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Abstract. Analytically obtained mode shapes do not match with those of the experimental results 
due to external noise, including modeling and measurement errors. This inconsistency can pose 
significant difficulties for the subsequent analysis and design. It is impractical to collect the data 
for the full set of degrees of freedom (DOFs) of a dynamic system. The incomplete data set should 
be expanded to the full data set. This work provides a method to correct the analytical mode shapes 
to match the measured modes. We present the updated forms of the parameter matrices based on 
the estimated mode shape data. A numerical example illustrates the validity of the proposed 
method. 
Keywords: data expansion, constraint, performance index, noise, update of parameter matrices. 

1. Introduction 

The information on complete mode shapes is necessary for the subsequent analysis and design 
of a dynamic system. However, it is not practical to collect a full set of mode shapes, and the data 
obtained from vibration testing cannot be used to measure all of the modes. The problem can be 
overcome by modal reduction or data expansion, i.e., either reduce the system matrices to the 
number of measured DOFs or conversely expand the measured modal vectors to the full size of 
the finite element model matrices. A full set of mode shapes should be expanded in the satisfaction 
of measured data. 

Most of the utilized expansion techniques involve the use of the finite element model as a 
mechanism to complete the unmeasured DOFs from the experimental model. Imregun and Ewins 
[1] presented mode shape expansion methods to estimate the modal displacements at unmeasured 
coordinates using the incomplete set of measured data together with a corresponding finite element 
model. Levine-West et al. [2, 3] evaluated the robustness and reliability of the Guyan static 
expansion method, the Kidder dynamic method, the Procrustes method, and the penalty method 
along with least-squares minimization techniques. Dubbaka and Houghton [4] provided a 
correction method to modify the measured mode shapes by restricting the orthonormality and by 
applying the constraint rules. Based on a dynamic modal expansion that minimizes the residual 
error in the eigenvalue equation for each measured mode, Kenneth and Francois [5] presented an 
algorithm for expanding the measured mode shapes obtained from modal testing of the full set of 
DOFs of a corresponding finite element model. Ewins [6] presented some definitions and a very 
concise summary of each of the major algorithms for the updating problem together with some 
discussion of how and when each of these might be considered for use in practice. Chen [7] 
introduced an approach for expanding incomplete experimental mode shapes to consider the 
modeling errors and the uncertainties. Liu [8] presented a method for expanding incomplete 
experimental mode shapes by measured data for master DOFs and constant values for slave DOFs. 
Skafte et al. [9] introduced an expansion method to predict the mode shape coordinates and 
responses in unknown DOFs based on the local correspondence principle. Liu et al. [10] proposed 
a non-iterative mode shape expansion method based on coordinate decomposition and modeling 
errors between the finite element model and the experimental structure. 

The analytically derived eigenmodes of a modal model do not match with the experimental 
results so that they cannot be utilized in the analytical model. The discrepancies result from the 
measurement, equipment, and manufacturing errors. Thus, the analytical eigenmodes should be 
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modified for observing the dynamic characteristics of the system. The updated modal data cause 
the mass and stiffness matrices of the dynamic system to be modified. 

Friswell and Mottershead [11] provided a comprehensive overview that illustrates many of the 
different techniques and issues involved in updating a finite element model. They showed the 
importance of several areas in model updating dedicated to modal methods. Baruch [12, 13] 
proposed a method in which the stiffness matrix based on the measured mode shapes obtained 
from vibration tests is corrected by minimizing a norm to use the positive definite symmetric mass 
matrix as the weighting matrix. Berman [14] described the change in the mass matrix required to 
satisfy the orthogonality relationship using a minimum-weighted Euclidean norm and the method 
of Lagrange multipliers. Berman and Nagy [15] proposed a direct method to identify a set of 
minimum changes in the analytical matrices that force the eigensolutions to agree with the test 
measurements. Kabe [16] adjusted the stiffness matrix such that the percentage change to each 
stiffness coefficient is minimized. The method preserved the physical configuration of the 
analytical model and reproduced the modes used in the identification. Caesar and Peter [17] 
discussed two methods for the direct updating of mathematical models based on modal test data. 
Minimizing the cost functions of the difference between analytical and desired physical parameter 
matrices, Lee and Eun [18, 19] derived the corrected parameter matrices by utilizing the 
Moore-Penrose inverse matrix. 

