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Abstract. A variety of undesired vibrations and noise are usually mixed in high-pressure and 
sub-high-pressure gas pipeline leak vibration signals. For effectively separating leak vibration 
signals so that the leak aperture can be identified and localized, an underdetermined blind source 
separation method is proposed based on the empirical mode decomposition (EMD) and the joint 
approximate diagonalization of eigenmatrices (JADE). Leak vibration signals were collected by 
different sensors and then decomposed by the EMD, and multiple intrinsic mode functions (IMFs) 
were obtained. By calculating the IMF kurtosis values and normalizing them, the characteristic 
IMFs that contain most of useful leak vibration information were chosen. These characteristic 
IMFs were reconstructed, and the reconstructed vibration signal and the originally observed 
signals formed a new matrix. The new observation matrix was used to realize the separation of 
vibration signals with the JADE algorithm and to solve the underdetermined blind separation 
problem. Experimental data analysis results show that the proposed method can extract leak 
signals effectively. 
Keywords: pipeline leak vibration signal detection, underdetermined blind source separation 
(UBSS), empirical mode decomposition (EMD), joint approximate diagonalization of 
eigenmatrices (JADE). 

1. Introduction 

With the rapid acceleration of economic development and urbanization, natural gas as a clean 
and green energy source is becoming the preferred energy source that meets the requirements of 
industries and the urban population. The worldwide natural gas transport and distribution network 
is complex and continuously expanding. Consequently, natural gas pipelines have formed a 
transport network covering the entire country. According to studies, pipelines are the safest means 
of transport of natural gas, but this does not mean that this type of transport is risk free. Pipelines 
used for transporting natural gas may have small leaks because of some inevitable reasons such 
as aging, corrosion, and weld defects. The impacts of these leaks extend beyond the costs incurred 
because of downtime and repair expenses, and can include human injuries as well as 
environmental disasters. In fact, pipeline leakage has become a major concern and seriously 
threatens the safe operation of pipelines. Therefore, assuring the reliability of the gas pipeline 
infrastructure has become a critical need for the energy sector. 

The traditional methods based on chemical sensors cannot effectively detect small leaks 
because of several influencing factors such as a closed pipe trench or air flow along the ground 
surface. The detection methods widely used in long-distance pipelines, such as negative pressure 
wave and acoustic wave methods require the sensors to be plugged into the pipeline to detect the 
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leak vibration signals propagating along the medium. These methods either damage the pipeline 
or cannot ensure combustible gas detection. Therefore, such methods cannot be used to detect leak 
vibration signals in high-pressure and sub-high pressure gas pipelines [1, 2]. 

When a leak occurs, there exists impact and friction among the pipeline, air, sands etc and also 
there involves wall attachment phenomena, Kalman eddy current, edge effect etc. All of these are 
dynamic and transient and cause the pipeline vibration with different frequencies. So an 
air-structure coupling is formed between the high-speed escaping gas and the pipeline wall 
surrounding the leak, thus resulting in a complex vibration signal-stress wave that propagates 
along the body of the pipeline on both sides of the leak. The stress wave is general acoustic 
emission signal and on the viewpoint of acoustic the gas pipeline leakage is a pressure field 
variation process which is induced by the turbulent fluctuation. Studies show the vibration signals 
of pipelines leak is complicated but the leak process still meets the theory requirement of ideal 
fluid fluctuation and can be analyzed by the related vibration theory [3, 4]. A mechanical model 
of impact truing was set up based on the theory of impact dynamics and stress wave spreading, 
and stress distribution was described accurately. The leak signals can be detected by installing 
sensors at both ends of pipe walls and picking up the vibration signals. Fig. 1 illustrates the leak 
detection principle.  

 
Fig. 1. Schematic of pipeline leak vibration detection 

When a leak signal is acquired, other types of vibration signals (e.g., from ground motion 
caused by cars, and excavation and construction around the pipeline) are mixed in the data 
collected by detection systems. These interference vibration signals are generally considered as 
noises. At present, the denoising process in most researches is usually conducted by using a 
method such as time-domain filtering, frequency-domain analysis, and wavelet transform to 
increase the signal-to-noise ratio (SNR). These methods generally consider the acquired signals 
as a superposition in which a certain characteristic noise is superposed upon the actual leak 
vibration signal whose strength is higher than that of noise. Nevertheless, in actual measurements, 
the strength of the interference signal may be greater than that of the actual leak signal, with a 
severely reduced SNR. The surroundings of high-pressure and sub-high pressure gas pipelines are 
complex; some factors that influence the detection process of the actual leakage are interference, 
noise, signals of unknown characteristics, and uncertain collection system parameters. Separating 
the actual leak vibration signal from observed data to analyze the leakage is a typical blind source 
separation (BSS) problem. During the acquisition of leak vibrations, external interfering vibrations 
are coupled to the pipeline wall, contaminating the real leak signals. Therefore, it is very important 
to study how to effectively separate leak vibrations and interference signals to improve leakage 
identification and location accuracy.  

