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Abstract. A problem of rolling element bearings diagnostics is discussed in the paper. In the 
classical approach, time domain detectors (e.g. kurtosis) or frequency domain representation 
(envelope spectrum analysis) are used to identify a damage in bearings. However, in our case, the 
machine (copper ore crusher) produces randomly spaced in time heavy impulsive disturbances 
related to normal operation of the machine. It eliminates completely possibility of detection of 
damage in time domain or using analysis of the envelope spectrum of the raw vibration signal. It 
is well known that effectiveness of envelope analysis might be significantly improved if the signal 
is pre-processed before enveloping. Unfortunately, again, almost all known criteria based on 
maximization of impulsiveness of signal in time domain fail in this case. In the paper we propose 
to incorporate cyclostationarity instead of impulsiveness, namely we propose to perform the 
spectral coherence density analysis. 
Keywords: rolling element bearing, damage detection, cyclostationary analysis, non-Gaussian 
noise. 

 Introduction 

A problem of rolling element bearings diagnostics is discussed in the paper. In the classical 
approach, time domain detectors (e.g. kurtosis) [1, 3-9] or frequency domain representation 
(envelope spectrum analysis [20]) are used to identify damage in bearings [1]. However, for 
damage detection at early stages [2], when signal to noise ratio is poor/informative signal is weak 
[11], damage detection becomes difficult and requires advanced signal processing including 
decomposition, modeling, adaptive filtering, etc. [10-14]. In our case, the machine (copper ore 
crusher) produces randomly spaced in time heavy impulsive disturbances related to normal 
operation of the machine, similarly as reported in [15-16]. It makes impossible detection of 
damage in time domain, moreover due to very poor signal to noise ratio, even envelope spectrum 
analysis is not able to detect damage directly based on raw vibration. It is well known that 
effectiveness of envelope analysis might be significantly improved if signal is pre-processed 
before enveloping. Unfortunately, impulsiveness cannot be basis for signal extraction anymore. 
So, the commonly used kurtosis-based optimization of pre-filtering (kurtogram, spectral kurtosis) 
cannot be applied here. Moreover, it is known that damage signature depends on load applied to 
the machine. Thus we claim that these non-periodic, strong impulses are non-informative from 
diagnostic point of view and should be separated from informative part. After that, informative, 
cyclic impulses related to the damaged part of REB should be analysed with taking into account 
operating condition. However, first step is to detect if there is any damage. Promising approach is 
to search for cyclic/periodic nature of impulses [17-20]. An envelope analysis without pre-filtering 
do not provide acceptable results, so we focused on cyclo-stationary approach, namely spectral 
coherence density map [16-20]. 
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 Machine and experiment description 

The machine discussed here is a heavy duty crusher used in a mineral processing plant. The 
crusher is a kind of a machine which use a metal surface to crumble materials into small fractional 
pieces. During this process, as well as during entering material stream into the crusher, a lot of 
impacts/shocks appear. They are present in vibration signal acquired from the bearing’s housing. 
Several crushers were investigated. Vibration from bearings housing in horizontal and vertical 
direction and tacho signal have been measured using Endevco accelerometers Bruel Kjaer Laser 
probe, NI DAQ card and Labview Signal Express. Signals were acquired for idle mode as well as 
for different values of load (volume and granulation of material stream) with approx 120 s duration 
each. Sampling frequency was set to 25 kHz. 

 
Fig. 1. A crusher – general view (note bearings with yellow housing) 

 Preliminary analysis 

As mentioned, crushers are operating under non-stationary operating conditions that results in 
different values of amplitudes as well as frequency structure of acquired signals (see Figs. 2, 3). 

It is impossible to recognize fault based on time series or time-frequency map due to number 
of impulses related to crushing process other “normal” operation of the machine. As it was 
mentioned, due to difficulties with automatic and even manual (based on STFT) informative 
frequency band selection, an envelope analysis was performed without pre-filtering. Fig. 4 shows 
envelope and its spectrum. Based on documentation one should expect signature at fault frequency 
equal to 30 Hz. From Fig. 4 it is difficult to recognize the damage. 

