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Abstract. The paper proposes the Detrended Fluctuation Analysis (DFA) of the vibration signal 
for diagnosing of mechanical defects of the vehicle powertrain. The DFA allows investigations of 
the observed signals with regard to their multifractality. The results of vibration signal analysis of 
the engine with the damaged exhaust valve and with the unsuitable exhaust valve clearance are 
presented. During road test the acceleration vibration signal was recorded with additional signals 
for synchronization and engine timing. The vibration data are analysed by DFA and the resultant 
scaling-law curve with crossover points are obtained. The estimated Hurst exponents are used in 
the selection procedure of diagnostic features. 
Keywords: combustion engine vibrations, defected valve system, detrended fluctuation analysis, 
Hurst exponent. 

1. Introduction 

Vibration signals recorded by acceleration sensors in the vehicle powertrain, during its 
operation, are characterised by increases of non-stationary and non-linear disturbances caused by 
wearing out as well as by defects. These systems have periodical properties due to periodical 
excitations, however it is often difficult to determine the upper time scale or lower limitation of 
the observation frequency. Such system dynamics can be analysed based on power-law and 
scaling equations for theoretically unlimited ranges of time or frequency scales and on multifractal 
models of observed signals. 

The self-organising criticality (SOC) theory, inspired by fractality of dynamic systems, 
arguments that the state of the complex non-linear system is time variable approaching the critical 
state, in which an arbitrary small parameter change causes a large change in the system. An 
occurrence of new features not resulting from properties of components of complex systems, 
called emergency allows for further functioning of the system. This means that the system – by 
means of the evolution – reveals adaptation abilities forced by its surroundings or by the control 
system.  

Curves of the system scaling-law are changing during operations. It turns out that multifractal 
exponents present the evolution of features of the complex dynamic system as a function of the 
operation time.  

The dimension of the curve, being the considered signal diagram, is assumed the fractal 
dimension [1]. The fractal dimension ܦ of the time series determines its local roughness. If ܮ is 
the minimal number of circles of dimension ݏ, covering the given time series, then ܮ ≈ ଵ௦ವ. From 
that:  

ܦ = lim௦→ lg ݈݃ܮ ቀ1ݏቁ. (1) 

Self-similar time series or time series exhibiting self-similarity after the integration describe 
multifractal dimensions ܦ, corresponding to Hurst exponents [2] ܪ, for various scaling ranges, 
according to the dependency: 
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ܦ = ܪ − 2. (2)

Methods of the Detrended Fluctuation Analyses (DFA) [3] and its multifractal version 
(MF-DFA) [4] can be used as a means of estimating the Hurst exponent. The MF-DFA allowing 
investigations of the observed signals with regard to their multifractality, assures more stable 
approach to the multifractal formalism than the previously applied method of the wavelet 
transform of module maximum (WTMM). 

Analytical methods of detrended fluctuations were lately used in the vibroacoustic diagnostics 
of rotating systems [5] presented the technique of the defects detection of a toothed gear by means 
of the vector formed from the function of the vibration signals fluctuation and the principal 
components analysis (PCA). Two methods of standards identification were applied in the work of 
[6]: the PCA and neural networks technique in relation to the compressed data obtained from the 
monitoring of bearings operating at various loads and rotational speeds. The data compressing 
was performed by means of the Rescaled Range (R/S) analysis and DFA. Another way of the 
monitoring of bearings can be found in the paper [7], where diagnostic features of defects were 
defined on the bases of the spectrum parameters of the multifractal vibrations signal obtained as 
the result of the MF-DFA algorithm. [8] proposed also the detection of bearings and toothed gears 
defects on the bases of the Hurst exponents determined in various scaling ranges of the curves of 
vibration signals fluctuations.  

2. The MF-DFA method 

This method is based on the trend elimination from the investigated time series. The procedure 
is realised in five steps, leading to the Hurst exponent estimation, followed by the multifractal 
spectrum. 