The leak signal and interference signals are nonstationary, and the traditional processing 
methods based on stationary assumption cannot separate them very well, whereas BSS can. The 
BSS method can separate or estimate source signals from observed signals in the case of unknown 
transmission characteristics, input information, or a small amount of a priori knowledge. The types 
of interference vibrations are often more than the number of observed signals. This is a type of 
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underdetermined blind source separation (UBSS) problem in which source signals are more than 
observed signals, and this scenario is common during actual measurements. Considering the  
above, this paper proposes an underdetermined blind vibration separation method to effectively 
extract the leak vibration signals of high-pressure gas pipelines. First, the observed signals are 
decomposed by empirical mode decomposition (EMD) and multiple intrinsic mode functions 
(IMFs) are obtained. Second, the IMFs’ normalized kurtosis values are calculated and the principal 
IMFs containing most of the leak information are selected to reconstruct the signal. The new 
observation signals are now composed of the reconstructed signals and the original observed 
signals. Finally, vibration signals are effectively separated from the new observation signals using 
the joint approximate diagonalization of eigenmatrices (JADE) method. 

This paper is organized as follows: Section II introduces the summary of the vibration signal 
BSS model and methods. Section III presents the proposed method, relevant principles, and 
processing steps in detail. Section IV describes the field experiment and experimental data 
analysis, and discusses the analysis results and the influencing factors. 

2. Problem formulation of blind source separation 

Blind source separation recently is widely used in separation and extraction of vibration signals. 
This novel theory has attracted more and more attention especially in rolling machine, gear box 
fault diagnosis and other monitoring and processing of machining process [5]. The objective of 
BSS is to estimate the original signals mixed with interference signals without any prior 
information about the sources or the mixing process. BSS has been applied in several areas, such 
as mechanical vibration signals separation, communication, speech, and biomedical engineering.  

The standard BSS problem can be formulated as: (ݐ)ݔ = (ݐ)ݏܣ + (1) ,(ݐ)݊

where (ݐ)ݏ = ,(ݐ)ଵݏ] ,(ݐ)ଶݏ … , ݅ ,(ݐ)ݏ is an unknown ݊-dimensional vector of source signals, and ்[(ݐ)ݏ = 1, 2,…, ݊ are mutually independent sources that can be random variables or stochastic 
processes (time series). (ݐ)ݔ = ,(ݐ)ଵݔ] ,(ݐ)ଶݔ … ,  is the ݉-dimensional vector of mixed ்[(ݐ)ݔ
signals observed by ݉ sensors, ܣ = [ܽଵ, ܽଶ, … , ܽ] is an ݉×݊ mixing matrix, ݊(ݐ) is the additive 
noise vector, and the superscript “ܶ” denotes the transpose operator.  

BSS is aimed at estimating the source signals (ݐ)ݏ from the observed mixture of signals (ݐ)ݔ 
without resorting to any a priori information [6]. When the number of source signals equals the 
number of observed signals (݉ = ݊), the mixing process ܣ is defined by an evendetermined (i.e., 
square) matrix and, provided that it is nonsingular, then the underlying sources can be estimated 
by a linear feed-forward or feedback neural network. If ݉ > ݊, the mixing process Ais defined by 
an overdetermined matrix and, provided that it is full rank, the underlying sources can be estimated 
by least-squares optimization or linear transformation involving matrix pseudo-inversion. When 
the number of sources exceeds that of sensors, i.e., ݉ < ݊, the BSS problem is referred to as 
UBSS. In such a case, the sources cannot be obtained directly as in the complete BSS case, as the 
inverse ܣ does not exist.  

