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Abstract. Modeling, identification and application of process damping in milling of titanium alloy 
is investigated. Titanium alloy used commonly in aviation industry is one typical 
difficult-to-machine material. Chatter usually occurs in cutting of titanium alloy, which results in 
poor surface quality and damaged tool. Thus, chatter is one important restriction for the quality 
and efficiency of titanium alloy manufacture. Process damping results from interference between 
flank face and machined surface, which is critical but usually ignored in chatter analysis for 
difficult-to-machine material. The paper presents one nonlinear dynamic model considering 
process damping for milling of titanium alloy and designs anti-vibration clearance angle to 
suppress chatter based on the model, besides, a practical approach based on Routh Criterion is 
proposed for the identification of process damping. The experimental and computational results 
indicate that the presented methods for modeling and identification of process damping are 
reasonable, and the anti-vibration clearance angle designed is effective in suppressing chatter and 
improving machining quality. 
Keywords: titanium alloy, chatter, process damping, identification, anti vibration clearance angle. 

1. Introduction 

Titanium alloy is used widely in aerospace industry, which possesses excellent overall 
performances owing to high specific strength, low density, strong heat and corrosion resistance. 
However, titanium alloy is also one typical type of difficult-to-cutting material, which possesses 
low machinability owing to poor thermal conductivity, high chemical activity and the severe 
hardening. Especially, due to large unit cutting force and low elastic modulus, chatter usually 
occurs in machining process. Vibration marks left on the machining surfaces is usually required 
to be removed manually, which result in low machining efficiency. Worse, it may result in scraped 
workpiece and destroyed tool. Chatter problem is one of the main restrictions to the machining 
quality and efficiency of titanium alloy. 

The methods to suppress chatter can all be attributed to increase the damping of system. 
Damping of cutting system includes structural damping of machine tool and process damping 
(PD). Process damping results from interference between flank face of tool and undulations left 
on the workpiece. Tlusty and Ismail [1] showed that process damping has a significant effect on 
chatter stability decreasing with cutting speed. Structural damping can be identified using modal 
analysis easily. However, the identification and modeling of process damping has proved to be 
very difficult, and currently there is no practical method for its measurement or estimation. 
Altintas and Weck have addressed the process damping as the most challenging unsolved 
problems [2]. Therefore, in most of the studies, the effect of process damping is ignored, leading 
to significant errors in estimation of the stability limit [3-4]. 

In one of the early works, the regenerative chip thickness effect on process stability is modeled 
by Das and Tobias, where the contact between the tool flank face and the undulations left on the 
surface were not considered. In this work [5], a velocity term in addition to the structural damping 
is introduced into the system equations increasing process stability. Later on, the focus of the 
research on dynamic cutting force coefficients shifted toward the identification and modeling of 
dynamic cutting force coefficients. The results of the CIRP efforts on dynamic cutting are 
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summarized by Tlusty [6], where the difficulty of the measurements and the inconsistency of the 
test data from different labs are discussed. Sission and Kegg [7], Wu [8], Lee et al. [9], and 
Elbestawi [10] showed that the contact forces due to flank-wave interaction contribute to the 
dynamic of the cutting process by increasing the overall damping acting on the system.  
Altintas et al. [11] developed a dynamic force model which includes chip thickness, velocity and 
acceleration terms. They identified dynamic cutting force coefficients from a series of dynamic 
cutting tests, where the cutting tool is oscillated by a fast tool servo at the desired frequency and 
amplitude.  

Compared to turning, the reports on the process damping in milling are much fewer, because 
milling is one discontinuity and time-invariant cutting process and the descriptions of process 
damping are much more complicated. Huang C. Y. and Wang J. J. Junz [12-13] extended 
analytical modeling of the milling process to include process damping effects, two cutting 
mechanisms (shearing and plowing) and two process damping effects (direction and magnitude) 
are included. The analytical nature of this model makes it possible to determine unknown process 
damping coefficients from measured vibration signal during milling. Budak and Tunc [14-17] 
considered the effect of process damping as an additional damper in the zero order MFS. They 
identified the additional damping coefficients by measuring stability limits experimentally and 
fitting the results to the stability model, and investigated the effects of tool geometry and cutting 
conditions on process damping. Ahmadi and Ismail [18-19] simplified rocess damping to a 
piecewise linear viscous damper by assuming small amplitude of vibration, and integrated the 
equivalent viscous model of process damping into the Multi-Frequency Solution and the 
Semi-Discrete Method to establish the stability lobes in milling. 

It can be known from above that higher stable cutting depth can be achieved under the effect 
of process damping, and high efficiency cutting can be achieved at low speeds. This can be 
important to increase machining productivity of titanium alloy, because low cutting speeds have 
to be used for longer tool life due to low machinability. Besides, process damping has a lot to do 
with tool geometry, design of tool geometry is very improtant in suppressing chatter. However, 
very few cases have been reported for the application of process damping in designing of tool for 
milling of titanium alloy. 

In this paper, one nonlinear milling dynamic model considering process damping is presented. 
In the model, indentation area arises from face-wave interference is calculated and stability limit 
is predicted by time domain simulations. Based on the model, anti-vibration clearance angle is 
designed to increase process damping and expand stable region further. At last, one new method 
for analytical identification of process damping is presented, the process damping coefficients are 
identified directly and simply.  

