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Abstract. Fault diagnosis of rotating machineries is becoming important because of the 

complexity of modern industrial systems and the increasing demands for quality, cost efficiency, 

reliability, and safety. In this study, an information-geometric support vector machine used in 

conjunction with chaos theory (chaotic IG-SVM) is presented and applied to practical fault 

diagnosis of hydraulic pumps, which are critical components of aircraft. First, the phase-space 

reconstruction of chaos theory is used to determine the dimensions of input vectors for IG-SVM, 

which uses information geometry to modify SVM and improves performance in a data-dependent 

manner without prior knowledge or manual intervention. Chaotic IG-SVM is trained by using the 

dataset from the normal state without fault, and a residual error generator is then designed to detect 

failures based on the trained chaotic IG-SVM. Failures can be diagnosed by analyzing residual 

error. Chaotic IG-SVM can then be used for fault clustering by analyzing residual error. Finally, 

two case studies are presented, and the performance and effectiveness of the proposed method are 

validated. 

Keywords: information-geometry, support vector machine, chaos theory, fault diagnosis, 

hydraulic pump. 

1. Introduction 

To reduce costs and shorten repair time, technologies for machine maintenance, diagnostics, 

and prognostics have received significant attention. Fault diagnosis is an essential prerequisite for 

the further development of automatic supervision. Real-time condition monitoring that can detect, 

classify, and predict impending faults is critical to reduce operating and maintenance costs [1]. 

Moreover, condition monitoring is important to increase machinery availability and improve 

manufacturing process productivity and reliability [2]. 

Hydraulic pumps are the power sources of hydraulic systems in aircraft. The performance of 

these pumps directly affects the stability of the hydraulic system and even that of the entire system. 

Statistical data show that hydraulic pumps have higher fault probability than other mechanical 

systems. Therefore, diagnosing pump health in real time is an important factor to increase the 

reliability and performance of hydraulic systems. If a fault-detection scheme that provides early 

warning of component failures can be developed, then repairs or replacements can be carried out 

at the earliest or most convenient time with minimum productivity loss [3]. However, hydraulic 

pumps are complex and have a high degree of coupling [4]. Considering complexity and severe 

working conditions, a data-driven fault-detection method is typically applied to online fault 

diagnosis. Many data-driven methods have been proposed, such as wavelet decomposition [5], 

artificial neural networks (ANNs) [6, 7], fuzzy logic, kernel principal component analysis [8], and 

D-S evidence theory [9]. 

Given the universal presence of chaotic phenomena and the intrinsic characteristics and 

complex operating conditions of hydraulic systems, strong nonlinearity and chaotic features can 

clearly be observed in the vibration signals of hydraulic pumps [7]. Therefore, chaos theory is 

valuable for the fault diagnosis of hydraulic pumps [10]. 

A support vector machine (SVM), as a data-driven method, has been widely applied. 
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Compared with ANNs, SVM overcomes numerous defects such as overfitting and local 

convergence. In addition, SVM has advantages over ANNs in terms of robustness and in 

preventing the curse of dimensionality. SVM has been applied to many fields, such as in pattern 

recognition and fault diagnosis [1]. 

Despite its excellent applicability, the performance of SVM largely depends on the kernel 

[11, 12]. Kernel functions are mostly chosen based on experience. However, unsuitably chosen 

kernel functions may significantly impair performance [13]. No systematic approach for choosing 

appropriate kernel functions has yet been introduced [14]. Choosing a kernel corresponds to a 

smoothness assumption of the discriminant function of the classifier. When we have prior 

knowledge, we can use it to choose a kernel [15, 16]. In practice, however, prior knowledge is 

typically unavailable. Therefore, the kernel should be optimized in a data-dependent manner. An 

information-geometric method is employed in the present study. Based on the structure of the 

Riemannian geometry induced in the input space by the kernel, SVM can be modified in a 

data-dependent manner, and information-geometric SVM (IG-SVM) can be obtained. 

This paper is divided into three sections. Section 2 describes chaos theory on phase-space 

reconstruction, proposes a new IG-SVM for chaotic time-series prediction, and describes the 

designed residual error generator. Sections 3 and 4 present several case studies, including the 

simulation results of a one-step iterative prediction and the experimental results of fault detection 

for a hydraulic pump. The feasibility and efficiency of the method are validated via a plunger 

pump test bed. 