In general, independent component analysis (ICA) is the main method for achieving the BSS. 
Nonetheless, the algorithm based on ICA is only suitable for the well- or overdetermined case in 
which the number of sources is equal to or less than that of sensors. In practice, the well- or 
overdetermined mixture assumption does not always hold. Hence solving the problem of UBSS 
is necessary. In the underdetermined case, the problem is more difficult than the complete BSS 
problem [7]. The UBSS problem has recently received considerable attention and various UBSS 
algorithms have been reported in literature [8]. Most of the existing UBSS algorithms consist of 
two steps: estimating the mixing matrix ܣ and recovering the source signals (ݐ)ݏ. In [8] and [9], 
several methods based on high-order statistics are presented for the estimation of the mixing 
matrix. As the mixing matrix ܣ is not of full column rank in the underdetermined case, the source 
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signals (ݐ)ݏ cannot be obtained by multiplying the mixtures (ݐ)ݔ by the pseudo-inversion of ܣ. 
This makes recovering the source signals a very challenging task even if the mixing matrix ܣ is 
known.  

In order to recover the source signals, most existing UBSS methods assume that the sources 
are sparse in time domain or other transformation domains such as the time-frequency (TF) 
domain. In literature [10], some cluster-based TF-UBSS algorithms have been proposed by 
assuming that there exists at most one active source at any time-frequency point. The sparsity 
assumption is relaxed in [11-12] to allow the number of active sources at any TF point to be less 
than the number of sensors. It should be noted that although some signals such as speech signals 
have some degree of sparsity, majority of actual signals of other types do not possess the sparsity 
property. Hence it is important to develop UBSS algorithms that do not impose any sparsity 
constraint on the sources. Some UBSS approaches have been proposed for the blind separation of 
non-sparse sources in the underdetermined scenario [13-14], and some researchers have tackled 
this UBSS problem by increasing the number of observed signals, i.e., method of increasing 
dimension [15]. The following part will discuss the proposed method for extracting the valid leak 
signal in detail. 

3. Proposed method 

3.1. Brief description of empirical mode decomposition 

EMD, developed by N. E. Huang [16] et al. for adaptive representation of nonstationary  
signals, can decompose a complicated signal into a number of IMFs according to the local 
characteristic time scale of the signal. This method has been widely used in vibration signal 
decomposition and analysis aspects. It is based on three assumptions: (1) the signal has at least 
two extreme points (maximum and minimum); (2) the characteristic time scale is defined by the 
time lapse between successive alternations of local maxima and minima of the signal; and (3) if 
the signal has no extremes but contains inflection points, then it can be differentiated one or more 
times to reveal the extremes. A signal satisfying such assumptions could be decomposed into a 
series of IMFs. Each of IMF must satisfy two conditions: 

1) In the entire data set, the number of extremes and the number of zero-crossings must be 
either equal or differ at most by one. 

2) At any point, the mean value of the envelope defined by local maxima and the envelope 
defined by the local minima is zero. 

The empirical mode decomposition method is a sifting process. The algorithm operates 
through six steps:  

i) Identification of all the local extremes (maxima and minima) of the series (ݐ)ݔ. 
ii) Generation of the upper and lower envelopes via cubic spline interpolation among all the 

maxima and minima, respectively. 
iii) Point-by-point averaging of the two envelopes to compute a local mean series ݉(ݐ). 
iv) Subtraction of ݉(ݐ) from the data to obtain an IMF candidate ܿ(ݐ) = (ݐ)ݔ −  .(ݐ)݉
v) Checking the properties of ܿ(ݐ): 
• If ܿ(ݐ) is not an IMF (i.e., it does not satisfy the previously defined properties), replace (ݐ)ݔ 

with ܿ(ݐ) and repeat the procedure from Step (i); 
• If ܿ(ݐ) is an IMF, evaluate the residue (ݐ)ݎ = (ݐ)ݔ −  .(ݐ)ܿ
vi) Repeating the procedure from Steps (i) to (v) by sifting the residual signal. The sifting 

process ends when the residue (ݐ)ݎ satisfies a predefined stopping criterion. 
At the end of the decomposition procedure, we get a residue (ݐ)ݎ and a collection of ݊ IMFs, 

named ܿ(ݐ)  (݅ = 1, 2,…, ݊) . The original (ݐ)ݔ can be exactly reconstructed by a linear 
superposition: 
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(ݐ)ݔ =  ܿ(ݐ) + (ݐ)ݎ
ୀଵ . (2)

The residue ݎ(ݐ) is the mean trend of (ݐ)ݔ. The IMFs ܿଵ(ݐ), ܿଶ(ݐ),…, ܿ(ݐ) include different 
frequency bands ranging from high to low. The frequency components contained in each 
frequency band are different, and they change with the variation of the signal (ݐ)ݔ. 

