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Abstract. In the classic ߜ model, there is only one threshold for maintenance decision. Taking the 
different levels of failures causing by shocks into account, the interval between successive shocks 
and different thresholds should be considered when making replacement decision. This paper 
proposes a replacement policy based on multi-threshold for a deteriorating system which is subject 
to ߜ-shock. This approach assumes the failure thresholds will geometrically decrease with the 
increasing repair times, and. The optimal replacement policy ܰ  is determined by using this 
method, and the average cost in life cycle is minimized. A numerical case study is conducted to 
validate the related concept and maintenance decision-making model. The results indicate that the 
proposed method can effectively optimize the maintenance policy and minimize the life-cycle 
cost. 
Keywords: improved ߜ-shock  model, failure threshold ߜ,  geometric process, replacement  
policy ܰ. 

1. Introduction 

It is generally known that the maintenance decision-making is based on the assumption “A 
repairable system is as good as new after maintenance” in the earlier research. That is so-called 
“the perfect repair”. For a deteriorating system, it is not always as true as it is. With the 
performance degradation of the system, it maybe need much more time to restore it. Barlow and 
Hunter [1]. first introduced the minimal repair model. In this model, the system continued to run 
after repair, while the failure rate after repair would be as well as before. Brown and Proschan [2] 
put forward an imperfect repair model, and a perfect repair with probability   and minimal 
maintenance with probability 1 −  In addition, Lam and Stanley et al has done much related .
research [3-4]. ߜ-shock is one of the shock model, and proposed by Lam Yeh at first. In the ߜ-shock model, 
a shock is fatal if the interval between this and last shock arrival time is not greater than a specified 
threshold ߜ. The threshold ߜ is usually a constant. Wang Guan Jun [5] studied the ߜ-shock model 
for the optimal replacement policy based on the random variable ߜ. Wang Xiao Lin et al. [7] 
assumed that the system has two kinds of failure mode, and established an imperfect repair model 
by constraint of availability. Recently, Chen guoqing and Lam Ling et al. [7] proposed a 
multi-threshold method for reducing the system operation cost and optimizing the replacement 
policy [7]. 

In summary, the ߜ-shock model has been applied in many cases of deteriorating law, and so 
has geometric process in maintenance. However, there are still some problems: 1) Rarely 
considering the combine the ߜ-shock model with geometric process to establish the deteriorating 
system maintenance policy; 2) Seldom considering the maintenance policy by constraint of 
availability; 3) Although some literatures have already considered different failure state, the 
probability of different failure state is not clear. To solve the above problems, we propose the 
improved ߜ-shock model.  
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2. Definition and assumption  

Definition 1 [8]. Given two random variables ܺ and ܻ,  ܲ(ܺ > ܽ) ≥ ܲ(ܻ > ܽ) if for all real ݐ;Then ܺ is called stochastically larger than ܻ or ܻ is stochastically less than ܺ. This is denoted 
by ܺ ≥ (≤)ܺାଵ. 

Definition 2. A stochastic process ሼ߬, ݊ = 1,2, ⋯ ሽ is called a geometric process (GP), if there 
exists a real ܽ > 0, such that ሼܽିଵ߬, ݊ = 1,2, ⋯ ሽ forms a renewal process (RP). Real number ܽ 
called the ratio of the GP. 

The ߜ-shock maintenance model for a deteriorating system is introduced here by making the 
following assumptions. 

Assumption 1. At the beginning a new system is installed. Whenever the system fails, it will 
be repaired or replaced. The system will be replaced by an identical new one sometime later. The 
system requirement is that the system steady availability is not less than ܣ. 

Assumption 2. In ߜ-shock model, the shocks will arrive according to a renewal process with 
inter-arrival times having a general distribution (ݐ)ܨ. 

Assumption 3. In ߜ-shock model, if the system has been repaired for ݊ times (݊ = 1,2, ⋯ ), 
the threshold of a failure shock will be ܾߜ (ܾ > 1) where ܾ is the rate and ߜ is the threshold of 
a failure shock for a new system. This means that whenever the time to the first shock following 
the nth repair or an inter-arrival time of two successive shocks after the ݊th repair is less than ܾߜ, 
the system will fail. During the repair time, any shock arriving when the system is ineffective, 
under repair 

Assumption 4. In the improving ߜ-shock model, Assume that the system has two failure 
threshold ߜଵ, ߜଶ, (ߜଵ > ݐ ଶ). If shock interarrival time of two successive shocksߜ ∈ ,ଶߜ)  ଵ), theߜ
failure system is the first type of failure state, and the system need repair; If the failure system is 
the second type of failure state, we need replace a new system. 

