of the ݅th input variable ݔ௜ corresponding 
to the ݆th rule; ݉௜௝  and ߪ௜௝  are, respectively, the mean and standard deviation of the Gaussian 
function in the ݆th  term of the ݅th  input variable ݔ௜,  and ݉௜ = (݉௜ଵ, ݉௜ଶ, … , ݉௜௠), ߪ௜ = ,௜ଵߪ) ,௜ଶߪ … ,   .(௜௠ߪ

The activation function in the inference layer uses multiplicative inference. For the ݅th rule 
node, the output is given by: 
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௜ߨ = ଵ௜ݑ × ଶ௜ݑ × ⋯ × ௡௜ݑ = ෑ ௝௜௡ݑ
௝ୀଵ , (1 ≤ ݅ ≤ ݉). (4)

The defuzzification layer has the connecting weights (߱௜) to the output from the inference 
layer, and these weights signify the strength of each rule in the output of the model. The output ݕ 
is given as: ݕ = ߱ଵߨଵ + ߱ଶߨଶ + ⋯ + ߱௠ߨ௠. (5)

The learning algorithm [10] which is based on the conventional backpropagation neural 
network algorithm [29] was adapted herein to train the network, which aims to minimize the sum 
of the square errors. The square error is defined as: 

௣ܧ = 12 ݕ) − ܻ)ଶ, (6)

where ݕ is the model output (prediction), ܻ is the desired output (target). 
According to the gradient descent method [29], the weights in the output layer are updated by 

the following equation: 

߱௜(݊ + 1) − ߱௜(݊) = ߟ− ,௣∂߱௜ܧ∂ (7)

where ߟ is the learning rate parameter of the weights and is a positive constant to be determined. 
The update laws of ݉௜௝ and ߪ௜௝ can also be obtained by the gradient decent method, i.e.: 

݉௜௝(݊ + 1) − ݉௜௝(݊) = ߟ− ,௣∂݉௜௝ܧ∂ ݊)௜௝ߪ(8) + 1) − (݊)௜௝ߪ = ߟ− .௜௝ߪ∂௣ܧ∂ (9)

Here, assuming the learning-rate parameters of the mean and standard deviation of the 
Gaussian function are also ߟ. 

Then, substituting Eqs. (7)-(9), respectively, into Eq. (6), the following equations are obtained: ߱௜(݊ + 1) − ߱௜(݊) = ݕ)ߟ− − ,௜ߨ(ܻ (10)݉௜௝(݊ + 1) − ݉௜௝(݊) = ݕ)ߟ− − ܻ) ௝߱ ෑ ௟௝2௡ݑ
௟ୀଵ,௟ஷ௜

௜ݔ − ݉௜௝ߪ௜௝ଶ ݁ି(௫೔ି௠೔ೕ)మఙ೔ೕమ , (11)

݊)௜௝ߪ + 1) − (݊)௜௝ߪ = ݕ)ߟ− − ܻ) ௝߱ ෑ ௟௝௡ݑ
௟ୀଵ,௟ஷ௜ 2 ௜ݔ) − ݉௜௝)ଶߪ௜௝ଷ ݁ି(௫೔ି௠೔ೕ)మఙ೔ೕమ . (12)

More detailed descriptions of the FNN can be found in Wang [10]. MATLAB and C based 
computer programs were made to develop the FNN model for the prediction of the time series of 
wind pressures on the GISA roof. 

3.2. Prediction of wind pressure time series on the roof 

In this study, the FNN predictions are presented for wind pressure time series at representative 
tap locations in zone ܣ at wind direction of 260° (see Fig. 5). The zone ܣ was chosen because this 
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area is suffered by large pressure variations with high rms values; and large suctions often occur 
in this region due to strong flow separation at the leading edge in this wind direction [30-32]. 
Therefore, the prediction of the wind pressure time series in this area is expected to be difficult by 
conventional theoretical or numerical methods because of imperfect knowledge about the structure 
of separating/reattaching flows and their sensitivity to incident flow characteristics. It is expected 
that it is ideal for adopting FNN to learn the underlying nonlinear behavior by training the 
input-output data. Having learned the complex behavior, the captured functional relationship 
should be able to accurately predict the wind pressure time series at other locations if the 
underlying physical process governing the pressure time series does not change. 