These IMFs represent a series of stationary signals with different amplitudes and frequency 
bands and indicate the intrinsic fluctuation modes. Analyzing the IMFs will provide a wealth of 
information about original signals.  

3.2. IMF kurtosis feature extraction of leak vibration signals 

The kurtosis factor is a dimensionless parameter that describes the degree of a spike waveform, 
and it increases significantly when the signal contains a large number of impact components. 
When a pipeline leakage occurs, the resulting effect mainly reflects the shock impact of 
gas-formed turbulent jet on the wall of the leak hole. This type of vibration signal clearly deviates 
from the normal distribution. The greater the kurtosis factor is, the greater the impact proportion 
is. Pipeline leakage information is often found in these signals that contain more impact 
components. Such impacts also stimulate various inherent vibration components of the pipeline 
and detection equipment in different frequency bands. The IMFs decomposed by EMD include 
leakage information. The IMFs with greater kurtosis values contain more impact components, and 
the leakage information is extracted easily from them. In this paper, we propose a principal IMF 
selection method to choose this type of IMFs, by analyzing IMFs containing the most leak 
information and reconstruct the leak vibration signal. The use of IMFs will supplement sensor 
information and realize increasing dimension of observed signals, which is beneficial during the 
separation of the signals. The extraction steps of characteristic vectors are as follows: 

1) EMD is used to decompose the leak vibration signal and obtain several IMFs and a residue 
as given by Eq. (2).  

2) Ignoring the residue, the IMF kurtosis is calculated from Eq. (3). Sometimes, the values are 
very large; hence, the IMF kurtosis values are adjusted by normalizing for the convenience of 
further analysis and processing. The normalized kurtosis is computed according to Eq. (4): 

ܶ = 1݈  ܿ  ,ସ
ୀଵ ,   ݅ = 1, 2, … , ݊, ݇ = 1, 2, … , ݈, (3)

ܶᇱ = ܶ∑ ܶୀଵ ,   ݅ = 1, 2, … , ݊, (4)

where ݅  is the order of IMF; ܶ  and ܶ ᇱ are the ݅ th IMF kurtosis and normalized kurtosis, 
respectively; ݇ is the start point and ݈ is the amount of sample dots. 

3) The normalized kurtosis containing the signal characters are extracted as feature vectors: ܶ = [ ଵܶᇱ, ଶܶᇱ, … , ܶᇱ]. (5)

The original (ݐ)ݔ  can be exactly reconstructed by a linear superposition of IMFs. As 
mentioned above IMFs with greater kurtosis contain more pulse information; therefore, we choose 
these IMFs to reconstruct the leak signal and acquire further information [17].  

3.3. UBSS algorithm based on EMD and JADE 

The processing steps of the proposed UBSS algorithm based on EMD and JADE are as  
follows: 
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1) Collect dual-channel leak vibration signals as observation signals and express them as (ݐ)1ݔ 
and (ݐ)2ݔ and denoise them; 

2) Decompose the denoised signals by EMD and obtain multiple intrinsic mode components 
from high to low frequencies and a residue as given by Eq. (2); 

3) Ignore the residue and calculate the normalized IMF kurtosis as in Eq. (3) and (4). Then 
choose the IMFs with greater normalized kurtosis as principal IMFs that contain most of the leak 
vibration signal characteristics; 

4) Add the principal intrinsic mode functions and reconstruct vibration signals; afterward, a 
new set of observation signals is composed of original observed signals and the reconstructed ones. 
This step achieves the increasing dimension of measurement data and transforms BSS from the 
underdetermined case to the overdetermined case; 

5) Process the newly obtained observation signals with centralization and whitening; then, 
obtain the whitening matrix and whitened observation signals; 

6) Adopt the joint approximate diagonalization of the eigenmatrices algorithm to process the 
whitened signals and estimate the source vibration signals.  