2. Methodology 

2.1. Phase-space reconstruction of a chaotic time series 

Phase-space reconstruction theory regards a 1D chaotic time series as the compressed 

information of high-dimensional space. The Takens embedding theorem [17] suggests that a 

dependable phase-space reconstruction of a dynamic system can be obtained if: 

𝑚 ≥ 2𝐷 + 1, (1) 

where 𝑚 is the system embedding dimension, and 𝐷 is the dimension of the system attractor. To 

obtain a correct system embedding dimension, 𝐷 should be estimated starting from the time series. 

The correlation dimension, as defined by Grassberger and Procaccia, is a popular definition 

because of its calculation simplicity [18]. The correlation integral 𝐶𝑚(𝑟) is defined as: 

𝐶𝑚(𝑟) =
2

𝑁(𝑁 − 1)
∑ ∑ 𝐻(𝑟 − |𝑋𝑖 − 𝑋𝑗|)

𝑁

𝑗=𝑖+1

𝑁

𝑖=1

, (2) 

where 𝐻 is the Heaviside function, 𝑚 is the embedding dimension, and 𝑁 is the number of vectors 

in the reconstructed phase space. If 𝑟 is sufficiently small and 𝑁 is sufficiently large, then the 

correlation dimension 𝐷 is equal to: 

𝐷 = lim
𝑟→0

ln(𝐶𝑚(𝑟))

ln(𝑟)
. (3) 

The algorithm plots a cluster of ln(𝐶𝑚(𝑟)) − ln(𝑟) curves by increasing 𝑚 until the slope of 

the linear part of the curve is nearly constant. The correlation dimension D can then be estimated. 
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2.2. Modified SVM that uses information geometry 

The SVM proposed by Vapnik [16] aims to minimize an upper bound of the generalization 

error by maximizing the margin between the separating hyperplane and the data. Consider a 

pattern classifier that uses a hyperplane to separate two classes of patterns based on given 

examples = {(𝑥1, 𝑦1), … , (𝑥𝑖, 𝑦𝑖)}, where 𝑥 is a vector in the input space 𝑆 = 𝑅𝑑, 𝑦 ∈ {−1,1} is a 

class label, and 𝑖 = 1,…, 𝑙. A nonlinear SVM maps the input data 𝑥 onto a high-dimensional 

feature space 𝐹 = 𝑅𝑛 (𝑁 may be infinite) via nonlinear mapping 𝜙(𝑥). Then, SVM searches for 

a linear discriminant function, that is: 

𝑓(𝑥) = 𝑤𝜙(𝑥) + 𝑏. (4) 

The basic concepts of SVM theory are comprehensively explained in [13]. Once the correlation 

dimension 𝐷 is obtained by using the Grassberger-Procaccia (GP) algorithm, the number of input 

nodes in SVM can be determined as: 

𝐼𝑛 = [2𝐷 + 1]. (5) 

To modify the SVM kernel by using information geometry, the geometrical structure induced 

in the input space by a kernel should be analyzed as follows [19]. 

Mapping 𝜙(𝑥)  defines an embedding of 𝑆  into 𝐹  as a curved submanifold. When 𝐹  is a 

Euclidean or Hilbert space, a Riemannian metric is induced in space 𝑆, wherein the length of a 

small line element 𝑑𝑥 in 𝑆 is defined by the length in larger space 𝐹. 

𝑧 denotes the mapped pattern of 𝑥 in the feature space, i.e., 𝑧 = 𝜙(𝑥). A small vector 𝑑𝑥 is 

mapped onto: 

𝑑𝑧 = ∇𝜙(𝑥)𝑑𝑥 = ∑
𝜕

𝜕𝑥𝑖
𝜙(𝑥)𝑑𝑥𝑖

𝑖

, (6) 

where: 

∇𝜙(𝑥) =
𝜕

𝜕𝑥𝑖
𝜙(𝑥). (7) 

The squared length of 𝑑𝑧 = 𝑑𝑧𝛼 is written in quadratic form as: 

|𝑑𝑧| = ∑(𝑑𝑧𝛼)2 = ∑ 𝑔𝑖𝑗(𝑥)𝑑𝑥𝑖𝑑𝑥𝑗

𝑖,𝑗

,

𝛼

 (8) 

where: 

𝑔𝑖𝑗(𝑥) = (
𝜕

𝜕𝑥𝑖
𝜙(𝑥)) ∙ (

𝜕

𝜕𝑥𝑗
𝜙(𝑥)). (9) 

The dot denotes the summation over index 𝛼  of 𝜙.  The 𝑛 × 𝑛  positive-definite matrix  

𝐺(𝑥) = 𝑔𝑖𝑗(𝑥) is the Riemannian metric tensor induced in 𝑆. This matrix shows that the metric is 

directly derived from the kernel. 