The available experimental data were allocated into two subsets: training data and testing data. 
The training data which consist of the experimental input-output data pairs at the wind directions 
of 260° in the zone ܣ (except the interpolation tap 196 and the extrapolation tap 289), were used 
to train the FNN. The remaining experimental data which were not used in the training were 
chosen as the new test data to evaluate the prediction accuracy of the developed FNN model. In 
other words, the developed FNN model will be used to predict the wind pressure time series at the 
two pressure taps (Nos. 196 and 289) under the wind direction of 260°. As we know, the time 
history datum for the pressure coefficient of taps on the long span roof structure are mainly 
determined by the approaching wind direction, the specified time instant and the spatial 
three-dimension coordinate data. The purpose of adopted FNN method in this study is to predict 
the time history of pressure coefficient ܥ௣(ݐ) at the unresolved areas in the wind tunnel test. 
Therefore the number of neurons in the input layer for FNN method is selected as the value of 4. 
Totally 4 neurons including time instant (ݐ ) and positions of pressure taps (ݔ ݕ , ݖ , ) were 
considered as input variables in the FNN, and output variable(s) was the pressure coefficient ܥ௣(ݐ) 
at the time instant ݐ. Thus the number of neurons in the output layer in FNN method is 1.  

 
a) Experimental data 

 
b) FNN prediction 

Fig. 7. Comparison of pressure time series between the experimental data  
and the FNN prediction for pressure tap 196 

For the FNN approach, the number of fuzzification and de-fuzzyfication rules, ݉, for the 
samples of ܥ௣(ݐ), can be determined as 10 using the ݇-mean clustering technique [10, 13] to 
cluster the samples of ܥ௣(ݐ). However, to obtain a faster training speed and higher prediction 
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performance, several four-layer network structures with different numbers of rules, ݉, which 
starts with 10 and then increasing the size until the training performance is acceptable, have also 
been considered. Finally it was found that the topology of the four-layer fuzzy neural network 
FNN 4-4×12-12-1 with ݉ = 12 has the best performance to predict the wind pressure time series. 

Meanwhile the activation function in the membership layer adopts the Gaussian function. For 
the ݅-th input variable ݔ௜  corresponding to the ݆th rule in the membership layer, the Gaussian 
function is defined by Eq. (3). The activation function in the inference layer uses multiplicative 
inference as defined in Eq. (4). By connecting weights to each output from the inference layer, the 
output of the defuzzification layer could be constructed.  

After training the FNN with the input-output example patterns, given the values of the input 
variables (ݐ ,ݖ ,ݕ ,ݔ) from the testing data, the corresponding output, ܥ௣(ݐ) at the time instant ݐ, 
can be obtained. In this way, the pressure coefficient at any time instant can be predicted. Thus, 
the whole time series can be predicted from the training data. Figs. 7 and 8 show comparisons of 
pressure time series between the experimental data and the FNN predictions for the previously 
“unseen” pressure taps 196 (the interpolation tap) and 289 (the extrapolation tap), respectively. 
Some results are summarized in Table 1, where the mean, rms, maximum and minimum pressure 
coefficients of the predicted and experimental time series data are compared. 

 
a) Experimental data 

 
b) FNN prediction 

Fig. 8. Comparison of pressure time series between the experimental data  
and the FNN prediction for pressure tap 289 