Let it be assumed that the observed time series ݔ contains ܰ samples. 
Step 1. Let’s define the accumulated, centred random variable of the form: 

ܺ(݅) = [ݔ−< ݔ >ሿே
ୀଵ , (3)

where < ݔ > is the expected value estimator of the time series ݔ. 
Step 2. Let’s divide the time series into non-overlapping segments of length ݏ, starting this 

division once from the beginning and for the second time from the end. In this way we obtain ௦ܰ = ݐ2݅݊ ቀே௦ ቁ segments ݏ. 
Step 3. By the method of least squares for each segment the profile represented by the ݉-th 

degree ݔ௩(݅) will be determined and detrending performed: 

,ݏ)ଶܨ (ݒ = ݏ1 ሼܺ[(ݒ − ݏ(1 + ݅ሿ − ௩(݅)ሽଶ௦ݔ
ୀଵ , (4)

for ݒ = 1,2, … , ௦ܰ and: 

,ݏ)ଶܨ (ݒ = ݏ1 ሼܺ[ܰ − ݒ) − ௦ܰ)ݏ + ݅ሿ − ௩(݅)ሽଶ௦ݔ
ୀଵ , (5)

for ݒ = ௦ܰ + 1, … , 2 ௦ܰ. 
Step 4. Calculated variances are averaged for all segments and the fluctuation functions of the 

order ݍ, are determined: 
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(ݏ)ܨ = ቐ 12 ௦ܰ [ܨଶ(ݏ, ሿଶଶேೞ(ݒ
ୀଵ ቑଵ. (6) 

For ݍ = 2 we obtain dependency defining fluctuations in the DFA method. 
Step 5. After repeating steps 2 to 4 for various time scales ݏ, we obtain the power fluctuation 

dependency: ܨ(ݏ)~ݏ(), (7) 

where ℎ(ݍ) is the generalised Hurst exponent.  
The statistically reliable estimation of exponents ℎ(ݍ) requires the scale selection within limits ݏ ∈ ቀ10, ேସቁ. The improvement of the estimation accuracy for anti-persistent signals, of the Hurst 

exponents values being near zero, enables integration of the time series before starting the 
MF-DFA procedure. Double integration leads to obtaining the exponents of the fluctuation 
function of values increased by 1, i.e. ℎ(ݍ) = ℎ(ݍ) + 1 . 

The exponent ℎ(ݍ) = ݐݏ݊ܿ  for monofractals, while it is a decreasing function for 
multifractals. The fluctuation curve ܨ(ݏ)  in the log/log scale allows to determine the Hurst 
exponents and the multifractal spectrum (singular spectrum): ݂(ߙ) = ߙ]ݍ − ℎ(ݍ)ሿ + 1, (8) 

while the singular exponent ߙ :ߙ = ℎ(ݍ) − .(ݍ)ℎᇱݍ (9) 

For ݍ = 2, MF-DFA is equivalent to DFA and ℎ(2) =   .ܪ

3. Description of examinations 

Examinations were performed during road tests on the four-cylinder engine of spark ignition 
of Fiat Punto 1.4 of 400 000 km. mileage. Series of engine vibration measurements for various 
rotational speeds and loads were performed. The main measuring path included the piezoelectric 
vibration sensors B&K Delta Shear type 4393 of a frequency range: 0.1 – 16500 Hz, resonance 
frequency 55 kHz and work temperatures from –74 to +250oC, fastened by means of a joint 
screwed into the engine side at cylinder 1, and the portable device for recording data B&K PULSE 
type 3560E. Accelerations of engine block vibrations were recorded in the vertical and horizontal 
directions with a frequency of 65536 Hz. Then the signal was pre-processed with antialiasing filter 
to avoid amplifying the components in the natural frequency band of the vibration sensor. 

Apart from the engine vibrations signal also the crankshaft position signal, throttle position 
and signals from the ignition coil at 1 and 4 cylinder were recorded. Additional signals enabled 
the identification of engine working cycles, injection moments, ignition and timing of gear phases. 
Signals of 1-minute duration were recorded during driving with a constant speed. Small speed 
fluctuations were eliminated during further analysis. Maintaining the constant rotational speed of 
the engine is essential, since this parameter has a significant influence on the vibration amplitude. 
A load influence is not as important as speed. The vibration signal was resampled in order to 
equalise the number of samples analysed in each cycle of engine operations. This procedure 
enabled changing the domain from the time into the angle of rotation of the crankshaft, during the 
analysis. 