The following is a theorem presented in [19]: 
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𝑔𝑖𝑗(𝑥) =
𝜕

𝜕𝑥𝑖

𝜕

𝜕𝑥𝑖
′ 𝐾(𝑥, 𝑥′)|𝑥′=𝑥 , (10) 

the proof of which is: 

𝜕

𝜕𝑥𝑖

𝜕

𝜕𝑥𝑖
′ 𝐾(𝑥, 𝑥′) = ∇𝜙(𝑥) ∙ ∇𝜙(𝑥′). (11) 

This proof verifies Eq. (10) [11]. 

Based on the preceding analysis, forecasting precision in regression problems can be improved 

if a special nonlinear map 𝜙 is constructed, such that 𝑔𝑖𝑗(𝑥) is reduced around the neighboring 

areas of the hyperplane |𝑦 − 𝑓(𝑥) − 𝑏| = 𝜉, which is contrary to the method used by Amari [11] 

in classification problems. This concept can be implemented by a conformal transformation of the 

kernel, that is: 

𝐾(𝑥, 𝑥′) = 𝑐(𝑥)𝑐(𝑥′)𝐾(𝑥, 𝑥′), (12) 

with a properly positive scalar function 𝑐(𝑥). 𝐾(𝑥, 𝑥′) is called the conformal transformation of a 

kernel by factor 𝑐(𝑥) . The nonlinear mapping 𝜙(𝑥)  can be regarded as being modified to  

𝜙̃(𝑥) = 𝑐(𝑥)𝜙(𝑥), thus satisfying the Mercer positivity condition. 

The metric 𝑔̃𝑖𝑗(𝑥) can be obtained as follows: 

𝑔̃𝑖𝑗(𝑥) = 𝑐(𝑥)2𝑔𝑖𝑗(𝑥) + 𝑐𝑖(𝑥)𝑐𝑗(𝑥) + 2𝑐𝑖(𝑥)𝑐(𝑥)𝐾(𝑥, 𝑥), (13) 

where 𝑐𝑖(𝑥) = 𝜕𝑐(𝑥)/𝜕𝑥𝑖  and 𝐾𝑖(𝑥, 𝑥) = 𝜕𝐾(𝑥, 𝑥′)/𝜕𝑥𝑖|𝑥′=𝑥 . The last term is zero for the 

Gaussian radial basis function kernel. 

Therefore, if we choose function 𝑐(𝑥), such that its value is large when 𝑥 is close to the 

boundary and small otherwise, then we can enlarge the spatial resolution around the boundary 

[11]. 

Considering the preceding analysis, 𝑐(𝑥) can be chosen as: 

𝑐(𝑥) =
1

𝑚
∑ exp (−

‖𝑥 − 𝑜𝑖‖
2

𝜏2
) ,

𝑚

𝑖=1

 (14) 

where parameters 𝑚, 𝑜𝑖, and 𝜏 are the number of partitioning points, the center of the 𝑖th partition, 

and the width of the 𝑖th partition, respectively. Outside the circles, the value of 𝑐(𝑥) and its 

derivative are extremely small [15]. Therefore, this function satisfies the aforementioned 

requirement and can be used to modify SVM in a data-dependent manner. 

2.3. Residual error generator 

A residual error generator can be designed for fault diagnosis based on the IG-SVM prediction 

process. The structure is shown in Fig. 1. 

In Fig. 1, 𝑥(𝑡) is the time series that can be observed in the actual system, IG-SVM is the 

residual error generator trained by the data from the normal state, 𝑥̂(𝑡) is the one-step prediction 

value of IG-SVM, and 𝑒(𝑡) is the output of the residual error generator. 