Steps 5) and 6) involve a series of processes and a BSS method based on JADE algorithm 
proposed by Cardoso [18]. JADE algorithm is based on the construction of a fourth-order 
cumulant array from the data and joint approximate diagonalization of the eigenmatrix. The main 
processing steps are described as follows: 

Step 1. Form the sample covariance ܴ௫ and compute a whitening matrix ܹ. 
Define the autocorrelation function of the observed signals as: ܴ௫ = (6) ,[∗(ݐ)ݔ(ݐ)ݔ]ܧ

here, the superscript “∗” denotes the complex conjugate. We can obtain the eigenvalues and 
characteristic vectors by eigendecomposition of ܴ௫ . Denote ߣଵ , ଶߣ  ேߣ ,…,  the ܰ  largest 
eigenvalues and ℎଵ, ℎଶ,…, ℎே the corresponding eigenvectors of ܴ௫. The whitening matrix of the 
free-noise case is: ܹ = ିଵߣ] ଶ⁄ ℎଵ, … , ேିଵߣ ଶ⁄ ℎே]ு. (7)

This means that the whitening matrix ܹ  is obtained by the autocorrelation matrix ܴ௫  of 
observed vibration signals, i.e., ܹுܹ = ܴ௫ି ଵ . Superscript ܪ  denotes the complex conjugate 
transpose. Then, (ݐ)ݔ =  left multiple the whitening matrix ܹ and we obtain the whitening (ݐ)ݏܣ
observed signals: (ݐ)ݖ = (ݐ)ݔܹ = (ݐ)ݏܣܹ = .(ݐ)ݏܷ (8)

Whitened signals become a “unitary matrix mix” of the source signals. 
Step 2. Compute the sample four-order cumulants ܳ௭(ܯ) of the whitened vibration signals 

and jointly diagonalize the set ܳ௭(ܯ) by a unitary matrix ܷ. Then define the cumulant matrices 
as follows: with any ܰ×ܰ matrix ܯ is associated a “cumulant matrix” denoted by ܳ௭(ܯ) and: 

[ܳ௭(ܯ)] ⇔ ே
ୀଵ  ݉ݑܥ ቀݖ, ݖ ೕ∗ , ,ݖ ∗ቁேݖ

ୀଵ ݉, 1 ≤ ݅, ݆ = ܰ. (9)

We can find a set of different matrices ܯ , ݅ = 1, 2,…, ܰ  and try to make the matrices ்ܷܳ௭(ܯ)ܷ as diagonal as possible. The diagonality of a matrix ்ܷܳ௭(ܯ)ܷ can be measured, 
for example, as the sum of the squares of off-diagonal elements: ∑ ଶஷ୪ݍ . Equivalently, because 
an orthogonal matrix does not change the sum of squares of matrix elements, the minimization of 
the sum of squares of off-diagonal elements is equivalent to the maximization of the sum of 



1596. UNDERDETERMINED BLIND SOURCE SEPARATION OF PIPELINE LEAK VIBRATION SIGNALS BASED ON EMPIRICAL MODE DECOMPOSITION 
AND JOINT APPROXIMATE DIAGONALIZATION OF EIGENMATRICES. JIEDI SUN, QIYANG XIAO, JIANGTAO WEN, YIGUANG YANG 

1332 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. MAY 2015, VOLUME 17, ISSUE 3. ISSN 1392-8716  

squares of diagonal elements. Thus, we can formulate the following measure: 

(ܯ)ாܬ =  ‖diag(்ܷܳ௭(ܯ)ܷ)‖ெ∈ெ
ଶ, (10)

where ‖diag(⋅)‖ଶ denotes the sum of squares of the diagonal. The matrix ܷ will be obtained by 
joint approximate diagonalization of ܳ௭(ܯ), i.e., by maximization of ܬ(⋅).  

Step 3. Compute the estimation of original vibration signals by ̂ݏ = ܷுܹ(ݐ)ݔ. 
Fig. 2 illustrates the schematic of the underdetermined blind leak vibration signals separation 

algorithm based on EMD and JADE. 

 
Fig. 2. Flowchart of underdetermined blind vibration signals separation algorithm  

based on EMD and JADE 

The proposed UBSS method can be summarized in three main steps. First, decompose leak 
vibration signals observed by EMD and choose principal IMFs to fulfill the increasing-dimension 
condition; then the underdetermined BSS problem can be transformed into an overdetermined one. 
The second step is the whitening process that gives rise to the whitening matrix ܹ. The third step 
is joint approximate diagonalization that generates a unitary matrix ܷ and estimation of the source 
vibration signals. The method can process stationary signal separation as well as nonstationary 
vibration signal separation. Another noteworthy feature is that the method is applicable not only 
when the number of sources is more than the number of observed signals used for source 
separation but also when the number of sources is less than that of observed signals. 