2. Modeling of process damping 

2.1. Formation mechanism of process damping 

The 2 DOF model shown in Fig. 1(a), is always used to describe the dynamics of the milling 
system [3, 4]. Φ  is the angular position of the ݆ th cutting tool, Ω  is the spindle speed. The 
vibration displacements of tool center ᇱ determined in the workpiece coordinates (i.e., ݕݔ) can 
be recorded as (ݔ௧, ݕ௧), the wave caused by vibration leave on the workpiece surface in ݎ 
direction (i.e., chip thickness or radial direction), ݐ direction represent the cutting speed direction. 
The interference between flank face and wave will occur when the chatter amplitude grows larger. 
Flank face intend into the wave left behind in radial direction as shown in Fig. 1. As a result, 
indentation forces (i.e., ܨ௩ௗ and ܨௗ), arise in normal, ݒ, and frictional, ݂, directions on the tool 
flank face as shown in Fig. 1(b), which create a damping effects. The damping forces in ݒ and ݂ directions acting on each tooth are oriented and summed up as a resultant damping force in ݔ and ݕ directions. 
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a) 

 
b) 

Fig. 1. End milling system dynamics 

a) 
 

b) 
Fig. 2. Formation mechanism of indentation area 

Process damping is proportional to indentation area. In Fig. 2(a), ߙ is the clearance angle of 
tool, angle ߛ represent the slope of wave left in radial direction, ݑ௪௩ is the radial coordinate 
values of wave, which represent the radial vibration displacement. The instantaneous slope of 
wave, represent the radial vibration speed (i.e., ݑሶ ௪௩). It is assumed that the tool does not indent 
the previous wave as shown in Fig. 2(a). Therefore, the interference between flank face and 
workpiece occurs only as the tool slide down the wave, where ݑሶ ௪௩ < 0. The occurrence of 
interference is determined by the relationship between ߙ and ߛ. If ݑሶ ௪௩ satisfies the conditions: 

ቐݑሶ ௪௩ < 0,tan(ߙ) < tan(ߛ) = − ݏ௪௩݀ݑ݀ = − ݐ௪௩݀ݑ݀ ݏ݀ݐ݀ = − ሶݑ ௪௩ݒ . (1)

The interference will occur. In Eq. (1), ݒ  is the cutting speed, ݏ  represents tangential arc 
length of tool edge, ݐ is time here. It can be known from Eq. (1) that interference is easy to occur 
as ݒ and ߙ decreases, indentation area and process damping will also increase. The law is also 
shown in Fig. 2(b). 

2.2. Calculation of indentation area 

The calculation of indentation area ܷ(ݐ) shown in Fig. 1(a) is rather complicated. As shown 
in Fig. 3, the cutting tool is divided into a number of axial elements, elemental axial width is ݀ݖ. 
In axial level ݖ, point ܣ represents the current position of the tool edge, which can be also seen in 
Fig. 4(a), correspondingly, ݑ,௪௩ is the current radial coordinate values of wave. As shown in 
Fig. 4(a), ܤ (݅ = 1, 2, 3...) represent the point on the surface wave generated by the tool edge in 
the previous time step, corresponding radial coordinate values of wave calculated in previous time 
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steps is ݑ,௪௩. For every ܤ, ܥ is the corresponding point on the flank face, ݑ, is its radial 
coordinate values. The distance between ܤ and ܥ is ݀. ݀ is zero. The indentation area ܷ(ݐ) in 
every axial level is bounded by the tool flank face and the workpiece surface wave. This area is 
calculated at each simulation time step numerically.  

 
Fig. 3. Digitized end mill model 

a) 
 

b) 
Fig. 4. Calculation of indentation area 

The calculation of ݑ, is calculated according to Eq. (2), here, ∆ݏ =  is the tangential ݐ∆ݒ
arc length between adjacent two time point. ∆ݐ is the simulation time step: 

൞ݖ = ,ݑ,ݏ∆݅ = ,௪௩ݑ + ݖ tan(ߙ ) ,݀ = ,௪௩ݑ − .,ݑ (2)

The intersection point of flank face and wave, ܦ, needs to be searched in the calculation 
process. As shown in Fig. 4(b), when ݀ < 0, the calculation of indentation area can stop. The 
number of time step front and back intersection can be recorded as ݊ − 1 and ݊ respectively, here ݀ିଵ > 0, ݀ < 0, thus, indentation area ܷ(ݐ) can be calculated by summing up the discrete areas 
according to Eq. (3): 

ەۖۖ
۔ۖۖ
ܣ∆ۓ = ൬݀ + ݀ିଵ2 ൰ ܣ∆,ݏ∆ = (݀ିଵ)ଶ2(݀ିଵ − ݀) ,ݏ∆

(ݐ)ܷ =  .ܣ∆
ୀଵ

 (3)
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2.3. Effects of anti-vibration clearance angle on process damping 

It can be seen from Eq. (1) that interference is much easier to occur and process damping is 
more significant as cutting speed decreases, smaller clearance angle can lead to the same effects. 
However, in the tool design, severe extrusion is easy to occur and the surface quality will become 
very poor if the clearance angle is too small. Therefore, transition edge needs to be adopted in 
design. As shown in Fig. 5, the tool modified have two clearance angle, ߙଵ and ߙଶ, ߙଵ is designed 
to be smaller to suppress vibration, which can be named anti-vibration angle, the length of its 
corresponding transition edge is ܹ. 

