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Abstract. Constructing accurate finite element models for engineering structures plays a key role 
in structural dynamic design and analysis. Finite element model updating using frequency 
response function data arises great attention. In this paper, a comparison of two model updating 
approaches by using frequency response function data is investigated. The first method is based 
on sensitivity analysis, which has been regarded as one of the most successful approaches in model 
updating. The second one is based on the representation of modeling errors as linear combinations 
of the individual element matrices, which can be used for both error locating and model updating. 
The basic formulations of these two methods are introduced and the possible solution strategies 
are discussed. Numerical simulations are conducted to compare the two model updating methods 
employing the GARTEUR Truss, two aspects effect on the updating solution including magnitude 
of initial modeling errors and the completeness of measured coordinates are studied. At last, an 
experimental cantilever beam is updated by adopting the sensitivity method with tested frequency 
response function, it is shown that the sensitivity method is effective even when the test data are 
extremely incomplete. 
Keywords: model updating, sensitivity method, error of system matrix, frequency response 
function. 

1. Introduction 

Due to the high costs of the experiments, numerical simulations are often adopted to predict 
the dynamic behavior of engineering structures for reducing the costs in both design and analysis 
[1, 2]. An accurate numerical model is important in complex structures design, dynamics response 
computation and safety assessment. Since limited measurement data can be included in the testing 
model and errors generally exist in the initial finite element model, an accurate numerical model 
for the purpose of dynamic analysis cannot be obtained by either using test modeling or the finite 
element modeling. Model updating, a classical inverse problem, is often adopted to reduce the 
differences between predictions of the finite element model and observations from the dynamics 
tests, which is an effective way to improve the accuracy of the initial finite element model. It 
draws great attention from researchers since this technique was proposed, although applying 
model updating requires a good physical understanding of the structure. Rough finite element 
models were successfully updated with modal data obtained from experiments in many fields. 
Recently, Finite element model updating using Frequency Response Functions (FRFs) data draws 
great attention to researchers owing to several advantages. (1) The FRFs are very sensitive to the 
damping of structures at resonance peaks, and damping must be included in the finite element 
model; (2) no modal analysis is required in the updating thus the error in system identification can 
be avoided; (3) the updating problem is over-determined due to the availability of FRF data at 
numerous excitation and observation points. All of the above characteristics make the approach 
with great prospects.  

Finite element model updating using frequency response functions has been investigated in 
recent decades. Surveys on the model updating methods proposed in recent years were discussed 
by Imregun and Visser [3], and also by Mottershed and Friswell [4]. Definitions on the two 
different types of error, namely the equation error and the output error, have been proposed by 
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Natke [5] with the weighted least square method to solve the problem in which the damping was 
not considered. With incomplete measurement data, Foster [6] and Link [7] employed the static 
and dynamic reduction techniques to condense the system matrix. The truncated modal technique 
was employed to reduce the system matrix in the state space by Friswell [8]. Imregun and Ewins 
[9, 10] introduced the basic theory of model updating using frequency response data 
comprehensively in which the stable solution of the algebraic equations was analyzed without 
consideration of the measurement noise. A correlation criterion has been explored by Grafe [11] 
to derivate the formulas of model updating. Attempts had also been made to construct the 
governing equations for identifying the system matrices with modal expansion and model 
reduction methods. The modeling and identification of the connections between the two models 
by using the FRFs data has been investigated by Visser [12]. 

Amongst the updating methods using FRFs data, the sensitivity method and the system matrix 
error method are which the researchers pay more attentions to. The former is based on the 
linearization of a generally non-linear relationship between the selected parameters and the 
measurement [13]; in the latter method, the errors of the global system matrix are expressed by a 
linear relation of the element matrix. In this paper, comparison of the two model updating 
approaches is conducted based on measured data from the GARTEUR Truss. The comparison 
aims to discuss the application perspectives of the two methods and to provide references for 
engineers. 

2. Basic theory 

In this section, basic formulations of the two methods are presented, and then the rules for 
selecting the frequency points as well as the solution strategies of the updating problem will be 
briefly introduced. 