4. Algorithm verification with simulation signal 

4.1. Generation and separation of simulation signals  

In this part, a simulation signal was used to verify the proposed algorithm. The simulation 
source signals included four simulation signals that were mixed by mixing matrix ܣ, and then the 
observation signals were obtained. In this experiment, ܯ = 3 and ܰ = 4 i.e. four channels for 
source signals and two channels for observed signals. The four simulation source signals were 
generated from a basic formula i.e. Eq. (11): 
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(ݐ)ݔ = [1 + ܽ(ݐ)] ⋅ sin[2ߨ ݂ݐ + ,[(ݐ)ߛ ݅ = 1, 2, 3, 4, (11)

where ܽଵ(ݐ) = sin(0.001ݐߨ), ܽଶ(ݐ), ܽଷ(ݐ), ܽସ(ݐ) and ߛ(ݐ), when ݅ = 1, 2, 3, 4, these signals 
were composed of white gaussian noises which means were zero and variances were one were 
multiplied by 0.5 and then input a FIR low-pass filter. The parameters of the low-pass filter were 
as follows: order was ܰ =  21, normalized frequencies were 0.004 and 0.0001. The carrier 
frequencies were ଵ݂ = 0.01 Hz, ଶ݂ = 0.026 Hz, ଷ݂ = 0.004 Hz, ସ݂ = 0.0007 Hz. Using the basic 
formula can obtain four channel source signals with 3000 sample points. Choose a random mixing 
matrix ܣ, which met the requirement mean was 0 and variance was 1 and obtain the following: 

ܣ = −0.4913 −1.5350 0.0936 −1.02030.6577 1.7528 1.5801 1.12781.4361 1.2831 0.2448 2.2325 ൩. 
Mixed the source signals with Eq. (1) without noise and then obtained the observed signals. 

The Fig. 3 showed the source signals and observed signals. The vertical coordinate indicated 
amplitude of signals and the unite is voltage. 

According to the proposed method, the observed signals were decomposed by EMD and Fig. 4 
showed the EMD results of observed signals. 

 
a) Four simulation signals 

 
b) Three observed signals 

Fig. 3. Plots of source signals and observed signals 

a) EMD result of observed signal 1 b) EMD result of observed signal 2
 

c) EMD result of observed signal 3 
Fig. 4. EMD results of three observed signals 

The normalized kurtosis values were calculated by Eqs. (3) and (4) and then reconstructed. 
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The Fig. 5 showed the corresponding results. 
With the processing steps of proposed method, it can obtain the separated signals and the 

resulting signal waveforms were shown in Fig. 6. The ܺ-axis value indicated the sample dots and ܻ-axis value indicated the amplitude of signals and its unit was voltage. 

 
a) IMF normalized kurtosis and reconstructed observed signal 1 

 
b) IMF normalized kurtosis and reconstructed observed signal 2 

 
c) IMF normalized kurtosis and reconstructed observed signal 3 

Fig. 5. Observed signals IMF normalized kurtosis distributions and reconstructed signals 

 
Fig. 6. Separation results with proposed method 

4.2. Evaluation of separation results 

This study used the Pearson correlation coefficient as the evaluation index of the separation 
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result. The Pearson correlation coefficient is a statistical index that reflects the degree of 
correlation between variables. The degree of correlation between two variables is indicated by the 
multiplication of the deviation. The deviation refers to the difference between a single value and 
the average. The Pearson correlation coefficient is notated asr. The correlation coefficient of two 
variables ݔ and ݕ can be expressed as: 

௫௬ݎ = ݊ ∑ ݕݔ − ∑ ݔ ∑ ඥ݊ݕ ∑ ଶݔ − (∑ ଶ(ݔ ඥ݊ ∑ ଶݕ − (∑ ଶ(ݕ , (12)

where the value of ݎ is between –1 and +1, that is, –1 ≤ ݎ ≤ +1. The closer to 1 |ݎ| is, the closer 
the linear relationship between the two variables is, which indicates that the separated output 
signal ݕ is the estimate of the source signal ݔ. If |ݎ| is closer to 0, then ݕ is not the estimate of ݔ. 

According to Eq. (12), the Pearson coefficients of separation results with proposed method 
were listed in the Table 1. 