Comparing the two time series of wind-induced pressures shown in Figs. 7 and 8, it is clear 
that the predicted time series for the two taps are both in a good agreement with the experimental 
data. This is demonstrated by the absolute values of the absolute errors, as shown in Table 1, 
between the experimental data and the FNN predictions, which are all close to 0. It can also be 
observed from Table 1 that the absolute values of the absolute errors and relative errors between 
the experimental data and the FNN predictions for the interpolation case (No. 196) are smaller 
than those for the extrapolation case (No. 289). This indicates that the prediction performance of 
the FNN for the interpolation case is better than that for the extrapolation case. The observed 
phenomenon can be explained as follows. Generally, for the interpolation case, the generalization 
domain of a given neural network model is the domain in the input space, where the model is 
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applicable and good performance of the model can be expected. But for the extrapolation case, the 
generalization domain of the model is out of the input space, the performance of the model may 
deteriorate in the extrapolation domain [33]. As a result, the generalization ability of the neural 
network models for the interpolation case is superior to the result for the extrapolation case. 
Therefore, in applying the neural network approach to predict wind pressures on a large-span roof, 
it is better to install as more pressure taps as possible at the edges of the model surfaces in order 
to predict the wind pressures on the entire roof following interpolation cases. 

Table 1. Comparison of the experimental data and the FNN prediction results 
Cases Pressure Mean Rms Minimum Maximum 

Interpolation  
(Pressure tap 196) 

Measured –0.6308 0.1708 –1.3138 0.0523 
FNN –0.6337 0.1745 –1.3219 0.0608 

Absolute error 0.0029 0.0037 0.0081 0.0085 
Relative error 0.46 % 2.17 % 0.62 % 16.25 % 

Extrapolation 
(Pressure tap 289) 

Measured –0.5360 0.1163 –1.0012 –0.0707 
FNN –0.5480 0.1295 –1.0815 –0.0943 

Absolute error 0.0120 0.0132 0.0803 0.0236 
Relative error 2.24 % 11.35 % 8.02 % 33.38 % 

4. Equivalent static wind load discussions 

A three-dimensional finite element model of the roof structure of GISA was established based 
on the structural design drawings using a commercial computer package SAP2000, as shown in 
Fig. 9. The whole finite element model has 4270 nodes with 25620 degrees of freedom. The 
calculated results for the first 32 natural frequencies listed in Table 2 indicate that the natural 
frequencies of the GISA roof are very closely spaced, suggesting that the modal response 
correlations may be significant. Therefore, the modal response correlations should be taken into 
consideration in the wind-resistant design of such large-span roof structure; neglecting them will 
result in underestimated responses [34]. In the following analysis, the GISA roof is considered as 
an example to illustrate the application and effectiveness of the ESWL approach proposed by the 
authors [25]. The wind loading inputs acting on each node of the GISA roof in the finite element 
simulation are derived based on the multiple point simultaneous pressure measurements on the 
rigid roof model in conjunction with the FNN method presented in Section 3; and the damping 
ratio for each mode is assumed to be 2 % in this study. 

Table 2. The calculated results for the first 32 natural frequencies 
Mode ݂ (Hz) Mode ݂ (Hz) Mode ݂ (Hz) Mode ݂ (Hz) 

1 1.5391 9 2.3033 17 2.5709 25 2.8241 
2 1.6724 10 2.3165 18 2.6756 26 2.8464 
3 1.8502 11 2.3190 19 2.6849 27 2.8544 
4 2.0181 12 2.3531 20 2.7378 28 2.9048 
5 2.1191 13 2.4247 21 2.8208 29 3.1480 
6 2.1703 14 2.4721 22 2.8231 30 3.1536 
7 2.2816 15 2.4847 23 2.8234 21 3.1817 
8 2.3032 16 2.5246 24 2.8238 32 3.2552 

4.1. Wind-induced response analysis 

As mentioned in Fu et al. [25], using the random vibration theory and the CQC approach, 
wind-induced displacement responses of large-span roof structures can be determined; in which 
the contributions of higher modes and modal response correlations are taken into consideration 
for the estimated wind-induced responses. In general, the displacement responses of large-span 
roof structures due to wind excitation are mainly dominant in the vertical direction. When the 
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incident wind direction varies from 0° to 360° with an incremental of 10°, there should be a node 
with the largest peak displacement response in ݖ-direction; and the critical wind direction is found 
to be an oblique angle (ߚ = 320°) . Figs. 10(a)-(c) show the contour distributions of mean, RMS 
and peak displacement responses of the roof at the critical wind direction, respectively. It should 
be pointed out that the RMS displacement responses in Fig. 10(b) are calculated by the CQC 
approach, and not estimated by combining with the separated background and resonant response 
components. 