Assumption 5. Assume that  is condition probability of the ݅th type (݅ = 1,2) failure state 
when system occurs the ݇th failure. Then under Assumptions 2, the system failure probability is ݐ) < ܾିଵߜଵ) =  :and ,(ଵߜିଵܾ)ܨ

ଵ = (ଵߜିଵܾ)ܨ − (ଵߜିଵܾ)ܨ(ଶߜିଵܾ)ܨ , ଶ =  .(ଵߜିଵܾ)ܨ(ଶߜିଵܾ)ܨ
Assumption 6. By applying the replacement policy ܰ, the system has been replaced by an 

identical new one at the time following the ܰth failure of the 1th failure. The replacement time is 
a random variable ܼଵ with ܧ(ܼଵ) =  ଵ; When the system is subject to the 2th kind failure, theߚ
failure is deadly, the system must be replaced immediately; The replacement time is a random 
variable ܼଶ with ܧ(ܼଶ) =  .ଶߚ

Assumption 7. Let ܻ be the repair time of the system after the ݅th failure. Then the repair time 
constitutes a GP with ratio ߠ. Thus ܧ( ܻ) =  .ߤିଵߠ

Assumption 8. The repair cost has a constant rate ܿ, and the unit reward when the system is 
operating has a GP with ratio ݇ (0 < ݇ ≤ 1), this is ܿ௪ = ܿ௪݇. The replacement cost comprises 
two parts: the basic replacement cost ܴ,and The other ones are cost proportional to the replacement 
time ܼଵ at a constant rate ܿଵ and the replacement time ܼଶ at a constant rate ܿଶ. 

Remarks 
First, Policy ܰ we adopt in Assumption 3 we explain the reason of using replacement policy ܰ. Besides policy ܰ, policy ܶ is also applied, by which the system will be replaced by an identical 

new one at a stopping time ܶ. However, for the long-run average cost case, policy ܰ∗ is at least 
as good as an optimal policy ܶ∗. Thereafter Lam proved that the above result is true. 

Second, for a deteriorating system, it will be more fragile and easier to break down after repair. 
As a result, the failure threshold ߜ of the system will be increasing with the number of repairs 
taken; the operating reward of the system will be smaller and smaller, while the consecutive repair 
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times of the system will be longer and longer. Assumption 3, 7 and 8 are approximated to the 
geometric process of the above situations. 

Third, due to ageing effect and accumulated wearing, it is reasonable to assume that the reward 
operating for a deteriorating system form a decreasing GP, and the consecutive repair times for 
the system constitute an increasing GP. This is not only based on our general knowledge but also 
on the result in real data analysis, and Lam and Chan have studied related research. It was shown 
that on average the GP model has been applied to the maintenance problems is reasonable. 

3. Determining the length of a renewal cycle  

First of all, we define a cycle is completed if a replacement is completed. Therefore, a cycle is 
actually either a time interval between the installation of a system and the first replacement or a 
time interval between two consecutive replacements. 

Now, assume a replacement policy ܰ  is adopted. Let ܹ  be the length of a cycle under 
replacement policy ܰ; Assume that ଵܲ  is ܰ times of failure are first one and ଶܲ  is before the (݉ − 1) times of failure are first failure, the first is the second in the ݉ time; it follows from 
Assumption 6 that: 

(ܹ)ܧ = ܧ ൭ ܺே
ୀଵ +  ܻேିଵ

ୀଵ + ܼଵ൱ ଵܲ +  ܧ ൭ ܺ +  ܻିଵ
ୀଵ + ܼଶ

ୀଵ ൱ே
ୀଵ ଶܲ. (1) 

It follows from Assumption 4 and Assumption 5 that ଵܲ = ∏ ଵேୀଵ , ଶܲ = ∏ ଵ ∙ ଶିଵୀଵ . 
According to the analysis method of the length of a renewal cycle, we can get the operating 

time in a renewal cycle ܷ(ܰ), then: 

൫ܷ(ܰ)൯ܧ = ܧ ൭ ܺே
ିଵ ൱ ෑ ଵே

ୀଵ +  ܧ ൭ ܺ
ୀଵ ൱ ෑ ଵ ∙ ଶିଵ

ୀଵ
ே

ୀଵ . (2) 