The diagnostic decision is obtained based on the following rule: 

𝑟𝑒𝑣𝑎𝑙 > 𝐽𝑡ℎ → Fault state detected, 
𝑟𝑒𝑣𝑎𝑙 ≤ 𝐽𝑡ℎ → Normal state, 
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where 𝑟𝑒𝑣𝑎𝑙 is the mean absolute value of the residual error signal, and 𝐽𝑡ℎ is the threshold that can 

be determined by experience. 

 
Fig. 1. Structure of the residual error generator based on IG-SVM 

3. Simulation results 

To verify the proposed method, the simulation result of Lorenz attractor data is provided. 

Eq. (15) is employed to generate Lorenz time-series data: 

{

𝑑𝑥 = −𝜎𝑥 + 𝜎𝑦,
𝑑𝑦 = −𝑥𝑧 + 𝑟𝑧 − 𝑦,
𝑑𝑧 = 𝑥𝑦 − 𝑏𝑧,

 (15) 

where 𝜎 = 10, 𝑟 = 28, and 𝑏 = 8/3. A total of 1000 points of 𝑋-component Lorenz time series 

were used for the following prediction. According to the GP algorithm, the embedding dimension 

can be determined, 𝑚 = 6. 

 
Fig. 2. Plot of ln𝐶𝑚(𝑟) − ln(𝑟) of the Lorenz time series 

As a whole, 200 points were divided into two groups (i.e., the training and testing datasets). 

The first 100 samples were used for SVM training. The next 100 samples were employed to test 

the prediction accuracy between SVM and IG-SVM. 

 
Fig. 3. The one-step iterative predicted result of the Lorenz time series 
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Fig. 4. Comparison of APE between SVM and IG-SVM 

The number of input nodes of SVM was 6, which was obtained by estimating the minimum 

embedding dimension. Fig. 3 shows the one-step iterative predicted result for the last 100 points 

of the Lorenz time series by IG-SVM. Fig. 4 shows a comparison of the absolute percent error 

(APE) of the Lorenz time series between SVM and IG-SVM. Compared with SVM, IG-SVM 

exhibits better performance in iterative prediction in terms of convergence and stability. 

4. Experimental results 

In this section, a test rig of an SCY hydraulic plunger pump was evaluated and analyzed to 

verify the proposed method. In the experiment, two common types of faults in the plunger pump 

were set: (1) a wear fault between the swash plate and the slipper and (2) a wear fault of the valve 

plate. Under three different states, including the normal state, a vibration signal was acquired from 

the end face of the plunger pump at a stabilized motor speed of 528 r/min and a sampling rate of 

1000 Hz. 

Table 1 shows the corresponding maximum Lyapunov exponents (𝜆𝑚𝑎𝑥) of the three datasets. 

Given that all 𝜆𝑚𝑎𝑥 values are positive, the experimental data can be regarded as a chaotic time 

series. 

Table 1. Lyapunov exponents of the datasets of the hydraulic pump 

Data State 𝜆𝑚𝑎𝑥 

Data 1 Normal condition 0.0508 

Data 2 Wear fault between the swash plate and the slipper 0.0744 

Data 3 Wear fault of the valve plate 0.0435 

Following the GP method, a cluster of ln𝐶𝑚(𝑟) − ln(𝑟) curves for Data 1 is plotted with the 

increase in embedding dimension 𝑚  (Fig. 5). The correlation dimension can be determined 

correspondingly, 𝐷 = 2.2346. According to (1), 𝑚 = 6. 

 
Fig. 5. Plot of ln𝐶𝑚(𝑟) − ln(𝑟) of data from the hydraulic pump under the normal state 
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In this case, 200 points of the time-series data from the normal state were used. The first 100 

samples were employed to train SVMs, whereas the last 100 samples were used to test and 

determine the threshold of fault diagnosis. After training and testing, a prediction model of the 

normal state is determined. Fig. 6 shows the result of using the one-step, iterative, prediction-

based IG-SVM. 

 
Fig. 6. The one-step iterative predicted result of data from the normal state 

4.1. Residual error of the normal state 

The residual error of the normal state data can be obtained by using the residual error generator. 

As mentioned earlier, 𝑟𝑒𝑣𝑎𝑙, which is the mean absolute value of the residual error, is used for fault 

clustering. Fig. 7 shows the absolute value of the residual error of the normal state. 

 
Fig. 7. Absolute value of the residual error of the normal state 

4.2. Residual error of the wear fault between the swash plate and the slipper 

In this case, 100 points of the time-series data from the vibration signal with a wear fault 

between the swash plate and the slipper were used via the residual error generator. Fig. 8 shows 

the absolute value of the residual error of the wear fault between the swash plate and the slipper. 

