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Abstract. The paper presents a method of the kinematic excitation courses identification in 
excitation points, based on the car road test acceleration at different measurement points. For the 
purpose of the laboratory fatigue life investigation of contemporary complex structures (e.g. cars 
bodies) and components of these structures (i.e. cars roofs), only a few first vibration modes are 
usually taken into account. During real life tests (i.e. road tests), accelerations at the selected points 
and along the defined directions are recorded. Subsequently, appropriate information about the 
measured acceleration allows us to identify such kinematic excitation function on the laboratory 
stand, whose result is the same as during the real road test. Thanks to the proposed approach, 
further time-consuming fatigue experiments can be performed on the laboratory stand. 
Keywords: structural dynamics, finite element method, fatigue life, modal analysis. 

1. Introduction 

Fatigue life investigation plays principal role in scope of operation of various transportation 
means. The reason lies in necessity of considering the fatigue phenomenon caused by a number 
of load cycles in a range of 109 (so called, the gigacycle fatigue strength). Also this is well known 
that the experimental research is only one source of trustworthy data for the strength calculations. 
In fact, this is inconvenient to perform fatigue life tests of the complex structures like car roofs in 
the terrain. Moreover, the latter is impossible all the more so as in a range of the gigacycles. Such 
tests are usually performed on special laboratory stands.  

There is a need to find out how the examined structure should be kinematically excited on the 
laboratory stand in order to achieve similar levels of accelerations in the selected measuring points 
as if the tests were performed on the real road. Such task of open-loop control requires solving the 
problem of dynamics of the investigated system. It requires integrating dynamics equation of the 
system of large dimensions with small step of integration; thus time of the computation may be 
large. Fortunately only a few first vibration modes of the investigated system are usually 
considered, so that the appropriate modal model can be introduced. 

2. Methodology 

General concept of the investigation depends on measurement of car body accelerations during 
operational tests in the terrain conditions within limited period of time. They allow to determine 
kinematic excitations of the vehicle wheels. Subsequently, the determined functions of kinematic 
excitation will allow to perform the car body fatigue test on laboratory stand, in a range of 
gigacycles. 

At a current step of investigation, are inaccessible as well car for operational research as 
suitable laboratory stand for fatigue investigations. However, the authors dispose parametres of 
the car body modal model, which satisfies ability of the fatigue life computer simulation. Such 
simulation research is based on one technique of the mechatronic design, which is called virtual 
prototyping [1]. Following steps are required.  

– Desired function of kinematic excitation is obtained from fragmentary road tests. 
– Solution of dynamic equation of the car body calculation model. 
– Determination of the desired function of vibration acceleration as response to the desired 
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kinematic excitation. 
– Identification (reconstruction) of simulated function of the excitation. 
– Solution of dynamic equation of the car body calculation model. 
– Determination of simulated function of vibration acceleration as response to the simulated 

function of excitation. 
– Comparison of the simulated and the desired functions of vibration acceleration. 
Matrix equation of the discrete system dynamics:  ܙۻሷ + ሶܙۺ + ܙ۹ = (1) ,܎

may be written in such a way that are separated: subsystem of the unknown motion and known 
load, subsystem of the known motion and unknown load, and subsystems of the mutual 
interactions [2]: 

ቈۻ௜௜ ௜௚்ۻ௜௚ۻ ௚௚቉ۻ ൜ܙሷ ௜ܙሷ ௚ൠ + ቈۺ௜௜ ௜௚்ۺ௜௚ۺ ௚௚቉ۺ ൜ܙሶ ௜ܙሶ ௚ൠ + ቈ۹௜௜ ۹௜௚۹௜௚் ۹௚௚቉ ൜ܙ௜ܙ௚ൠ = ൜܎௜܎௚ൠ. (2)

Next we express Eq. (2) as a set of two matrix equations: 

ቊۻ௜௜ܙሷ ௜ + ሷܙ௜௚ۻ ௚ + ሶܙ௜௜ۺ ௜ + ሶܙ௜௚ۺ ௚ + ۹௜௜ܙ௜ + ۹௜௚ܙ௚ = ሷܙ௜௚்ۻ,௜܎ ௚ + ሷܙ௚௚ۻ ௚ + ሶܙ௜௚்ۺ ௜ + ሶܙ௚௚ۺ ௚ + ۹௜௚்ܙ௜ + ۹௚௚ܙ௚ = ,௚܎ (3)

or, after rearrangement: 