Fig. 5. Effects of anti-vibration clearance angle  
on indentation area 

 
Fig. 6. Calculation of indentation area 

with anti-vibration clearance angle 

The calculation of indentation area follows the methods provided in Section 2.2, the main 
parameters in Fig. 6 is the same as ones in Fig. 4(a). Minor modification needs to be done because 
the adoption of anti-vibration clearance angle. The calculation of ݑ, follows Eq. (4), then the 
calculation of indentation area also follow the Eq. (3): 

۔ۖەۖ
ݖۓ = ,ݑ,ݏ∆݅ = ,௪௩ݑ + ݖ tan(ߙଵ),ݑ, = ,௪௩ݑ + ܹ tan(ߙଵ) + ݖ) − ܹ) tan(ߙଶ),݀ = ,௪௩ݑ − .,ݑ  (4)

3. Time domain simulations 

3.1. Equations of milling dynamics 

Dynamic cutting force model is of great importance in analysis of milling dynamics. At each 
axial level ݖ, the location of the ݆th cutting tooth is determined by its angular position Φ  (as 
shown in Fig. 1): 

Φ(ݖ) = ߠ + (݆ − 1) ߨ2ܰ − ݖ tan(ߚ)ܴ , ݆ = 1: ܰ. (5)

In Eq. (5), ܰ is the number of teeth, ߚ is the helix angle (as shown in Fig. 3), ܴ is the tool 
radius. ߠ  is the angular position of tool bottom (axial level ݖ = 0), calculated from angular 
velocity Ω and the time ߠ :ݐ = Ωݐ.  

The dynamic cutting force is modeled using the linear-edge force model [20], where elemental 
tangential and radial forces, ܨ௧  and ܨ , at flute, ݆ , are expressed in terms of cutting pressure 
coefficients, ܭ , cutting edge force coefficients, ܭ , instantaneous chip thickness, ℎ , and 
elemental axial width, ݀ݖ (as shown in Fig. 3): 
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ቐ݀ܨ௧,(ݐ, (ݖ = ቂܭ௧ℎ ቀΦ(ݖ)ቁ + ௧ቃܭ ,ݐ),ܨ݀,ݖ݀ (ݖ = ቂܭℎ ቀΦ(ݖ)ቁ + ቃܭ .ݖ݀ (6)

The differential cutting forces are then oriented in ݔ and ݕ directions using the forces in ݎ and ݐ directions as follows: 

ቐ݀ܨ௫,(ݐ, (ݖ = ,ݐ)௧,ܨ݀− (ݖ cos ቀߔ(ݖ)ቁ − ,ܨ݀ ,ݐ) (ݖ sin ቀߔ(ݖ)ቁ ,ݐ)௬,ܨ݀, (ݖ = ,ݐ)௧,ܨ݀ (ݖ sin ቀߔ(ݖ)ቁ − ,ܨ݀ ,ݐ) (ݖ cos ቀߔ(ݖ)ቁ . (7)

For the ݆th cutting flute, differential indentation forces acting on the axial level ݖ, in normal, ݀ܨ௩ௗ and in frictional ݀ܨௗ directions are given as: 

ቊ݀ܨ௩,ௗ ,ݐ) (ݖ = ,ݐ)ௗ ܷܭ ,ௗܨ݀,ݖ݀(ݖ ,ݐ) (ݖ = ௩,ௗܨ݀ ߤ ,ݐ) ,(ݖ (8)

where ܷ(ݐ,  which is calculated by methods provided in ,ݖ is the indentation area at axial level (ݖ
Section 2.2-2.3. ߤ is the coefficient of contact friction between the flank face and the workpiece 
surface, ܭௗ is indentation coefficient. The process damping force in ݎ  and ݐ  directions are 
expressed in terms of the forces in ݒ  direction and the friction coefficient ߤ  (as shown in  
Fig. 1(b)): 

ቊ݀ܨ,ௗ ,ݐ) (ݖ = ௩,ௗܨ݀ ,ݐ) (ߙ)cos)(ݖ + ߤ sin(ߙ)),݀ܨ௧,ௗ ,ݐ) (ݖ = ௩,ௗܨ݀ ,ݐ) (ߙ)൫−sin(ݖ + .൯(ߙ)cosߤ (9)

The differential process damping forces are then oriented in ݔ  and ݕ  directions using the 
process damping forces in ݎ and ݐ directions as follows: 

ቐ݀ܨ௫,ௗ ,ݐ) (ݖ = ௧,ௗܨ݀− ,ݐ) (ݖ cos ቀΦ(ݖ)ቁ − ,ௗܨ݀ .ݐ) (ݖ sin ቀΦ(ݖ)ቁ ௬,ௗܨ݀, ,ݐ) (ݖ = ௧,ௗܨ݀ ,ݐ) (ݖ sin ቀΦ(ݖ)ቁ − ,ௗܨ݀ ,ݐ) (ݖ cos ቀΦ(ݖ)ቁ . (10)

Thus, equations of milling dynamic can be modeled: 

۔ۖەۖ
ሷ௧ݔ௫݉ۓ + ܿ௫ݔሶ௧ + ݇௫ݔ௧ = ݃(Φ(ݖ))  ൫݀ܨ௫, + ௫,ௗܨ݀ ൯݀ݖ,ௌ

ୀଵ
ே

ୀଵ݉௬ݕሷ௧ + ܿ௬ݕሶ௧ + ݇௬ݕ௧ = ݃(Φ(ݖ))  ൫݀ܨ௬, + ௬,ௗܨ݀ ൯݀ݖ.ௌ
ୀଵ

ே
ୀଵ

 (11)

where, ܵ is the numbers of axial elements (ܵ݀ݖ = ܽ, ܽ  is axial cutting depth), milling at small 
radial immersion is adopted in the paper, generally, only one tooth is cutting workpiece in one 
tooth passing period. (݉௫, ݉௬), (ܿ௫, ܿ௬), (݇௫, ݇௬) are the modal mass, modal damping, modal 
stiffness respectively (as shown in Fig. 1(a)), which can be obtained from modal tests and analysis. 
 is the vibration displacement of tool, which is also shown in Fig. 1(a). ݃ is a unit step (௧ݕ ,௧ݔ)
function which determines whether the tooth is in or out of the cutting, which will be discussed in 
Appendix. Besides, the calculation of dynamic chip thickness ℎ in Eq. (6) and ݑ,௪௩ in Eq. (2) 
are rather complicated, which will be also discussed in detail in Appendix. 
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3.2. Determining chatter stability lobes from time domain simulations 

