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Abstract. Field random vibration is usually non-Gaussian, which makes ordinary random 
vibration testing unable to simulate the fatigue damage that products will experience in field. A 
new method is proposed in this paper to synthesize running RMS-induced non-Gaussian vibration 
based on the probability distribution of running RMS (root mean square), which is simulated by 
using the two-parameter Weibull distribution. Shock response spectrum (SRS) is used to detect 
significant transients within signals. The synthesized non-Gaussian signal has the same PSD, 
kurtosis and PDF (probability density function) as the field data. Fatigue damage spectrum (FDS) 
is used as another proof of the effectiveness of this proposed new method. 
Keywords: non-Gaussian, random vibration, Weibull distribution, fatigue damage spectrum, 
shock response spectrum. 

1. Introduction 

Random vibration testing is usually used to bring a test item to failure to identify weaknesses 
in the product or to verify if the product can survive a particular random vibration environment. 
Historically, random vibration controllers accomplished this goal by producing a PSD (power 
spectral density) that would expose the test item to the type of vibratory environment that the test 
item would experience in a real-world setting. Since PSD does not contain phase information, 
vibration controllers always assume the phase of each frequency component follows a 0 to 2ߨ 
uniform distribution when producing time history using PSD. This leads to data with Gaussian 
distribution, which means an ordinary random vibration controller can’t simulate the real vibration 
environment when it is non-Gaussian. This situation did not change until commercial software 
which can control kurtosis of data was developed, for instance by Vibration Research Company 
[1]. Non-Gaussian vibration is usually encountered, especially in the road transportation domain 
[2, 3]. Actually, the probability of the amplitude exceeding 3ߪ  is only 0.27 % for Gaussian 
vibration, but up to 1.5 % for field data [1]. This difference may lead to totally different 
accumulated fatigue damage, because most fatigue damage is caused by 2 to 4[4] ߪ. When peak 
value exceeds 3ߪ, products fail quickly. MIL-STD810F points out that we should always check if 
the field tested data is non-Gaussian and the testing hardware and software is appropriate [5]. The 
time waveform replication (TWR) is frequently referred to as a methodology for non-Gaussian 
testing. The basic idea of TWR is to reproduce a sequence of instantaneous values of the vibration 
process. Such a test may be non-Gaussian, however this is only a replication of one particular 
measured record, not a simulation of a specified road type. Besides, MIL-STD810F says that TWR 
is usually used for controlling of transient signal or short time lasting random vibration [5]. With 
these drawbacks of TWR, many researchers present some other methods to simulate non-Gaussian 
vibration. Smallwood used three zero-memory nonlinear (ZMNL) functions to transform Gaussian 
vibration to non-Gaussian vibration [6, 7]. It was only later when this method was extended and 
modified into a method that can be used in the closed-loop frequency domain control mode [9, 10]. 
Steinwolf developed a special phase selection method [8-10]. Rouillard et al. presented a novel 
technique by which non-Gaussian vibrations are synthesized by generating a sequence of random 
Gaussian processes of varying RMS levels and durations [11-16]. John et al. studied the 
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relationship between kurtosis and fatigue damage spectrum (FDS) [17]. 
A new method is proposed in this paper to synthesize running RMS-induced non-Gaussian 

random vibration based on the probability distribution of running RMS (root mean square), which 
is simulated by using a two-parameter Weibull distribution model. Shock response spectrum  
(SRS) is used to detect significant transients within signals. No sequence of random Gaussian 
processes of varying RMS levels and durations needs to be generated in this method, which makes 
it much easier to be implemented than that Rouillard et al. used [11-16]. The synthesized 
non-Gaussian signal has the same PSD, kurtosis and PDF (probability density function) with the 
field data. Fatigue damage spectrum (FDS) is used as another proof of the effectiveness of this 
new method. Effect of correlation time is shown by studying the PSD, PDF and FDS of 
synthesized non-Gaussian signals using three different correlation times. The process and 
effectiveness of this new method is illustrated by using a case study. 