ቊۻ௜௜ܙሷ ௜ + ሶܙ௜௜ۺ ௜ + ۹௜௜ܙ௜ = ௜܎ − ሷܙ௜௚ۻ ௚ − ሶܙ௜௚ۺ ௚ − ۹௜௚ܙ௚,ۻ௜௚்ܙሷ ௚ + ሷܙ௚௚ۻ ௚ + ሶܙ௜௚்ۺ ௜ + ሶܙ௚௚ۺ ௚ + ۹௜௚்ܙ௜ + ۹௚௚ܙ௚ = .௚܎ (4)

First equation of the above subsystem is the matrix equation of the dynamics of the system 
with unknown motion at the reduced excitation (i.e. both load and kinematic). Second equation is 
used to compute dynamic reactions. Let us investigate only the first equation of the system of 
Eq. (4), which will be transformed to modal coordinates: શ௜் ሷ܉௜௜શ௜ۻ ௜ + શ௜் ሶ܉௜௜શ௜ۺ ௜ + શ௜் ۹௜௜શ௜܉௜ = શ௜் ൫܎௜ − ሷܙ௜௚ۻ ௚ − ሶܙ௜௚ۺ ௚ − ۹௜௚ܙ௚൯, (5)

by the use of transformation: ܙ௜ = શ௜܉௜, (6)

where: શ௜ = ሾશ௜ଵ શ௜ଶ … શ௜,௜೘ሿ – matrix of modal displacements’ vectors of the subsystem 
with unknown motion, ܉௜ = ሾܽ௜ଵ ܽ௜ଶ … ܽ௜,௜೘ሿ  – vector of modal coordinates of the 
subsystem with unknown motion, ݅௠ – the number of modal coordinates.  

If the matrix of modal displacements’ vectors શ௜ is M-orthonormal, then Eq. (5) becomes: ܉ሷ ௜ + ሶ܉௜ષ௜܈2 ௜ + ષ௜ଶ܉௜ = શ௜் ൫܎௜ − ሷܙ௜௚ۻ ௚ − ሶܙ௜௚ۺ ௚ − ۹௜௚ܙ௚൯, (7)

where: ષ௜ = ݀݅ܽ݃ሾ߱௜ଵ ߱௜ଶ … ߱௜,௜೘ሿ – matrix of angular frequencies of the subsystem with 
unknown motion, ܈௜ = ݀݅ܽ݃ሾߞ௜ଵ ௜ଶߞ … ௜,௜೘ሿߞ  – matrix of dimensionless damping 
coefficients of the subsystem with unknown motion. 

Modal parameters શ௜, ષ௜, ܈௜ of the subsystem with unknown motion can be obtained with the 
use of the experimental modal analysis techniques [3, 4]. 

Let us consider measurements signals’ vector acquired by the accelerometers mounted on 
vibrating subsystem with the unknown motion. These signals can be expressed as: 
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݅ܡ = ሾ1ݕ 2ݕ ,ሿ்ܿ݅ݕ (8) 

where: ݅௖ – number of the signals.  
Vector of measured signals is related to the vector of generalized accelerations and the vector 

of modal accelerations of the subsystem with the unknown motion by following output equation 
݅ܡ :[5] = ۱݅શ݅܉ሷ ݅ = ۱શ݅܉ሷ ݅, (9) 

where: ۱௜  – matrix of outputs of the subsystems with unknown motion, ۱શ௜ = ۱௜શ௜  – modal 
matrix of outputs of the subsystem with unknown motion. 

By using following transformation: ۱શ݅ܶ ݅ܡ = ۱શ݅ܶ ۱શ݅܉ሷ ݅, (10) 

we obtain: 

ሷ܉ ݅ = ቀ۱શ݅ܶ ۱શ݅ቁ−1 ۱શ݅ܶ .݅ܡ (11) 

Calculation of the vector of modal accelerations ܉ሷ ௜  is possible only if a number of its 
components is not greater than the number of components of the vector of measurement signals ܡ. Otherwise matrix expression inverted in Eq. (10) will be singular. 