Table 1. Correlation coefficient of separated signals and source signals 
Correlation coefficient ଵܵ ܵଶ ܵଷ ܵସଵܻ 0.0045 0.9730 0.0175 –0.0123 ଶܻ –0.9943 0.0271 –0.0248 –0.0038 ଷܻ –0.0107 0.0190 0.0173 0.9872 ସܻ 0.0117 0.0403 –0.9761 –0.0186 

It can be seen from Table 1 that the separated signal ଵܻ was the estimate of the source signal ܵଶ; ଶܻ was the estimate of ଵܵ, ଷܻ was the estimate of ܵସ and ସܻ was the estimate of ܵଷ. The Pearson 
coefficients indicated that the source vibration signals were well separated by the proposed  
method. 

5. Experiment data acquisition and analysis 

5.1. Leak vibration signals acquisition 

Considering the safety, cost, and other aspects, the leakage experiment for a pressure pipeline 
was conducted using air rather than gas (Fig. 7(a)). By using a pressure relief valve, the air flow 
in the pipeline was maintained at 3.1 m/s. The pressure pipeline used was a seamless steel pipe 
commonly used in constructing high-pressure pipeline branches. The pipe wall was 4 mm thick, 
the pipe’s interior diameter was 100 mm, and the length was 100 m. The pressure pipe welding 
process was used to connect the pipes. Except for the leak part, the pipeline was covered with 
20 cm thick sand. In the experiment, we collected vibration signals from three types of sources: 
the leak, a moving car, and excavation (such as digging). The vibration signals from the latter two 
sources were considered as the interference signals. The car moved on a rough cement road at 15 
to 20 km/h, and the road was 2 to 3 m away from the pipeline. The cement block, which was struck 
by a splitter to generate vibration, was 5 m away from the leakage hole. Fig. 7(b) showed the 
layout of pipeline and stimulated interference sources. 

The simulated pipeline leak hole was blocked with a ball valve, and the arrangement for the 
field experiment was shown in Fig. 8. These stimulated leak holes were different apertures that 
2 mm, 3 mm, 4 mm and 5 mm, respectively. The pressure gage was used to indicate the pressure 
in the pipeline. 

A piezoelectric sensor was installed as shown in Fig. 9 to collect the vibration signals 
according to the principle of stress wave propagation. 

The components of the vibration signal acquisition system and the relevant parameters were 
as follows. The piezoelectric sensor with a sensitivity of 0.02 pC/ms-2 and a response frequency 
range of 0.5 to 20 kHz was selected to collect the vibration signals due to the leak, moving car, 
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and digging. By analyzing the frequency spectrum of these three types of signals, the frequency 
range of the useful leak vibration signals was found to be between 1 to 8.5 kHz. Then, a 
piezoelectric sensor with a sensitivity of 4 pC/ms-2 and a response frequency range of 1 to 10 kHz 
was used to collect the mixed signals. The sampling rate of the data acquisition channel 
corresponding to each sensor was 50 k sample/second.  

 
a) Schematic of experimental system 

 
b) Layout of pipeline leak detection sensors and stimulated vibration interferences 

Fig. 7. Schematic experiment system and layout 

Fig. 8. Experiment schematic of simulated leaks with 
different apertures 

 
Fig. 9. Experimental installation of piezoelectric 

sensor 

5.2. Vibration signals separation and evaluation 

In the experiment, the different types of interference signals and stimulated leak vibration 
signals were first individually collected as the preference source signals and the observation 
signals were then collected from dual-channel sensors. The time-domain waveforms of the 
reference vibration source signals of leakage, moving car, and digging that were collected in the 
experiment were shown in Fig. 10. The ܺ-axis value indicated the sample points and ܻ-axis value 
indicated the amplitude of signals and its unit is voltage. 

Fig. 11 showed the dual-channel mixed signals of the leak, moving car, and digging obtained 
by the vibration signal acquisition modules in the same environment. The ܺ-axis value indicated 
the sample dots and ܻ-axis value indicated the amplitude of signals and its unit was voltage. 

After preprocessing the experimental signal, EMD was used to decompose the vibration 
signals collected by Sensors 1 and 2, respectively. The EMD decomposition results for Sensor 1 
were shown in Fig. 12. The “res” in the figure denoted the residual component.  