The Eq. (11) is solved using the classical 4th order Runge Kutta method, where time increment ∆ݐ is adopted as 10-5 seconds. Using the following steps, the stability lobes are evaluated by 
finding the limiting axial cutting depth through a range of spindle speeds:  

1. Modal parameters of machine tool structure, cutting tool geometry, feed rate, tool 
orientation, entry angle and exit angle, cutting force coefficients, and a starting axial cutting depth, ܽ, are specified. 

2. A range of spindle speeds and a spindle speed step size are specified. 
3. For a given spindle speed, a static time domain simulation is run (suppressing any tool and 

workpiece vibrations) and the maximum static uncut chip thickness, ℎ௦,௫, is stored. 
4. A second time domain simulation is run. For given spindle speed and cutting depth, Eq. (11) 

is solved, vibration displacements and dynamic chip thickness ℎ is obtained. The largest dynamic 
chip thickness of all cutting points on the tool, ℎௗ,௫ is stored for the last few revolutions of the 
simulation. 

5. The non-dimensional chatter parameter, ߟ, is evaluated as: 

ߟ = ℎௗ,௫ℎ௦,௫ . (12)

6. If ߟ is greater than a pre-determined limit (1.25 is used in this thesis), the process is unstable, 
otherwise the process is stable. The criterion to judge is provided in [21]. 

7. If the process is stable, ܽ is set to the current value of ܽ, ܽ is doubled and steps 3-6 are 
repeated until chatter occurs. Then ܽ௫ is set to the value of ܽ when chatter occurred. 

If the process is unstable, ܽ௫ is set to the current value of ܽ, ܽ is halved and steps 3-6 are 
repeated until the process is stable. Then ܽ is set to the stable axial cutting depth, ܽ. 

8. Once the range ܽ to ܽ௫ is found between which the limiting axial cutting depth lies, a 
bisection search is performed with ܽ < ܽ < ܽ௫, repeating steps 3-6 until the limiting axial 
cutting depth, ܽ, is found within a given tolerance.  

4. Identification of process damping 

Before the identification of process damping, one new approach to predict stability limits needs 
to be introduced. 

4.1. Analysis of milling dynamic equations based on Routh criterion 

If nonlinear effects such as process damping are ignored, linear time-delay model such as zero 
order solutions are always adopted in generating stability lobes [4], which can predict stability 
limit accurately at higher speed. According to classical zero order solutions [3], the equations of 
milling dynamics are shown in Eq. (13). ߙ௫௫ ௫௬ߙ , ௬௫ߙ , ௬௬ߙ ,  shown in Eq. (13) stand for the 
average directional coefficients, which relate the dynamic displacements to the dynamic cutting 
forces. ܽ is the axial cutting depth. The physical meanings of other parameters in Eq. (13) are the 
same as ones in Eq. (11), ܭ௧ = ,ݔ) ,௧ܭ (ݕ = ,௧ݔ)  :(௧ݕ

݉௫ 00 ݉௬൨ ൜ݔሷݕሷ ൠ + ܿ௫ 00 ܿ௬൨ ൜ݔሶݕሶ ൠ + ݇௫ 00 ݇௬൨ ቄݕݔቅ =  12 ܽܭ௧ۯ ൜∆ݕ∆ݔൠ, ۯ = ߨ2ܰ ቂߙ௫௫ ௬௫ߙ௫௬ߙ ,௬௬ቃߙ ݔ∆ = (ݐ)ݔ) − ݐ)ݔ − ܶ)), △ ݕ = (ݐ)ݕ) − ݐ)ݕ − ܶ)). (13)

The paper presents one new method to analyze the root reason of the occurrence of chatter. 
Firstly, the Eq. (13) is converted from time to frequency domain: 
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൬− ݉௫ 00 ݉௬൨ ߱ଶ + ܿ௫ 00 ܿ௬൨ ݆߱ + ݇௫ 00 ݇௬൨൰ ൜ܺ(߱)ܻ(߱)ൠ = 12 ܽܭ௧ሾۯሿ ൜ܺ(߱)ܻ(߱)ൠ. (14)

Eq. (14) can be written simply: 

൬܈(߱) −  12 ܽܭ௧(1 − ݁ିఠ்)ۯ൰ ൜ܺ(߱)ܻ(߱)ൠ = ሼ0ሽ, (15)

where, ܈(߱) is the dynamic stiffness matrix of milling system. The characteristic equations of 
milling system can be obtained from Eq. (15): det ൬܈(߱) −  12 ܽܭ௧(1 − ݁ିఠ்)ۯ൰ = 0. (16)

The expansion of Eq. (16) is shown as follows: 

det ቆ− ݉௫ 00 ݉௬൨ ߱ଶ + ܿ௫ + ܿ௫௫ ܿ௫௬ܿ௬௫ ܿ௬ + ܿ௬௬൨ ݆߱ + ݇௫ + ݇௫௫ ݇௫௬݇௬௫ ݇௬ + ݇௬௬൨ቇ = 0. (17)

Additional damping elements: 