The eigenmodes of the finite element model are expanded by minimizing the discrepancies 
between the measured modal data and those obtained by the analytical model. The expansion 
process is performed in the satisfaction of measured data contaminated by external noise. The 
method is performed under the assumption that the analytical mass and stiffness matrices are 
consistently maintained during the expansion. The inconsistency between the analytical and 
estimated mode shapes due to the external noise can be expressed by the variation in the parameter 
matrices perturbed from the analytical parameters. This study presents the mathematical forms to 
correct the parameter matrices utilizing the expanded mode shapes. A numerical experiment 
illustrates the validity of the proposed method. 

2. Formulation 

Developing an initial theoretical model constructed for analyzing the dynamics of a structure 
can be refined, corrected, or updated, using measurements on the actual structure, has become one 
of the most demanding and demanded applications for modal testing. The number of measured 
DOFs does not usually match with a full set of model DOFs, so expansion of the mode shapes is 
necessary. The estimated mode shape data provide the basic information required to predict the 
parameter matrices of mass and stiffness. 

The dynamic behavior of a structure of free vibration without damping that is assumed to be 
linear and approximately discretized for ݊ DOFs can be described by the equation of motion as: ܝۻሷ + ܝ۹ = 0, (1)

where ۻ  and ۹  denote the ݊ × ݊  analytical mass and stiffness matrices, and  ܝ = ሾݑଵ ଶݑ ⋯ ሿ. Assuming harmonic motion, the eigenfunction can be written by: ሺ۹ݑ − ߱ଶۻሻ = 0, (2)

where ߱ଶ  is an eigenvalue and   denotes the corresponding eigenvector obtained by 
eigenfunction. 

The eigenmodes at unmeasured DOFs should be estimated using the measured modes and the 
analytical parameter matrices, such as the mass and stiffness matrices. Assume the experimental 
mass and stiffness matrices satisfy the eigenfunction during the data expansion. Assuming that the 
mode shapes corresponding to ݉  DOFs at the first ݎ  eigenvalues were measured, it can be 
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written by: ۯ = ۰, (3) 

where ۯ represents an ݉ × ݊ Boolean matrix to define the measurement DOFs,  is the ݊ ×  ݎ
actual mode shape matrix, and ۰ denotes the ݉ ×  measured data matrix. The mode shape matrix ݎ
can be divided into the ݉ × measured and the ሺ݊ ݎ − ݉ሻ ×  .unmeasured mode shape matrices ݎ

The actual mode shape  in Eq. (3) does not agree with the analytical mode shape   in Eq. (2). 
Importing the analytical mass matrix as the weighting matrix, the mode shape  is such that the 
performance index defined as: ܲ = ൫ − ൯ۻ൫ − ൯, (4) 

is minimized over all  that satisfy the constraint equation. In this work, the measurement data 
set of Eq. (3) for data expansion is utilized as the set of constraint conditions. 

The measurement data set is modified as: ିۻۯଵ/ଶۻଵ/ଶ = ۰. (5) 

Solving Eq. (5) with respect to ۻଵ/ଶ, it results in: ۻଵ/ଶ = ൫ିۻۯଵ/ଶ൯ା۰ + ቂ۷ − ൫ିۻۯଵ/ଶ൯ା൫ିۻۯଵ/ଶ൯ቃ ,ܡ (6) 

where ܡ is an arbitrary matrix and the superscript ‘+’ denotes the Moore-Penrose inverse matrix. 
Imposing the minimization condition on the performance index of Eq. (4), it leads to: ൫ିۻۯଵ/ଶ൯ା۰ + ቂ۷ − ൫ିۻۯଵ/ଶ൯ା൫ିۻۯଵ/ଶ൯ቃ ܡ = .ଵ/ଶۻ (7) 