2. Non-Gaussian 

If a Gaussian process has a zero mean value and is ergodic, the PDF (ݔ)݌ of the instantaneous 
values (ݐ)ݔ that are realized over a long period of time is given by the Gaussian distribution with 
zero mean: 

(ݔ)݌ = ௫ߪߨ2√1 exp ቆ− ,௫ଶቇߪଶ2ݔ (1) 

where ߪ௫ is standard deviation. When (ݐ)ݔ has zero mean, the variance ߪ௫ଶ is given by: 

௫ଶߪ = ሿ(ݐ)ଶݔሾܧ = න ஶݔ݀(ݔ)݌ଶݔ
ିஶ . (2) 

Or for large durations ܶ, the variance ߪ௫ଶ is given by: 

௫ଶߪ ≈ 1ܶ න ்ݐଶ݀ݔ
଴ = න ௫௫(݂)݂݀ஶܩ

଴ , (3) 

where ܩ௫௫(݂) is the single-sided PSD. 
It shows that random Gaussian processes with zero mean can be completely described by the 

PSD function. 
One useful method for establishing how well a random process can be described by the 

Gaussian distribution is by computing the higher order moments of the process defined as: 

݉௡ = න ݔ݀(ݔ)݌௡ݔ =ஶ
ିஶ

1ܰ ෍ ௝௡ேݔ
௝ୀଵ . (4) 

The mean value ߤ௫ can be calculated by ݉ଵ: 

௫ߤ = න ஶݔ݀(ݔ)݌ݔ
ିஶ = 1ܰ ෍ ௝ேݔ

௝ୀଵ = ݉ଵ. (5) 

When the mean value is zero: 



SYNTHESIS OF RUNNING RMS-INDUCED NON-GAUSSIAN RANDOM VIBRATION BASED ON WEIBULL DISTRIBUTION.  
XU FEI, LI CHUANRI, JIANG TONGMIN, KJELL AHLIN 

42 © JVE INTERNATIONAL LTD. VIBROENGINEERING PROCEDIA. NOVEMBER 2014. VOLUME 4. ISSN 2345-0533  

௫ଶߪ = න(ݔ − ஶݔ݀(ݔ)݌௫)ଶߤ
ିஶ = 1ܰ ෍(ݔ௝ − ௫)ଶேߤ

௝ୀଵ = 1ܰ ෍ ௝ଶேݔ
௝ୀଵ = ݉ଶ, (6)

ܵ = ඲ ൬ݔ − ௫ߪ௫ߤ ൰ଷஶ
ିஶ

ݔ݀(ݔ)݌  = 1ܰ ෍ ൬ݔ௝ − ௫ߪ௫ߤ ൰ଷே
௝ୀଵ = 1ܰ ෍ ௫ଷߪ௝ଷݔ

ே
௝ୀଵ = ݉ଷߪ௫ଷ , (7)

ܭ = ඲ ൬ݔ − ௫ߪ௫ߤ ൰ସஶ
ିஶ ݔ݀(ݔ)݌ = 1ܰ ෍ ൬ݔ௝ − ௫ߪ௫ߤ ൰ே

௝ୀଵ
ସ = 1ܰ ෍ ௫ସߪ௝ସݔ

ே
௝ୀଵ = ݉ସߪ௫ସ , (8)

where ܵ is the skewness and ܭ is the kurtosis. 
For a truly Gaussian process, the skewness is 0 and the kurtosis is 3. 

3. Fatigue damage analysis 

RFCC and Dirlik methods are frequently referred to as two methodologies for fatigue damage 
analysis [18-20].  

T. Dirlik [21] established empirical expressions of the probability density of the ordinary 
half-ranges and those counted with the RFCC method using a digital simulation. The method 
involved: giving itself a priori an expression of the density, utilizing the spectral moments of order 
0, 1, 2 and 4 of the power spectral density of the stress; and then determining the coefficients by 
minimization of the differences between this density and the histograms determined by 
considering signals generated starting from 70 spectral PSD of various shapes. 

4. Case study 

In this case study, a new method for synthesizing running RMS-induced non-Gaussian random 
vibration is developed and examined by using field data. The field tested signal provided by Kjell 
Ahlin is from an Ericsson Mast Project and shown in Fig. 1. The test item and setup is shown in 
Fig. 2.  

 
Fig. 1. Field tested signal 

   
Fig. 2. Test item and setup 

This is a non-Gaussian signal with kurtosis equals 9.4262, which can hardly be simulated by 
ordinary random vibration controller. The SRS is calculated from the time history and from PSD. 
The ratio between these two SRS is shown in db using a third dimension (see Fig. 3). 

As we can see from Fig. 3, there are no significant shocks in this signal. 
The new developed method first calculates the PSD of field data, with which a stationary 

Gaussian signal can be generated. Then, an amplitude modulation function (AMF) is created based 
on the probability distribution of running RMS of field data, which is simulated by using the 
two-parameter Weibull distribution model. Finally, multiply the Gaussian signal generated before 
with the modulation signal to obtain the synthesized non-Gaussian signal. 