ܿ௫௫ = − ߨ4ܰ ܽܭ௧ sin(߱ܶ)߱ ,௫௫ߙ ܿ௫௬ = − ߨ4ܰ ܽܭ௧ sin(߱ܶ)߱ ௫௬,ܿ௬௫ߙ = − ߨ4ܰ ܽܭ௧ sin(߱ܶ)߱ ,௬௫ߙ ܿ௬௬ = − ߨ4ܰ ܽܭ௧ sin(߱ܶ)߱ .௬௬ߙ (18)

Additional stiffness elements: 

݇௫௫ = − ߨ4ܰ ܽܭ௧(1 − cos(߱ܶ))ߙ௫௫, ݇௫௬ = − ߨ4ܰ ܽܭ௧(1 − cos(߱ܶ))ߙ௫௬,݇௬௫ = − ߨ4ܰ ܽܭ௧(1 − cos(߱ܶ))ߙ௬௫, ݇௬௬ = − ߨ4ܰ ܽܭ௧(1 − cos(߱ܶ))ߙ௬௬. (19)

In Eq. (13), ߙ௫௬ > 0, ௬௫ߙ  < 0,  in general [3]. For regenerative chatter, the phase  ߚ = ߱ܶ ∈ ,ߨ) thus sin(߱ܶ) ,[3] (ߨ2 < 0. For additional damping terms, ܿ௫௬ > 0, ܿ௬௫ < 0, for 
additional stiffness terms, ݇௫௬ < 0, ݇௬௫ > 0. It is the non-diagonal elements that cause chatter, 
which can be verified by Routh criterion [22]. In Eq. (17), ݆߱  can be replaced by ݏ, and the 
equation can be transformed into Laplace domain: 

det ቆ݉௫ 00 ݉௬൨ ଶݏ + ܿ௫ + ܿ௫௫ ܿ௫௬ܿ௬௫ ܿ௬ + ܿ௬௬൨ ݏ + ݇௫ + ݇௫௫ ݇௫௬݇௬௫ ݇௬ + ݇௬௬൨ቇ = 0. (20)

Eq. (20) can be expanded: ܽସݏସ + ܽଷݏଷ + ܽଶݏଶ + ܽଵݏ + ܽ = 0, (21)

where: 
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۔ۖەۖ
ସܽۓ = ݉௫݉௬,ܽଷ = ݉௫൫ܿ௬ + ܿ௬௬൯ + ݉௬(ܿ௫ + ܿ௫௫),ܽଶ = ݉௫(݇௬ + ݇௬௬) + (ܿ௫ + ܿ௫௫)൫ܿ௬ + ܿ௬௬൯ + ݉௬(݇௫ + ݇௫௫) − ܿ௫௬ܿ௬௫,ܽଵ = (ܿ௫ + ܿ௫௫)(݇௬ + ݇௬௬) + ൫ܿ௬ + ܿ௬௬൯(݇௫ + ݇௫௫) − ݇௫௬ܿ௬௫ − ܿ௫௬ ݇௬௫,ܽ = (݇௫ + ݇௫௫)(݇௬ + ݇௬௬).  (22)

The first row of Routh criterion table is: 

ܛۺ = ቈܽସ ܽଷ ܽଶ − ܽସ ܽଵܽଷ ܽଵ − ܽଷଶܽܽଷܽ − ܽସܽଵ ்ܽ. (23)

According to Routh criterion [22], the system becomes unstable when there are negative 
elements in Eq. (23). In Eqs. (18)-(19), ݇௫௬ < 0,  ܿ௬௫ < 0,  thus ݇௫௬ܿ௬௫ > 0,  then ݇௬௫ > 0,  ܿ௫௬ > 0, then  ܿ௫௬݇௬௫ > 0, as a result, ܽଵ decrease. The coefficient (4,1)ܛۺ decreases obviously 
as a result of ܽଵ decreasing. Meanwhile, the other elements in Eq. (23) have no obvious trends to 
decrease. Thus, the limiting axial cutting depth can be predicted when the (4,1)ܛۺ  become 
negative as ܽ increases. The prediction method will be verified by milling experiments. 

4.2. Identification of process damping 

From Section 4.1, it could be concluded that the way to suppress chatter can be attributed to 
increase diagonal elements ܿ, ݇ (݅ = ݅) or eliminate non-diagonal elements ܿ, ݇ (ݕ ,ݔ =  ,(ݕ ,ݔ
these ways can all increase the ܽଵ in Eq. (23) to increase stability. In [14-17], the effects of process 
damping is considered as an additional damper ܿ௫ , ܿ௬ . Obviously, the process damping can 
improve limiting axial cutting depth by increasing ܿ (݅ =  .(ݕ ,ݔ

 
Fig. 7. Variations in absolute stability limits with cutting speed 

In general, according to linear time-delay model ignoring process damping, there is hardly any 
stability lobes and stability limits are very small at low speed as shown in Fig. 7, which is due to 
the many tightly packed vibration waves at each tooth period [3]. As discussed in Section 2, the 
indentation area and process damping increase as the cutting speed decreases, therefore the 
absolute stability limit commonly varies with cutting speed as shown in Fig. 7. The stability limit 
decreases at higher speeds, where the effect diminishes. For given speed ݊௦, ܽ௦  is the stability 
limits predicted ignoring process damping, which can be generated by time simulation methods 
provided in Section 3, where process damping force is ignored in Eq. (11). Whereas ܽ  is 
generated when process damping force is considered in Eq. (11). The process damping is 
identified using the differences between ܽ௦  and ܽ. 