Further, based on the renewal theorem, we can get the system of steady-state availability ܣ(ܰ): 
(ܰ)ܣ = (ܹ)ܧ൫ܷ(ܰ)൯ܧ . (3) 

Let the cost be ܥ(ܰ), It follows from Assumption 7 with the help of Eq. (1) that it is easy to 
get the cost of a renewal cycle: 

C(ܰ) =  ൭ܿ  ܻ − ܿ௪ேିଵ
ୀଵ  ݇ܺ + ܴ + ܿଵܼଵே

ୀଵ ൱ ෑ ଵே
ୀଵ      +  ൭ܿ  ܻିଵ

ୀଵ − ܿ௪  ݇ܺ + ܴ + ܿଶܼଶ
ୀଵ ൱ ∙ ෑ ଵିଵ ∙ ଶିଵ

ୀଵ
ே

ୀଵ
(4) 

൯(ܰ)ܥ൫ܧ = ൭ܿ  )ܧ ܻ) − ܿ௪ேିଵ
ୀଵ  ݇ ∙ (ܺ)ܧ + ܴ + ܿଵܧ(ܼଵ)ே

ୀଵ ൱ ∙ ෑ ଵே
ୀଵ  

      +  ൭ܿ  )ܧ ܻ) − ܿ௪ିଵ
  ݇ ∙ (ܺ)ܧ + ܴ + ܿଵܧ(ܼଵ)

ୀଵ ൱ே
ୀଵ ෑ ଵே

ୀଵ  

      +  ൭ܿ  )ܧ ܻ) − ܿ௪  ݇ܧ(ܺ) + ܴ + ܿଶܧ(ܼଶ)
ୀଵ

ିଵ
ୀଵ ൱ ∙ ෑ ଵ ∙ ଶିଵ

ୀଵ
ே

ୀଵ . 
(5) 
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Let the average cost be ܿ(ܰ), according to the renewal theorem, ܿ(ܰ) is given by: 

ܿ(ܰ) = (ܹ)ܧ൯(ܰ)ܥ൫ܧ . (6)

4. Establishing maintenance policy model 

Now, by using Eq. (2-6), it is easy to get the explicit expression of the long-run average cost 
per unit time is derived on the constraint of availability: 

݉݅݊ ቊܧ൫ܥ(ܰ)൯ܧ(ܹ) ቋ .ݏ      , ݐ ቊܧ൫ܷ(ܰ)൯ܧ(ܹ) ቋ ≥ .ܣ (7)

To solve the above model, the main problem is to solve out ܧ൫ܥ(ܰ)൯, ܧ൫ܷ(ܰ)൯, ܧ(ܹ), it 
from Eq. (4) and (5) know that it is key to get ܧ(ܺ) )ܧ , ܻ) (ଵܼ)ܧ , (ଶܼ)ܧ ,  and  ܧ(ܼଵ) = (ଶܼ)ܧ ,ଵߚ =  .(ܺ)ܧ ଶ, thus, the problem is reduced to find the valuesߚ

Let ܯ  be the shock time of the system following the ݊th operating, denote the system is 
subject to ܯ − 1 time shock without failure, and in the ܯ shock to fail. It is easy that ܯ obey 
to the geometric distribution. Therefore: ܯ) = ݈) = ߬) > ܾିଵߜଵ)ିଵ ∙ ߬) < ܾିଵߜଵ) = ሾ1 − ݈ ,(ଵߜିଵܾ)ܨሿିଵ(ଵߜିଵܾ)ܨ = 1,2, ⋯. (8)

Let ܸ be the shock inter-arrival time of the ݅th shocks time of the system following the ݊th 
operating (݅ = 1,2, ⋯ ,  :). Henceܯ

)ܧ ܸ| ܸ > ܾିଵߜଵ) =  ାஶషభఋభ1ݐ݀(ݐ)݂ݐ − ,(ଵߜିଵܾ)ܨ (9)

൫ܧ ܸெ| ܸெ > ܾିଵߜଵ൯ =  షభఋభݐ݀(ݐ)݂ݐ (ଵߜିଵܾ)ܨ . (10)

It from Eq. (9-10) know that it is easy to get ܧ(ܺ): 