Solving Eq. (7) with respect to the arbitrary matrix ܡ, we obtain: ܡ = ቂ۷ − ൫ିۻۯଵ/ଶ൯ା൫ିۻۯଵ/ଶ൯ቃା ቀۻଵ/ଶ − ൫ିۻۯଵ/ଶ൯ା۰ቁ + ൫ିۻۯଵ/ଶ൯ା൫ିۻۯଵ/ଶ൯(8) ,ܢ 

where ܢ is another arbitrary matrix. Inserting Eq. (8) into Eq. (6), it is derived as: ۻଵ/ଶ = ଵ/ଶۻ + ൫ିۻۯଵ/ଶ൯ା൫۰ − .൯ۯ (9) 

Premultiplying both sides of Eq. (9) by ିۻଵ/ଶ , the expanded mode shape matrix can be 
obtained as:  =  + ଵ/ଶ൯ା൫۰ିۻۯଵ/ଶ൫ିۻ − .൯ۯ (10) 

Eq. (10) represents the measured mode shape matrix as well as the unmeasured mode shape 
matrix to be estimated. The estimated mode shapes include the effect of the measured data as well 
as the external noise. 

The mode shape data perturbed by the external noise can be utilized in updating the mass and 
stiffness matrices. Substituting the estimated mode shape  and the perturbed parameter matrices 
into Eq. (2), it can be written as: ሾሺ۹ + Δ۹ሻ − ߱ଶሺۻ + Δۻሻሿ = 0, (11) 
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where Δ۹ and Δۻ represent the variation in stiffness and matrices, respectively, caused by the 
change of analytical mode shape due to the external noise. Considering the first s modal data and 
arranging Eq. (11), it can be written by: ሾΔ۹ Δۻሿ×ଶ ଵ  ⋯ ௦−߱ଵଶଵ −߱ଶଶ ⋯ −߱௦ଶ௦൨ଶ×௦= ሾ−ሺ۹ − ߱ଵଶۻሻଵ −ሺ۹ − ߱ଶଶۻሻଶ ⋯ −ሺ۹ − ߱ୱଶۻሻ௦ሿ×௦. (12)

Solving Eq. (12) with respect to the variation in stiffness and mass matrices, it yields that: ሾΔ۹ Δۻሿ = ሾ−ሺ۹ − ߱ଵଶۻሻ −ሺ۹ − ߱ଶଶۻሻ ⋯ −ሺ۹ − ߱௦ଶۻሻ௦ሿ       ଵ ଶ ⋯ ୱ−߱ଵଶଵ −߱ଶଶଶ ⋯ −߱௦ଶୱ൨ା, (13)

where the superscript ‘+’ denotes the Moore-Penrose inverse matrix. The solution of Eq. (13) 
denotes the variation in parameter matrices due to the existence of external noise. Eq. (13) can be 
widely utilized in updating the parameter matrices perturbed by other causes, such as structural 
damage, except the external noise. The validity of the proposed method is illustrated in a numerical 
experiment. 

3. A numerical experiment 

The expansion of measured mode shapes and the update of parameter matrices of a two 
dimensional three-story building structure model, shown in Fig. 1, were performed to investigate 
the applicability of the proposed method. The frame was modeled by 32 nodes and 36 elements, 
and the nodal points and the members of the frame model are numbered in the figure. Each node 
of the element possesses three degrees of freedom: displacement ݑ  in the ݔ  direction; 
displacement ݒ in the ݕ direction; a rotation about ݖ-axis, ߠ. The element ○25 in the frame was 
modeled as a 20 % area loss section. The planar frame element includes both axial and bending 
deformation. The measurement data on the rotations were not collected because of the 
measurement difficulty. The parameter values of the structure were chosen to be elastic modulus ܧ = 2.1×105, cross-section area ܣ = 2, second moment of inertia ܫ = 200, mass per unit length ഥ݉ = 0.02 in dimensionless unit. As a numerically simulated result, the 16 mode shape data 
corresponding to the ݔ and ݕ directions at 8 nodes (4, 7, 10, 13, 16, 19, 23, 29) were measured, 
and the others should be estimated by the proposed method. 