 
Fig. 8. Absolute value of the residual error of the wear fault between the swash plate and the slipper 

 

0 10 20 30 40 50 60 70 80 90 100 
-0.015 

-0.01 

-0.005 

0 

0.005 

0.01 

0.015 

Chaos Time Series of Normal State 

A
c
c
e
le

ra
ti
o
n

(m
/s

2
) 

) 

 

  

  
original 

predicted 

0 10 20 30 40 50 60 70 80 90 100
0

0.005

0.01

0.015

0.02

0.025

0.03

Time Series

A
m

p
li
tu

d
e

(m
/s

2
)

0 10 20 30 40 50 60 70 80 90 100
-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

Time Series

A
m

p
li
tu

d
e

(m
/s

2
)



1215. CHAOTIC INFORMATION-GEOMETRIC SUPPORT VECTOR MACHINE AND ITS APPLICATION TO FAULT DIAGNOSIS OF HYDRAULIC PUMPS.  

ZHIPENG WANG, CHEN LU, ZILI WANG 

1040 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. MARCH 2014. VOLUME 16, ISSUE 2. ISSN 1392-8716  

4.3. Residual error of the wear fault of the valve plate 

In this case, 100 points of the time-series data from the vibration signal of the hydraulic pump 

with a wear fault of the valve plate were used for fault detection. Fig. 9 shows the absolute value 

of the residual error of the wear fault of the valve plate. 

 
Fig. 9. Absolute value of the residual error of the wear fault of the valve plate 

4.4. Fault clustering 

In this study, two groups of normal data and eight groups of faulty data in different fault types 

were acquired via the test rig. The residual error series was calculated by using the residual error 

generator based on IG-SVM. The absolute values of the residual error series are shown in Table 2. 

Table 2 indicates that different types of data can be distinguished clearly by the absolute value 

𝑟𝑒𝑣𝑎𝑙 of the residual error. The threshold of normal data is typically set to a standard of that is three 

to five times higher than the means of the absolute values for normal data. In the present case, the 

threshold of Data1 is 𝐽𝑡ℎ = 27.23e-004. All 𝑟𝑒𝑣𝑎𝑙 values of faulty data are greater than the 𝐽𝑡ℎ of 

Data 1, and faults can be detected successfully. 

In addition, the 𝑟𝑒𝑣𝑎𝑙 of Data 2 ranges from 65 to 75, whereas that of Data 3 ranges from 85 to 

95. Therefore, the types of faults can also be isolated. The results show a 100 % success rate in 

correctly detecting and isolating hydraulic pump faults. 

Table 2. Absolute values of the residual error series 

No. Data 1 Data 2 Data 3 

State 
Normal 
(e-004) 

Wear fault between the swash plate 
and the slipper (e-004) 

Wear fault of the valve plate 
(e-004) 

Data 1-1 1-2 2-1 2-2 2-3 2-4 3-1 3-2 3-3 3-4 

𝑟𝑒𝑣𝑎𝑙 5.36 5.53 73.523 72.39 68.11 66.95 92.91 93.13 89.11 87.27 

Mean (𝑟𝑒𝑣𝑎𝑙) 5.45 70.24 90.60 

Threshold 𝐽𝑡𝑗 27.23 65 to 75 85 to 95 

5. Conclusion 

Fault diagnostics is the primary technique used for condition-based predictive maintenance. 

This approach can reduce costs and shorten repair time. The strong nonlinearity and chaotic 

features of the vibration signals of hydraulic pumps result in difficulties in fault diagnosis. This 

study presents a fault diagnosis method based on chaotic IG-SVM, which improves the 

performance of SVM in a data-dependent manner. The simulation results show that IG-SVM, 

when used in conjunction with phase-space reconstruction, exhibits better capability and 

reliability in predicting a chaotic time series, as well as high-performance convergence ability and 

prediction precision in the short-term prediction of a chaotic time series. The experimental results 

show that the IG-SVM model demonstrates a strong ability to approximate the output and state of 
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a normal system, which is useful in fault detection. Additional works are necessary to validate the 

proposed method further for wider applications. Moreover, determining thresholds automatically 

is another issue that should be addressed. 
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