 
Fig. 9. Finite element model of the roof structure of GISA 

It can be seen from Fig. 10 that the maximum values of mean, RMS and peak displacement 
responses are 6.8 mm, 0.8 mm and 10.0 mm, respectively. This indicates that the proportion of 
the RMS displacement response multiplied by the corresponding peak factor to the total peak 
displacement response is about 32 %. The results clearly demonstrate the importance of 
considering the influence of fluctuating wind for accurate predictions of wind effects on large-span 
roof structures. 

4.2. A discussion of correlation between background and resonant response 

However, in order to simplify the calculation, the RMS response is generally separated into 
the background and resonant components. The RMS response is estimated as the square root of 
the sum of the square of the background and resonant responses, which is expressed as: 

ߪ = ටߪ௕ଶ + ௥ଶ, (13)ߪ

where ߪ௕ and ߪ௥ are the background and resonant responses, respectively. 
Or the peak response (with the mean response excluded) is obtained by combining the 

background and resonant components [35]: 

ܴ୫ୟ୶ = ට݃௕ଶߪ௕ଶ + ݃௥ଶߪ௥ଶ, (14)

where ݃௕ and ݃௥ are peak factors for the background and resonant responses, respectively. 
The separation strategy has the advantage of demonstrating the relative significance of the two 

components in the total RMS response; it can also provide a more efficient response prediction 
framework and a physically more meaningful description of loading distribution. But the 
correlations between the background and resonant components may be neglected, which would 
result in considerable error in the RMS response estimation. 
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6.8

 
a) Mean displacement responses 

0.8

 
b) RMS displacement responses obtained by the CQC approach 

10.0

 
c) Peak displacement responses 

Fig. 10. Contour distributions of mean, RMS and peak displacement responses of the roof  
under a wind direction of 320° (unit: mm) 
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As is well known, the wind-induced background and resonant responses are two random 
variables. Generally, the variables are not fully independent. Hence, in order to obtain more 
accurate results, the following equation should be adopted: ߪଶ = ௕ଶߪ + ௥ଶߪ + ,௕௥ߩ௥ߪ௕ߪ2 (15)

where ߩ௕௥ is the correlation coefficient between the background and resonant components. 
Obviously, the correctness of Eq. (13) or Eq. (14) is assured only if the correlation coefficient ߩ௕௥ equals zero. Otherwise, the results obtained from Eq. (13) or Eq. (14) are approximate values. 

The precision of Eq. (13) can be evaluated by the relative error which is expressed as: 

݁ = ߪ − ඥߪ௕ଶ + ߪ௥ଶߪ . (16)

A positive valued indicates that Eq. (13) yields underestimation of the response while a 
negative value indicates overestimation of the response. The GISA roof is illustrated here for the 
investigation of whether it is adequate to ignore the correlations for estimation of the wind-induced 
responses of large-span roof structures. 

Figs. 11(a) and (b) show the contour distributions of background and resonant responses of the 
roof in wind direction of 320°, respectively. Based on Eq. (13), the overall RMS wind-induced 
responses can be estimated as the square root of the sum of the square of the background and 
resonant responses; and the corresponding contour distributions on the roof are plotted in 
Fig. 11(c). 