These IMF components were different from each other. The IMFs’ normalized kurtosis values 
were calculated and analyzed and then principal IMF components were chosen for reconstruction. 
Fig. 13(a) shows the IMFs’ normalized kurtosis characteristics corresponding to the signals 
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collected by sensors shown in Fig. 11. From the processing results, most features of Sensor 1 
signal were contained in IMF4 and IMF5. The normalized kurtosis of IMF4 accounted for more 
than 80 % of total kurtosis, and the sum of normalized kurtosis of IMF4 and IMF5 accounted for 
more than 95 %. The features of Sensor 2 were mainly contained in IMF3-IMF5. After analysis, 
the principal characteristic vectors selected in this study were IMF4 and IMF5 of Sensor 1 and 
IMF3-IMF5 of Sensor 2. The reconstructed vibration signal waveforms of Sensors 1 and 2 were 
shown in Fig. 13(b). 

 
Fig. 10. Time-domain waveform of three reference 

vibration signals 

 
Fig. 11. Waveforms of signals acquired from dual 

channel sensors 

 
Fig. 12. EMD decomposition results for Sensor 1 vibration signal 

The originally observed signals and the reconstructed vibration signals comprised the new 
observation signals. The new observation signals were separated with the JADE algorithm, and 
the resulting signal waveforms are shown in Fig. 14. The ܺ-axis value indicated the sample dots 
and ܻ-axis value indicated the amplitude of signals and its unit was voltage. 

By comparing the results in Fig. 10 and Fig. 14, it can be readily seen that the time-domain 
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waveforms of the three separated vibration signals as shown in Fig. 10 were essentially the same 
as the source signals shown in Fig. 14, and that the leak vibration signal was well separated. 
Compared with the source signals in Fig. 10, the amplitudes of the three separated vibration signals 
in Fig. 14 changed and the orders of separated results were not consistent with that of the source 
signals. This was mainly due to the two uncertainties involved in BSS. 

 
a) Normalized kurtosis of observation vibration 

signals 

 
b) Reconstructed signals of dual-channel sensors 

 
Fig. 13. Normalized kurtosis and reconstructed vibration signals of dual-channel sensors 

The separated vibration signals ଵܻ, ଶܻ, and ଷܻ were compared with source signals ଵܵ, ܵଶ, and ܵଷ. Eq. (12) was used to calculate the correlation coefficient of separation signals and source 
signals. Table 2 listed the results.  

It can be seen from Table 2 that the separated signal ଵܻ was the estimate of the source signal ଵܵ; ଶܻ was the estimate of ܵଷ and ଷܻ was the estimate of ܵଶ. The Pearson coefficients indicated 
that the source vibration signals were well separated by the proposed method. 

Fig. 14. Estimated source vibration signals 

Table 2. Correlation coefficient of separated signals 
and source signals 

Correlation coefficient ଵܵ ܵଶ ܵଷ ଵܻ 0.9365 0.0696 0.0064 ଶܻ 0.1211 –0.0291 0.9970 ଷܻ 0.0434 0.8140 0.0315 
 

The processing result of the acquisition signals of dual-channel sensors used in the experiment 
indicated that using EMD and the reconstruction according to IMFs’ kurtosis characteristics, the 
proposed method realized the increased dimension of the observed vibration signals and changed 
UBSS to the positive definite or overdetermined case. Additionally, the method could also mine 
information deeply hidden in the leak vibration signal, to obtain the characteristics of the leak 
vibration signal. It can be seen from Fig. 10 and Fig. 14 that although there were some errors in 
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the separation results, the total separation effect was relatively satisfactory. 

6. Conclusions 

This paper proposed a UBSS method to effectively extract the leak vibration signals from a 
gas pipeline by utilizing the advantages of EMD and JADE. Through analysis and processing of 
EMD results, the underdetermined blind vibration source separation problem was solved by 
converting the underdetermined case to an overdetermined case. Experimental results show that 
this method can effectively separate the mixed signals and extract the leak vibration signal. As the 
method can be applied to source separation when source signals are more than observation signals 
as well as when source signals are fewer than observation signals, the proposed method is of great 
significance to the development of actual pipeline leak signal extraction. 

The digging or traffic vibration signals stimulated in this study were some of the known 
artificial interference sources for which good separation results were obtained in the experiment. 
However, the efficacy of this method was not satisfactory when separating the interference 
vibration signals that cannot be modeled by a uniform law because of various unpredictable  
factors. Identifying and removing such interference vibration signals and extracting the signals 
produced by a pipeline leakage rapidly and effectively were still key issues that we will study in 
the future. 
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