PSD of the field data is show in Fig. 4. Gaussian signal is generated using a smoothed PSD 
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(see Fig. 4). The PSD of synthesized Gaussian signal is also shown in Fig. 4. The PDF of field 
data and synthesized Gaussian signal with the same mean value and variance are shown in Fig. 5. 
As we can see from Fig. 5, the PDF of field data is obviously different from that of synthesized 
Gaussian signal. 

 

 
Fig. 3. The ratio between two SRS 

 
Fig. 4. PSD of field data and synthesized  

Gaussian signal 

 
Fig. 5. PDF of field data and synthesized  

Gaussian signal 

 
Fig. 6. Running RMS 

 
Fig. 7. PDF of running RMS 

The running RMS and its PDF are calculated and shown in Fig. 6 and Fig. 7. The effect of 
different number of bins on the PDF of running RMS is shown in Fig. 8. From Fig. 8 we can see 
that, despite of the numbers of bins, the PDF of running RMS is similar to the PDF of a given 
Rayleigh distribution. To be more general, a two-parameter Weibull distribution is used to 
simulate the statistical distribution of running RMS and to create the AMF. The cumulative 
distribution function of Weibull distribution can be expressed as: (ݔ)ܨ = 1 − exp(−(ݔ ⁄ܮ )௄), (9) 

where ݔ is the random variable, ܮ is the scale parameter, ܭ is the shape parameter. 
The AMF is essentially a vector containing elements that follow the same statistical 

distribution with the Weibull distribution. Different ܭ  and ܮ  are tested to see the changes of 
kurtosis. Results are shown in Fig. 9. As we can see from Fig. 9, a large range of kurtosis can be 
obtained using Weibull distribution. ܮ  and ܭ  are determined using an iterative method (see 
Fig. 10). The PDF of resulted Weibull distribution is shown in Fig. 11. 

Finally, by multiplying the Gaussian signal generated before with the AMF, the synthesized 
non-Gaussian signal is shown in Fig. 12, together with the field data. 

The PSD and PDF of field data and synthesized non-Gaussian signal are very similar (see 
Figs. 13 and 14), which proves the effectiveness of the new method for synthesizing running 
RMS-induced non-Gaussian signal. 
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Fig. 8. APD of running RMS using different  

number of bins and Rayleigh distribution 

 
Fig. 9. Kurtosis for different ܮ and ܭ 

 
Fig. 10. The iteration to determine ܮ and ܭ 

 
Fig. 11. The PDF of running RMS and Weibull 

 
Fig. 12. Field data and synthesized  

non-Gaussian signal 

 
Fig. 13. The PSD of field data and synthesized  

non-Gaussian signal 

 
Fig. 14. PDF for field data and synthesized  

Gaussian and non-Gaussian signal 

 
Fig. 15. Numbers of cycles versus mean  

and range of data 

 
Fig. 16. Number of cycles versus data ranges for 

RFCC and Dirlik 

 
Fig. 17. FDS for field data, synthesized Gaussian 

and non-Gaussian signal 

Fatigue damage analysis is performed on field data. RFCC results are shown in Fig. 15. The plot 
of number of cycles versus stress ranges is shown in Fig. 16 for field data, synthesized Gaussian 
signal and non-Gaussian signal. From Fig. 16 we can see that Dirlik method is equivalent to RFCC 
when dealing with Gaussian signal and can introduce big error when dealing with non-Gaussian 
signal. Results of RFCC on field data and synthesized non-Gaussian signal are very similar. 

FDS is calculated for field data, synthesized Gaussian and non-Gaussian signal (see Fig. 17). 
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From Fig. 17 we can see that FDS for field data and synthesized non-Gaussian signal are very 
similar. This again proves the validity of the new method for synthesizing non-Gaussian signal. 
Besides, we can see from Fig. 17 that larger kurtosis leads to larger fatigue damage. 

5. Conclusion 

A new method for synthesizing running RMS-induced non-Gaussian Random Vibration is 
developed and examined by field data. Conclusions are as below: 

1) This method is limited to the case of running RMS-induced non-Gaussian signals, which 
contain no significant transients. 

2) The synthesized non-Gaussian signal has the same PSD, kurtosis, PDF and FDS with field 
data, which proves the effectiveness of the new method. 

3) Dirlik methods are equivalent with RFCC when dealing with Gaussian signal and can 
introduce big error when dealing with non-Gaussian signal. 
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