 
Fig. 1. A two dimensional frame structure model 

The numerical experiment began with measurement data contaminated by 5 % external noise. 
The actual mode shapes, , can be calculated for the simulated noise-free mode shapes, , as 
follows:  = ሺ1 + ሻ, (14)ߪߙ
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where ߙ denotes the relative magnitude of the error, and ߪ is a random number variant in the 
range [–1, 1]. The noise includes the modeling and measurement errors. 

 
a) 

 
b) 

 
c) 

Fig. 2. Mode variation in the first mode: a) mode variation in ݔ direction,  
b) mode variation in ݕ direction, c) rotation mode variation about ݖ direction 

 
a) 

 
b) 

 
c) 

Fig. 3. Mode variation in the second mode: a) mode variation in ݔ direction,  
b) mode variation in ݕ direction, c) rotation mode variation about ݖ direction  

Figs. 2 and 3 represent the mode variations between the actual and expanded mode shapes 
proposed by this work corresponding to the first and second mode, respectively. The mode shape 
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expanded by Eq. (10) is found to be nearly identical with the actual one. It is shown that the 
measurement data given as the constraints coincide with the numerically obtained results and the 
other data are predicted in a small discrepancy. It is expected that the local increase in the mode 
variation in y direction is caused by the section loss of the element ○25 as shown in Figs. 2(b) and 
3(b). The proposed method provides enough information on the mode shape despite the external 
noise. 

The discrepancies in the mode shapes due to the external noise can be expressed by the 
modification of the parameter matrices. Fig. 4 represents the variation in parameter matrices 
obtained by Eq. (13). The plots were obtained using the first two eigenvalues and the 
corresponding expanded mode shapes. The variations exhibit the values corresponding to the row 
and column arrays of stiffness and mass matrices. The mode shapes of the updated parameter 
matrices, including the variation in parameter matrices, lead to the expanded mode shapes shown 
in Figs. 2 and 3. 

 
a) 

 
b) 

Fig. 4. Variation in parameter matrices: a) stiffness variation, b) mass variation 

4. Conclusions 

Analytical mode shapes do not match with experimental results due to external noise, including 
modeling and measurement errors. Because it is impractical to measure the data at a full set of 
DOFs, the incomplete data set should be expanded to the full set. This work provided the 
expansion method to describe the full set of mode shapes in the satisfaction of measured mode 
shape data. The existence of external noise can result in the variation in parameter matrices, which 
were derived using the Moore-Penrose inverse matrix. The update method of parameter matrices 
was demonstrated to properly describe the variation in the parameter matrices. The proposed 
method can be widely utilized in updating the parameter matrices perturbed by other causes, such 
as structural damage, except the external noise. The numerical example illustrated the validity of 
the proposed method. 

Acknowledgements 

This study is supported by Kangwon National University. And this research was supported by 
Basic Science Research Program through the National Research Foundation of Korea (NRF) 
funded by the Ministry of Education (2013R1A1A2057431). 

References 

[1] Imregun M., Ewins D. J. An investigation into mode shape expansion techniques. 11th International 
Modal Analysis Conference, 1993. 

[2] Levine-West M., Kissil A., Milman M. Evaluation of mode shape expansion techniques on the 
micro-precision interferometer truss. 12th International Modal Analysis Conference, 1994. 

0
20

40
60

80
100

0

20

40

60

80

100
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
x 10-13

Row number in stiffness matrixColumn number in stiffness matrix

V
ar

ia
tio

n 
in

 s
tif

fn
es

s 
m

at
rix

0
20

40
60

80
100

0

20

40

60

80

100
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
x 10-4

Row number in stiffness matrixColumn number in stiffness matrix

V
ar

ia
tio

n 
in

 m
as

s 
m

at
rix



1314. ESTIMATION OF MODE SHAPES EXPANDED FROM INCOMPLETE MEASUREMENTS.  
SANG-KYU RIM, HEE-CHANG EUN, EUN-TAIK LEE 

 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. AUGUST 2014. VOLUME 16, ISSUE 5. ISSN 1392-8716 2129 

[3] Levine-West M. B., Milman M., Kissil A. Mode shape expansion techniques for prediction: 
Experimental evaluation. AIAA Journal, Vol. 34, 1996, p. 821-829. 