Considering the symmetry of tool structures, the modal parameters (݉, ܿ,  ݇,  ߦ,  ݅ =  (ݕ ,ݔ
in two different directions can be assumed as equal: ݉௫ = ݉௬ = ݉, ܿ௫ = ܿ௬ = ܿ, ݇௫ = ݇௬ = ݇. 
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Structural damping ratio ߦ = ܿ/(2√݉݇). Thus, for given spindle speed, the process damping can 
be identified following the steps as below: 

1) Generate ܽ and ܽ௦ . 
2) Entitle value: ߦଵ =  .ߦ
3) Increase damping ratio: ߦଵ = ଵߦ +  .(is taken as 0.0001 ߦ∆) ߦ∆
4) For given ߦଵ , obtain new critical cutting depth ܽ . In the step, axial cutting depth ܽ , 

increases from ܽ௦  until (4,1)ܛۺ is negative, then ܽ = ܽ. 
5) If ܽ < ܽ, go to step 3, otherwise, ߦ௧ =  ௧ is total damping ratio, which isߦ ,ଵ. Whereߦ

the sum of structural damping ratio and process damping ratio. 
Then, the process damping ܿ can be obtained as follows:  ߦ = ௧ߦ − ,ଵߦ ܿ .ߦ݇݉√2= (24)

5. Comparison of computational and experimental results 

To verify the nonlinear model and identification method provided in Sec.1-4, the computations 
and experiments are all achieved. Computations are achieved in MATLAB according to time 
domain simulation provided in Section 3, the modal parameters in Eq. (11) are:  

Natural frequency: ߱௫ = ߱௬ = 2061 Hz. 
Modal damping ratio: ߦ௫ = ௬ߦ = 0.026. 
Modal stiffness: ݇௫ = ݇௬ = 1.044×107 N/m. 
Cutting force coefficients: tangential force coefficient ܭ௧ = 2000 MPa, ܭ௧ = 41 N/mm, 

radial force coefficients ܭ = 1000 MPa, ܭ = 77 N/mm, which are obtained by slot milling 
identification [3]. 

Process damping coefficients: indentation coefficient ܭௗ  and friction coefficient ߤ , for 
titanium alloy Ti6AL4V were reported at 30,000 N/mm3 and 0.3 in [15]. To show the effects of 
process damping, the stability limits predicted without process damping are also generated.  

 
Fig. 8. The milling experiments scenes 

Test scenes are shown in Fig. 8, experimental equipments: 
Machine: Mikron UCP DURO800. 
Tool 1: carbide end mill, 125 mm overall length, 70 mm overhang length, 30 mm edge length, 

12 mm diameter, 4 flutes, 30° helix angle, 9° clearance angle. 
Tool 2 (with anti-vibration clearance angle): clearance angle – ߙଵ is 4°, ߙଶ is 9°, length of 

transition edge – ܹ = 60 μm, the other parameters are the same as tool 1. 
Sensors: piezoelectric acceleration sensors to collect vibration signals of workpiece; AE 

sensors to collect sound signals. 
Workpiece material: Ti6AL4V. 
Data acquisition card: NIUSB9233. 
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Main parameters: radial cutting depth ܽ = 1 mm, feed per tooth ௭݂ = 0.06 mm/z, down 
milling, mist cooling. 

    
Fig. 9. Stability limits generated from  

computations and experiment 

 
Fig. 10. Process damping identified based on  

Routh criterion 
 

   

    

Fig. 11. Spectral analysis results (tool 1) 

The comparisons of computational and experimental results are shown in Fig. 9, the spectral 
analysis results of vibration signals measured are shown in Figs. 11-12. From the spectral analysis 
of vibration and sound signals measured, it is observed that the frequency with high peak value 
concentrates on the region from 2000 Hz to 2500 Hz. Besides, chatter frequency is close to 
structural natural frequency [3]. Therefore, to see the spectrum clearly (spectral lines are very 
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dense due to low rotating speed), the analytical region from 2000 Hz to 2500 Hz is shown in 
Figs. 11-12. It can be seen that the main frequency are all spindle rotating frequency (recorded as 
star) and tooth passing frequency (recorded as “×”) in stable conditions, while the chatter 
frequency (recorded as “○”) become prominent in unstable conditions. In unstable conditions 
(chatter), the phase ߚ = ߱ܶ ∈ ,ߨ)  and chatter frequency don’t coincide with spindle rotating (ߨ2
frequency, the unstable types belong to Hopf bifurcation. From Fig. 9, it is seen that the 
estimations on the stable limits show a good agreement with the experimental results. Besides, the 
stability limits identified based on Routh criterions are shown in Fig. 9, which show a good 
agreements with stability limits predicted by time domain simulations. It indicates that the method 
for identification of process damping is reasonable. The process damping identified are shown in 
Fig. 10, For tool 1, the effect of process damping lasts until the spindle speed is up to 2000 r/min 
(cutting speed ݒ ≈ 80 m/min). For tool 2, stable regions are expanded remarkably relative to 
tool 1. The effects of process damping increase due to anti-vibration clearance angle, which lasts 
until the spindle speed exceeds 3000 r/min (cutting speed ݒ ≈ 113 m/min). 