Furthermore, the distributions of correlation coefficients between the background and resonant 
response components on the whole roof structure are displayed in Fig. 12(a), and the associated 
relative errors are shown in Fig. 12(b). It can be seen from Figs. 12(a) and (b) that the maximum 
values of the correlation coefficients and relative errors are about 19.2 % and 5 %, respectively. 
This illustrates that the wind-induced response may be underestimated by up to 5 % when Eq. (13) 
is adopted for evaluation of the wind-induced displacement response. Such an error may not be 
neglected in the wind-resistant design of the large-span roof structure. 

The above example clearly demonstrates that it is important to include the correlation 
coefficients between the background and resonant components in the estimation of wind-induced 
responses and ESWLs for large-span roof structures. 

4.3. Comparison of the displacement response results from the CQC and ESWL approaches 

Using the ESWL approach proposed by the authors [25], the ESWL for any peak displacement 
response can be conveniently determined by utilizing a static analysis approach and the CQC rule 
for the applications to the design of large-span roof structures. 

When the incident wind direction varies from 0° to 360° with an incremental of 10°, there 
should be a node of the finite element model with the largest positive or negative peak 
displacement response under each wind direction. The peak displacement responses of the 
above-mentioned nodes in ݖ-direction, obtained from the CQC and ESWL approaches, are plotted 
versus various incident wind directions in Fig. 13. It can be seen from this figure that the peak 
displacement responses determined from the ESWL approach are in a excellent agreement with 
those from the CQC approach. This can be shown from the absolute differences between the two 
sets of computational results, as shown in Fig. 13. Where the average absolute difference is 
0.7582 mm, and the corresponding average relative difference is 8.57 %. The agreement between 
the two sets of results shown in Fig. 13 is quite satisfactory, illustrating that the ESWL approach 
proposed by the authors [25] can provide satisfactory predictions for wind-induced responses of 
large-span roof structures and thus verifying the effectiveness of the methodology again. 
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0.74

 
a) Background responses 

0.534

 
b) Resonant responses 

0.77

 
c) RMS displacement responses based on Eq. (13) 

Fig. 11. Contour distributions of background, resonant and RMS responses (unit: mm) 
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5.0 

 
a) Correlation coefficients 

19.2

 
b) Relative errors 

Fig. 12. The correlations between background and resonant components and the associated relative errors  

 
Fig. 13. Comparison of the peak displacement responses from the CQC and ESWL approaches 
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5. Conclusions 

This paper presents some selected results from a combined numerical simulation and ESWL 
study of wind effects on the GISA roof. Based on the pressure data measured from limited number 
of pressure taps, a numerical simulation approach using FNNs has been developed for the 
prediction of wind pressure time series at other roof locations which were not covered in the wind 
tunnel measurements. It was observed from this study that the FNNs have the potential to provide 
accurate predictions of wind pressure time series on the large-span roof structure. To the 
knowledge of the authors, the usage of the FNN method to predict time series of wind-induced 
pressures on buildings and structures has received little attention in the past. 

On the other hand, the wind-induced response distributions on the roof are presented and 
discussed, which are directly calculated by the CQC approach and not separated into the 
background and resonant response components. Furthermore, the correlations between the 
background and resonant response components are discussed in detail, and the results show that 
neglecting the correlations between the two components would result in considerable error in the 
wind-induced response estimation. Finally, the peak displacement responses determined by the 
ESWL approach proposed by the authors [25] have been compared with those obtained from the 
CQC method, and it was found that the agreement between the two sets of results is quite 
satisfactory, thus verifying the accuracy of the proposed ESWL approach in the design and 
analysis of large-span roof structures. The accurate evaluation of the ESWL by the proposed 
approach for spatiotemporally varied wind loads is very attractive for simplifying the 
determination of design wind loads, which will be useful to aid in revising current design standards 
and codes to realistically predict wind effects on buildings and structures. 

It is shown through the example that the FNN and ESWL approaches can successfully predict 
the wind-induced pressures and responses, respectively; and can serve as an effective tool for the 
design and analysis of wind effects on large-span roof structures in conjunction with wind tunnel 
tests. 
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