[4] Dubbaka K. R., Houghton J. R. Correction of experimental mode shapes. 14th International Modal 
Analysis Conference, 1996. 

[5] Kenneth F. A., Francois H. Dynamic mode shape expansion using mass orthogonality constraints. 
18th International Modal Analysis Conference, 2000. 

[6] Ewins D. J. Modal Testing: Theory and Practice. 2nd Edition, Wiley, 2000. 
[7] Chen H. P. Mode shape expansion using perturbed force approach. Journal of Sound and Vibration, 

Vol. 329, 2010, p. 1177-1190. 
[8] Liu F. Direct mode-shape expansion of a spatially incomplete measured mode by a hybrid-vector 

modification. Journal of Sound and Vibration, Vol. 330, 2011, p. 4633-4645. 
[9] Skafte A., Tygesen U. T., Brincker R. Expansion of mode shapes and responses on the offshore 

platform Valdemar. Conference Proceedings of the Society for Experimental Mechanics Series, 2014, 
p. 35-41. 

[10] Liu F. S., Chen W. W., Peng C. F., Li W. Non-iterative mode shape expansion for beam structures 
based on coordinate decomposition. Applied Mechanics and Materials, Vol. 284, 2013, p. 503-507. 

[11] Friswell M. I., Mottershead J. E. Finite Element Model Updating in Structural Dynamics. Kluwer 
Academic Publishers, 1995. 

[12] Baruch M., Bar-Itzhack I. Y. Optimal weighted orthogonalization of measured modes. AIAA 
Journal, Vol. 16, 1978, p. 346-351. 

[13] Baruch M. Optimal correction of mass and stiffness matrices using measured modes. AIAA Journal, 
Vol. 20, 1982, p. 1623-1626. 

[14] Berman A. Mass matrix correction using an incomplete set of measured modes. AIAA Journal, 
Vol. 17, 1979, p. 1147-1148. 

[15] Berman A., Nagy E. J. Improvement of a large analytical model using test data. AIAA Journal, 
Vol. 21, 1983, p. 1168-1173. 

[16] Kabe A. M. Stiffness matrix adjustment using mode data. AIAA Journal, Vol. 23, 1985, p. 1431-1436. 
[17] Caeser B., Pete J. Direct update of dynamic mathematical models from modal test data. AIAA 

Journal, Vol. 25, 1987, p. 1494-1499. 
[18] Lee E. T., Eun H. C. Update of corrected stiffness and mass matrices based on measured dynamic 

modal data. Applied Mathematical Modelling, Vol. 33, 2009, p. 2274-2281. 
[19] Lee E. T., Eun H. C. Correction of stiffness and mass matrices utilizing simulated measured modal 

data. Applied Mathematical Modelling, Vol. 33, 2009, p. 2723-2729. 

 

Sang-Kyu Rim received his PhD in Architectural Engineering from Kookmin University, 
Korea in 1995. Dr. Rim is currently the Professor at the Department of Architectural 
Engineering, Kangwon National University, Samcheok, Korea. Dr. Rim is focusing on the 
practical research for embodying digital-oriented three-dimension architectural design.  

 

Hee-Chang Eun received his MS and PhD degrees in Civil Engineering from SUNY at 
Buffalo and USC, USA, in 1992 and 1995, respectively. Dr. Eun currently is a Professor 
at the Department of Architectural Engineering, Kangwon National University, 
Chuncheon, Korea. Dr. Eun’s research interests include structural damage detection, 
dynamics and control, and applied mechanics. 

 

Eun-Taik Lee received his PhD degree in Civil Engineering from SUNY/Buffalo USA in 
1992. Dr. Lee is currently the Professor at the School of Architecture and Building Science, 
College of Engineering, Chung-Ang University, Seoul, Korea. Dr. Lee’s research 
interests include structural remodeling, ubiquitous high-rise buildings, high-performance 
steel, performance based structural design, and applied mechanics.  

 