 

Fig. 12. Spectral analysis results (tool 2) 

 
a) Tool 1 

 
b) Tool 2 

Fig. 13. The comparisons of spectral analysis results 

To show the performances of anti-vibration clearance angle in suppressing chatter well, the 
unstable condition (2000 r/min, 7 mm) when using tool 1 can be achieved with tool 2 again. As 
shown in Fig. 13, a) shows the spectral analysis results when using tool 1, chatter frequency is 
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prominent; b) shows the spectral analysis results when using tool 2, the chatter frequency have 
been almost eliminated and main frequency all represents imposed vibration, besides the peak 
value are much lower than using tool 1, the effects of tool 2 in suppressing chatter are significant. 
In Fig. 14(a), lots of inclined vibration marks are left on the machined surface when using tool 1, 
which is the symbol of the occurrence of regenerative chatter. Whereas in Fig. 14(b), the surface 
is very smooth and only little straight marks are left (it indicates the slight imposed vibrations) 
when using tool 2, anti-vibration clearance angle have significant effects. 

 
a) Tool 1 

 
b) Tool 2 

Fig. 14. The comparisons of surface quality 

For the same cutting parameters (2000 r/min, 7 mm), the dynamic chip thickness, ℎ, calculated 
under three different conditions are shown in Fig. 15, which can indicate the criterion to judge is 
provided in Section 3 is valid. 

 

Fig. 15. The dynamic chip thickness in different conditions 

The comparative analysis of computational and experimental results show that the non- linear 
model considering process damping can predict stability limits at low speed in the milling of 
typical titanium alloy accurately, including the working conditions using tool with anti-vibration 
clearance angle. For tool 1, process damping can expand the stable regions significantly, limits 
can be improved from 3 mm to 10 mm at regular spindle speed such as 1000 r/min (cutting speed ݒ ≈ 40 m/min) in milling of titanium alloy. The tool 2 can increase the process damping further 
and expand the speed range of process damping effect, the laws presented by Eq. (1) are proved 
fully. 
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6. Discussions and conclusions 

Chatter problem in milling of titanium alloy is one of the main restrictions to the quality and 
efficiency of aeronautical manufacture. In the machining of titanium alloy, quite low cutting speed 
is always adopted for ensuring the tool life. Stability limits predicted by regular model ignoring 
process damping is much lower than actual limits, which may lead to terrible machining efficiency. 
In the paper, one milling dynamic model considering process damping is presented to predict 
stability limit and one simple method based on Routh criterion is presented for identification of 
process damping. The computations and experiments indicates that the nonlinear model could 
provide accurate results and the identification method is reasonable. Besides the anti-vibration 
clearance angle designed could increase process damping to suppress chatter and improve 
machining surface quality effectively. Furthermore, the anti-vibration angle can expand speed 
range of process damping effects significantly, the conclusion has not been proposed in previous 
works. 

However, it must be pointed out that the calculation model of process damping proposed in 
paper is a simplification of a much complicated interaction between the cutting edge, the flank 
face, and the workpiece. The interaction is highly dependent on the edge condition, and in 
particular on tool wear. In the current work, only sharp cutters were utilized. 

In summary, although lots of simplifications have been adopted in computational model, the 
importance and effect of model can be also shown in paper. In future work, more complex tool 
geometry will be tried out, the effect of honed radius and flank wear will be investigated. 
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Appendix 

We adsorbed some ideas [21] and provide one useful method to calculate dynamic chip 
thickness ℎ,  and indentation area. It considers the nonlinear effects of engagement and 
disengagement from the workpiece and could describe the surface wave caused by vibration 
accurately.  

A1. Determined function ࢍ 

As shown in Fig. 16, the tool is assumed to be rotating anticlockwise, the workpiece surface 
surface is updated as material is removed, and the chip thickness is evaluated at each discretized 
point on the cutting edge. For down milling, the workpiece surface is divided into two regions: 
the cutting arc surface and finished surfaces, represented by arrays of (ܺ, ܻ) co-ordinates, ܵ, ܵௗ, 
as shown in Fig. 16. Here, Φ௦௧ is the entry angle, Φ௫ is the exit angle, ܽ is radial cutting depth, 
for down milling: 

൝Φ௦௧ = cosݎܽ ൬ܽ − ܴܴ ൰ ,Φ௫ = .ߨ (A1)

When angular position Φ < Φ௦௧, the tool is out of contact with workpiece, the cutting force 
and process damping force is zero. According to common analytic methods, when Φ > Φ௫, the 
cutting force is also regarded as zero [4]. The unit step function which determines whether the 
tooth is in or out of the cutting, ݃  (mentioned in Section 3.1), is always defined as 1 when Φ ∈ (Φ௦௧, Φ௫) , otherwise ݃  is 0. However, in practice, the finished surface ܵௗ  is affected 
probably by a tooth at the instant it passes through Φ =  Therefore, the scope of ݃ should be .ߨ
expanded. In the paper, the definition of ݃ is: 
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൞݃ = 1, Φ௦௧ < ߠ < Φ௫ + ܴܽ tan(ߚ) ,݃ = 0, ߠ < Φ௦௧  or  ߠ > Φ௫ + ܴܽ tan(ߚ) , (A225)

where ߠ is the angular position of tooth bottom (axial level ݖ = 0), which is shown in Eq. (5), ܽ 
is axial cutting depth. When ߠ ∈ ,௦௧ߔ) ௫ߔ + ܽtan (ߚ)/ܴ), the calculation of cutting force and 
process damping force at every axial level ݖ should continue.  

 
Fig. 16. Milling kinematics model 

Additionally, we should mention that, the calculation of indentation area should also stop when 
corresponding angular position at ݅th time point, Φ, is smaller than entry angle Φ௦௧. 

A2. Calculation of instantaneous chip thickness ࢎ 

As mentioned in Section 3.1, the calculation of instantaneous chip thickness ℎ is of great 
importance in the whole computation process, which is required to describe the wave in workpiece 
surface accurately. As shown in Fig. 17, two surface arrays are stored, one of the surface left by 
the previous tooth and one being created by the current tooth. Fig. 17 shows how the surface is 
updated. At each time interval, a new point (ݔ,  ) is added to the current surface at the angularݕ
position of the tooth, Φ. If the tooth is cutting, the instantaneous position of tooth edge is used, 
otherwise a point is found on the previous surface at the tooth angle. 