Let us consider Eq. (7) considering a few simplifications, i.e.: 
– Excitation by the generalized forces vector is neglected ሺ܎௜ ≡ ૙ሻ, 
– Matrices of damping and inertia of the interactions subsystem are zeroes. ( ௜௚ۻ ≡ ૙ ௜௚ۺ  , ≡ ૙). 
Thus Eq. (7), after simplifications, has a form: ܉ሷ ݅ + ሶ܉ષ݅݅܈2 ݅ + ષ2݅݅܉ = −શ݅ܶ .݃ܙ۹݅݃ (12) 

And after transformations: ۹݅݃ܶશ݅൫܉ሷ ݅ + ሶ܉ષ݅݅܈2 ݅ + ષ2݅݅܉൯ = −۹݅݃ܶશ݅શ݅ܶ ,݃ܙ۹݅݃ (13) 

we obtain vector of generalized coordinates of the subsystem with known motion: 

݃ܙ = − ቀ۹݅݃ܶશ݅શ݅ܶ ۹݅݃ቁ−1 ሷ܉શ݅൫ݍܶ݅ࡷ ݅ + ሶ܉ષ݅݅܈2 ݅ + ષ2݅݅܉൯. (14) 

It is, at the same time, vector of sought kinematic excitations, required as the input for the 
measured output responses vector ܡ of the subsystem with unknown motion. It is only possible to 
compute vector of generalized coordinates ܙ௚ if its dimension is not greater than dimension of the 
modal coordinates’ vector ܉௜. Otherwise the matrix expression inverted in Eq. (14) will be singular. 

In this simplified approach only the knowledge about the stiffness properties (components of 
stiffness matrix ۹௜௚) of the subsystem of mutual interaction is required for the computation of the 
kinematic excitation functions ܙ௚ሺݐሻ. Elements of the stiffness matrix ۹௜௚ can be usually easily 
obtained as they are results of the stiffness properties of the elements being kinematically excited. 
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Fig. 1. Model of the structure. Red ݔ – excitations points, blue dots – measurement points 

 
Fig. 2. Exemplary time displacements of the structure for node 56,  

green line – simulated plot, blue dotted line – measured plot 

3. Computer simulation 

Model of the structure is presented in Fig. 1. It is mainly based on beam elements, but there 
are also applied mass, spring and damping elements. The model was kinematically excited along 
vertical direction in four nodes 56, 262, 267 and 273. The responses were registered along three 
directions in ten nodes 1, 11, 17, 34, 72, 86, 88, 89, 288 and 296. Time modal history was 
synthesized with the use of the twelve first modes for the period of time 2 s and step of integration 
0.001 s. 

All twelve modal displacements were identified with the use of Eq. (11). Then the generalized 
coordinates of the subsystem with the known motion ܙ௚ሺݐሻ  were computed with the use of 
Eq. (14). Results for the selected node 56 are presented in Fig. 2. The obtained signals are nearly 
identical with the given one. 

4. Conclusions 

The results of computer simulation (virtual prototyping) showed very good compliance of the 
given signals of kinematic excitation with the computed ones. The latter also concerns conformity 
of the desired and simulated vibrations of the car body. It is possible to effectively compute 
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kinematic excitations’ functions, even if the simulated and given signals are not the same. 
Numerical computations are effective due to the use of modal model of the car body. In case of 
real structures, modal model can be easily obtained with the use of experimental modal analysis 
techniques. Thus, the modal model parameters obtained during real experiments, can be applied 
for a purpose of virtual prototyping. 

It should be noted that despite ability of good adjustment of the kinematic excitation function 
to real working conditions of the structure, virtual prototyping would not give an answer to the 
question what the fatigue endurance is. In order to determine fatigue endurance, suitable 
programme of experiments should be performed on the laboratory stand (number of cycles in a 
range of 109), at kinematic excitation determined on a stage of virtual prototyping. 

The economic criterion is fulfilled in the end. Laboratory investigations are cheaper than 
testing of ready transportation means during their routine operation.  
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