Examinations were performed for various maintenance states of the exhaust valve [9]: 
• Valve in a good working order, optimal clearance (0.25 mm), 
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• Valve in a good working order, increased clearance (+0.06 mm), 
• Valve in a good working order, decreased clearance (–0.06 mm), 
• Valve out of order I (small defect), optimal clearance, 
• Valve out of order II (large defect), optimal clearance. 
Valve defect I constituted the valve head cut 3 mm long, while defect II had this cut increased 

to 6 mm. Instantaneous time progresses of the acceleration of vibrations for various maintenance 
states are presented in Figure 1. 

 
Fig. 1. Time series – engine head vibrations at 3000 rpm for one work cycle of engine:  

a) valve in a good working order, optimal clearance (0.25 mm),  
b) valve in a good working order, increased clearance (+0.06 mm),  
c) valve in a good working order, decreased clearance (–0.06 mm),  

d) valve out of order I (small defect), optimal clearance,  
e) valve out of order II (large defect), optimal clearance 

  
Fig. 2. Fluctuation versus the segment (scale) for:  

a) valve in a good working order, optimal clearance (0.25 mm),  
b) valve in a good working order, increased clearance (+0.06 mm),  
c) valve in a good working order, decreased clearance (-0.06 mm), 

d) valve out of order I (small defect), optimal clearance, 
e) valve out of order II (large defect), optimal clearance 
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4. Further analyses 

The integrated time series of a length of two work cycles of the engine (7200 samples) were 
divided into segments of the same length. In each segment the linear trend was determined and 
then removed. Next, the RMS fluctuation of the trendless integrated time series was determined 
from equation (6). It was performed for the set of time scales s of the length from 4 to 1024 samples, 
to obtain the time independent measure. The connection between the average fluctuation and the 
segment (scale) size for the tested cases of the exhaust valve defects, were determined for 30 time 
series and are presented in Figure 2. 

The Hurst exponent ℎ is defined as an inclination of curve (ݏ)ܨ in the double logarithmic 
diagram. In order to determine this exponent the approximation of curves by straight lines for 
three scale ranges: 6 – 64, 64 – 128, 128 – 1024 was performed. The average Hurst exponents for 
the tested cases are listed in Table 1. 

Table 1. Average Hurst exponent in segments for tested defects of valve 

 Good 
valve 

Defected 
(small) 

Defected 
(big) 

Decreased 
clearance 

Increased 
clearance 

Hurst exponent 1 
scale: 6 – 64 0.365 0.234 0.188 0.245 0.185 

Hurst exponent 2 
scale: 64 – 128 0.711 0.688 0.406 0.519 0.301 

Hurst exponent 3 
scale: 128 – 1024 1.497 1.424 1.324 1.450 1.319 

The first singled out scale range is characterised by the inclination coefficient: 0 < ℎଵ < 0.5,  
which means long-range anti-correlations. The second scale range of the inclination coefficient: 
0.5 < ℎଶ <1 indicates occurring of long-range power-law correlations, however as the defect grows 
the coefficient falls below 0.5. In the third range the inclination coefficient ℎଷ > 1 indicates the 
correlation occurrence but not of a power-law character. It is the result of the occurrence of 
harmonic components originated from driving shafts and cylinders operations. 

The Hurst exponent ℎଶ was listed versus the Hurst exponent ℎଵ in Figure 3. The data were 
classified by the nearest neighbour method for 30 other time series for the tested cases of defects 
and the instantaneous Hurst exponent was shown at the background of average exponents from 
Table 1. 

 
Fig. 3. The classification of the classified maintenance states using the first and second Hurst exponent 

The following remarks can be drawn from the Figure 3 analysis: 
• As the exhaust valve defect increases the Hurst exponents ℎଵ and ℎଶ decrease. 
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• The method allows to detect an initial defect of a valve and decreased valve clearance.  
• At a large valve defect and increased valve clearance the areas on the plane are weakly 

separable and it can happen that – at a certain phase of the defect – they can overlap. 

5. Conclusions 

The presented example of the application of the detrended fluctuation analysis indicates that 
this method allows to perform the diagnostics of the exhaust valve defects of I.C. engines and the 
wrong valve clearance. After determining the Hurst exponents in single segments it was possible 
to separate areas related to individual defects on the plane also for initial defects. It is planned to 
apply generalized Hurst exponents and the singularity spectrum based analysis in further studies. 
The classification by the nearest neighbour method will be performed. 
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