We provide one method to represent the wave in workpiece surface. As shown in Fig. 17, this 
method generates a point on the surface at each time interval corresponding to the instantaneous 
position of the cutting edge. At angular position, Φ, the coordinate values of tool edge: 

ቊ(ݐ)ݔ = ܴ sin(Φ) + (ݐ)ݕ,௧,ݔ = −ܴ cos(Φ) + .௧,ݕ (A3)

In order to determine if the tooth is submersed in the workpiece, the intersection point of the 
tooth and the previous surface is calculated. The point on the previous surface, (ݔᇱ , ᇱݕ ), is found 
which has an angular position, Φᇱ , immediately preceding the angular position of the tooth, Φ, 
the intersection point (ݔᇱ,  .ᇱ) is then found by linear interpolationݕ

Firstly, the radial distance, ݎᇱ, is obtained by linear interpolation of the radial distance between 
points ݇ and ݇ + 1 on the previous surface: 

ᇱݎ = ᇱݎ + ାଵᇱݎ − ᇱΦାଵᇱݎ − Φᇱ (Φ − Φᇱ ). (A4)
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The coordinate values of intersection point (ݔᇱ,  :ᇱ) isݕ

ቊݔᇱ = ᇱ sin(Φ)ݎ + ᇱݕ,௧,ݔ = ᇱ cos(Φ)ݎ− + .௧,ݕ (A5)

As shown in Fig. 17(a), it indicates that the tool is cutting workpiece if ܴ >  ᇱ, otherwise, itݎ
indicates the tool has separated from workpiece as shown in Fig. 17(b). Thus, the dynamic chip 
thickness ℎ, can be obtained: 

൜ℎ = ܴ − ,ᇱݎ ܴ > ᇱ,ℎݎ = 0, ܴ < .ᇱݎ (A6)

Then the coordinate values of surface wave caused by current tooth path can also be generated. 
If the tooth is cutting workpiece, the coordinate values of surface wave, (ݔ,  ), is taken as theݕ
current coordinate values of tool edge ((ݐ)ݔ, ,ݔ) Otherwise, the coordinate value of wave .((ݐ)ݕ ,ᇱݔ) ) is taken as the value ofݕ  :(ᇱݕ

൜(ݔ, (ݕ = ,(ݐ)ݔ) ,((ݐ)ݕ ℎ > ,ݔ),0 (ݕ = ,ᇱݔ) ,(ᇱݕ ℎ = 0. (A726)

 

 
a) Tooth submersed in workpiece 

 
b) Tooth separated from workpiece 

Fig. 17. The geometrical relationship between tool and workpiece 

A3. Calculation of coordinates of surface wave in radial direction ࢋ࢜ࢇ࢝,࢛࢘ 

For calculating indentation area and process damping force in accordance with Eqs. (2)-(4), 
the radial coordinate values of surface wave, ݑ,௪௩, should be also obtained. If tool is cutting 
workpiece, ݑ,௪௩ is equal to the radial vibration displacement of tool, which can be obtained using ൫ݔ௧,, ,௧,൯ and angular position Φݕ  so does the corresponding radial vibration speed. 
Otherwise, if tool has separated from workpiece, ݑ,௪௩ is taken as the ones caused by the previous 
tooth pass, which is also generated by linear interpolation. In Eq. (A8), ݑ,௪௩, is radial coordinate 
values of wave caused by previous pass: 
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ቊݑ,௪௩ = ௧,ݔ− sin(Φ) + ሶݑ,௧,cos(Φ)ݕ ,௪௩ = ሶ௧,ݔ− sin(Φ) + ,ሶ௧,cos(Φ)ݕ ℎ > 0,
ቐݑ,௪௩ = ,௪௩,ݑ + ,ାଵ௪௩,ݑ − ,௪௩,Φାଵᇱݑ − Φᇱ (Φ − Φᇱ ሶݑ,( ,௪௩ = 0, ℎ = 0. (A8)

A4. Feeding the workpiece 

The workpiece is fed into the tool at the rate ௭݂ [mm/tooth]. With a spindle speed, ݊, a time 
interval of ∆ݐ, and ܰ number of teeth, the motion of the workpiece along the ܺ-axis during a single 
time step is: ∆ݔ = − ௭݂ ܰ݊60 (A9) .ݐ∆

The ܺ components of all points in all surface arrays are incremented by ∆ݔ at each time step 
before the surface is updated due to the teeth cutting. Correspondingly, ݑ,௪௩  and ݑ,௪௩,  in 
Eq. (A8) are also incremented by −∆ݔ sin(Φ). 

A5. Special case 

When tooth just entering the arc surface, tooth may first strikes the upper uncut workpiece 
surface before cutting the surface cut by previous teeth. The chip thickness is found using Eq. (A6) 
with the point (ݔᇱ, (ᇱݕ  found as intersection between the tooth edge and the line  
ݕ) = ܴ cos(ߨ − Φ௦௧)) as shown in Eq. (A10). Then chip thickness ℎ is obtained using the above 
methods: 

ቊݔᇱ = −൫ܴcos(ߨ − Φ௦௧) − ௧,൯ݕ tan(Φ) + ᇱݕ,௧,ݔ = ܴcos(ߨ − Φ௦௧).  (A10)

 
Fig. 18. The geometrical relationship between tool and workpiece when tooth is entering surface 
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