 Application of spectral coherence density for detection of cyclic impulsive disturbance in 
presence of non-Gaussian impulsive noise 

The vibration signal from faulty bearings, so also our considered signals here are expected to 
exhibit the so called second-order cyclostationarity property (also called periodically correlated 
property, PC). Let us mention, the periodically correlated random processes of second-order are 
random systems in which there exists the periodic rythm in the structure that is generally more 
complicated than periodicity in the mean function of given signal [21]. We say the signal (ݐ)ݔ is 
cyclostationary with period ܶ if for each ݏ and ݐ the following properties are satisfied [22]: ݉(ݐ) = {(ݐ)ݔ}ܧ = ݐ)݉  ,ݐ)ݔܴ,(ܶ ߬) = ݐ)ݔ(ݐ)ݔ}ܧ − ߬)∗} = ݐ)ݔܴ  ܶ, ߬). (1) 

And there are no smaller values of ܶ  0 for which the above conditions hold. 
The periodically correlated processes posses very interesting properties. Therefore they found 

many practical applications like in hydrology [23], meteorology [24], economics [25] and 
electrical engineering [26]. 
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a) 

 
b) 

Fig. 2. Raw vibration signal a) whole observation and b) part of the signal – without and with load applied 
(top/bottom respectively) 

 
a) 

4  
b) 

Fig. 3. Time-Frequency map (STFT) of vibration signal idle mode a) and b) loaded machine 

a) Envelope 
 

b) Envelope spectrum of raw signal 
Fig. 4. Envelope and envelope spectrum of part of the signal (load was applied) 

Let us mention, one of the model that is can be used to description of the periodically correlated 
processes is periodic autoregressive moving average model (PARMA) which is an alternative to 
classical ARMA models uesd to description of stationary signals, [27].  

If the signal (ݐ)ݔ is considered to be second-order cyclostationary then, according to the 
definition of PC process, the autocorrelation function: ܴݐ)ݔ, ߬) = ݐ)ݔ(ݐ)ݔ}ܧ − ߬)∗}, (2)

is periodic with respect to ݐ and then it has a Fourier series expansion: ܴݐ)ݔ, ߬) =  (߬)݅ߙݔܴ ⋅ ∋݅ߙݐ݅ߙߨ2݆݁ , (3)

where the Fourier coefficients ܴ݅ߙݔ(߬) are known as the cyclic autocorrelation functions.  
The Fourier transform of the cyclic autocorrelation function at a given cyclic frequency ߙ 

then defines the cyclic power spectrum (CPS): ܵݔα݅(݂) = (4) .{(߬)α݅ݔܴ}ܨ
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If one consider set of CPS’s for all ߙ ∈  then we can get Spectral Correlation Density Map ,ܣ
(SCDM): ܵܥ௫ఈ(݂) =  ܵ௫ఈ(݂)ఈ∈௮ ߙ)ߜ − .(ߙ (5) 

In order to get a normalized version of SCDM it was proposed to use so called Spectral 
Coherence Map (SCM): 

ߙݔߛ = ݂)0ݔܥඥܵ(݂)ߙݔܥܵ  ݂)0ݔܥܵ(2/ߙ − (2/ߙ . (6) 

As shown in Fig. 5 at frequency 30 Hz and its 2nd and 3rd harmonics vertical lines appeared. 
They correcponds to damage signature. So, one might conclude that using SCDM representation 
detection of the damage is possible. Moreover there are also other excitations that are not identified 
at this stage. It will be a task for furhter research. 

It is clear that non-identified components mask damage signature. As reported in [16], there is 
a chance to „enhance“ SCD Map, as well as to extract signal of interest using advanced blind 
filtering algorithms [19]. 

 
Fig. 5. Spectral coherence density map (note excitation at 30 Hz and its harmonics) 

 Conclusions 

In the paper preliminary results regarding application of Spectral Coherence Density for 
detection of cyclic impulsive disturbance in presence of non-Gaussian impulsive noise are 
presented. The vibration signals come from the crusher – a machine used in a mineral processing 
plant for pre-processing of minerals. During operation of the machine a lot of impacts are 
generated due to falling down of material stream and and the crushing process. Thus, detection of 
damaged bearings is very difficult. It has been proved that known time domain indicators, 
time-frequency representation or even comonly used envelope spectrum fail. The Spectral 
Coherence Density allows to detect modulating frequency alpha and its harmonics that correspond 
to the bearing‘s fault frequency. Further research will be focused on extraction of the signal of 
interest. 
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