(ܺ)ܧ =  ܯ|ܺ)ܧ = ܯ)(݈ = ݈)ஶ
ୀଵ      =  (݈ − 1)  ାஶషభఋభ1ݐ݀(ݐ)݂ݐ − (ଵߜିଵܾ)ܨ +  షభఋభݐ݀(ݐ)݂ݐ (ଵߜିଵܾ)ܨ  ሾ1 − ஶ(ଵߜିଵܾ)ܨሿିଵ(ଵߜିଵܾ)ܨ

ୀଵ  
      =  (ଵߜିଵܾ)ܨାஶݐ݀(ݐ)݂ݐ =  (ఊ(ଵିߟݐ)−)ݔ݁ ∙ ቀߟݐቁఊିଵ ∙ ߟߛ ାஶݐ݀ 1 − (ఊ(ଵିߟݐ)−)ݔ݁ .

(11)

From what has been discussed above, we can get  ܣ(ܰ) and ܿ(ܰ). 

5. Example 

In this section, we through a numerical example for the validity of this model. Assume that the 
shocks will arrive according to a renewal process with interval having Weibull distribution  (ݐ)ܨ = 1 −  .related parameters settings are shown in Table 1 (ఊ(ଵିߟݐ)−)ݔ݁
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Table 1. Parameter setting table ߜଵ ߜଶ ܿ ܿ௪ ܿଵ ܿଶ ܴ ݇ ܾ ߠ ߤ ଵߚ ଶߚ  ߛ ߟ
4.5 1.5 30 80 50 80 400 0.85 1.02 0.75 6 2 4 10 2 

In combination the above parameters with the explicit expression of ܣ(ܰ) and ܿ(ܰ), by the 
numerical calculation, we can know the concrete result ܣ(ܰ) sand ܿ(ܰ), seeing in Table 2, and 
the trend of ܣ(ܰ) with ܰ is shown in Fig. 1, and the ܿ(ܰ) trend of with N is shown in Fig. 1. 
From Fig. 1 and Fig. 2 with help Table 2, it is easy that the min cost radio be ܿ(1) = −46.93 with 
the system of steady-state availability ܣ(ܰ) to the max, this is (1)ܣ = 0.95. In conclusion, the 
optimal replacement policy ܰ∗ is get. 

Table 2. The Result of ܿ(ܰ) and ܣ(ܰ) ܰ ܿ(ܰ) ܰ ܿ(ܰ) ܰ ܿ(ܰ) ܰ (ܰ)ܣ ܰ (ܰ)ܣ ܰ  (ܰ)ܣ
1 -46.93 6 -24.93 11 -13.44 1 0.95 6 0.82 11 0.59 
2 -40.22 7 -22.48 12 -12.11 2 0.91 7 0.79 12 0.53 
3 -35.14 8 -20.31 13 -10.91 3 0.88 8 0.75 13 0.48 
4 -31.08 9 -18.34 14 -9.84 4 0.86 9 0.71 14 0.43 
5 -27.75 10 -14.92 15 -8.89 5 0.84 10 0.65 15 0.39 

 

 
Fig. 1. ܿ(ܰ) against ܰ for Weibull distribution 

 
Fig. 2. ܣ(ܰ) against ܰ for Weibull distribution 

6. Conclusions and discussions 

In this paper, we proposed a ߜ-shock model based on multi-threshold. Based on different 
degrees of failure caused by different interval of two successive shocks, the different failure 
thresholds were made. The failure level was determined by the failure threshold ߜ . For a 
deteriorating system, it would be more fragile and much easier to break down after repair. We 
characterized the deterioration as following: 1) the failure threshold of the system will increase; 
2) the repair time will increase; 3) the reward of system operation will decrease, to make it much 
more close to the reality. In this paper, the optimal replacement policy N was presented 
analytically.  And it provided a numerical example to illustrate the proposed model, and validated 
the rationality of the method. It would have theoretical and practical significance for the analysis 
of the degradation system maintenance policy. 

In addition, the model applies to many reliability systems, for example electronic equipment, 
machinery and computer systems, which makes that the model is successful in a larger scale. In 
this model, we do not need specific distribution of correlated random variables, thereby, the model 
needs less constrains. To make the model more perfect and practical significance, further research 
is that preventive repair is taken into the model. Besides, as the system parameter, the threshold 
value can be estimated. Few papers studied it. A continuation of this work intends to investigate 
the parameter. 
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