2.1. The sensitivity method 

Starting from the motion equations without considering damping in the frequency domain: ሾ−߱ଶۻ + ۹ሿܠ = (1) .(߱)܎

Assuming: ܈(߱) = −߱ଶۻ + ۹. (2)

Eq. (1) can be transformed to: ܠ (߱)܈(߱) = (3) ,(߱)܎

where ܠ(߱) and ܎(߱) are the displacement of the structure and the input force in frequency 
domain, respectively. ܈(߱) is the dynamic stiffness matrix in frequency domain and the inverse 
of which is the frequency response function ۶(߱), the relationship between ܈(߱) and  ۶(߱) 
gives: ۶(߱)܈(߱) = ۷, (4)

in which: ۶(߱) = (−߱ଶۻ + ۹)ିଵ. (5)

The displacement vector can be expressed by: 
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(߱)ܠ = (6) .(߱)܎(߱)۶

When a unit force is applied on the ݆th degree-of-freedom (dof) of the structure, on the selected ݉ dofs, Eq. (6) can be simplified as: ܠ(߱) = ൫۶ଵ௝, ۶ଶ௝, ۶ଷ௝, … , ۶௠௝൯ = ۶௝, (7)

where ۶௠௝ is the element at the ݉th row and the ݆th column in the frequency response matrix, the 
vector ۶௝ denotes the ݆th column of the frequency response matrix. 

The error is defined as the difference between the measured and computed response given by: (ܘ)܀ = ாܠ − ஺, (8)ܠ

where ܘ is the parameter vector. ܠா  and ܠ஺ is respectively the experimental and the analytical 
response. Substituting Eq. (6) and (7) into Eq. (8), the residual term gives: (ܘ)܀ = ۶௝ா(߱) − ۶௝஺(߱, .(ܘ (9)

The superscript ܧ and ܣ denote the FE model and the experimental model respectively. The 
sensitivity method is developed from a Taylor series expansion in which the high-order terms are 
truncated, after the truncation, the ݆th column of frequency response function matrix ۶௝஺(߱,  (ܘ
with respect to ܘ଴ gives: ۶௝஺(߱, (ܘ = ۶௝஺(߱, (଴ܘ + ,ܘΔ܁ (10)

where ܁ is the sensitivity matrix that can be expressed as: 

܁ =
ێێۏ
ۍێێ ߲۶ଵ௝஺ (߱, ଵ݌߲(଴ܘ ⋯ ߲۶ଵ௝஺ (߱, ⋮ே೛݌߲(଴ܘ ⋱ ⋮߲۶௠௝஺ (߱, ଵ݌߲(଴ܘ ⋯ ߲۶௠௝஺ (߱, ே೛݌߲(଴ܘ ۑۑے

(11) .ېۑۑ

Δܘ and ௣ܰ are the vector of correction and the number of the parameters need to be updated: 

Δܘ = ቀ∆݌ଵ, ,ଶ݌∆ … , .ே೛ቁ்݌∆ (12)

Substituting Eq. (10) into Eq. (9), the residual Eq. (9) can be expressed in the following matrix 
form: (ܘ)܀ = ۶௝ா(߱) − ۶௝஺(߱, (଴ܘ − .ܘΔ܁ (13)

Assume: ܊ = ۶௝ா(߱) − ۶௝஺(߱, ,(଴ܘ (14)

where ܊ = (ܾଵ, ܾଶ, … , ܾ௠)் is the error vector between the experimental and analytical response. 
After ݊th iterations, if the correlation between the computational and the experimental response 
is close to 1, the norm of the residual ‖(ܘ)܀‖ will converged to zero, and the parameter vector ܘ଴ 
is updated to be ܘ௡. Then: 
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‖(ܘ)܀‖ ⟶ 0   is equivalent to ۶௝ா(߱) − ۶௝஺(߱, (௡ܘ − ܘΔ܁ ⟶ 0. (15)

Model updating can be transformed to an iteration problem; the following equations should be 
solved exactly in every iteration step: ܁Δܘ = (16) .܊

It is noted that the sensitivity matrix is varying during the iteration procedure, and the 
sensitivity matrix must be calculated at each step until the norm of Δܘ converged to a small 
quantity. 

The sensitivity method is based on the truncated Taylor expansion, and the solution of Eq. (16) 
can only identify the error direction of the parameters in a local constraint; however, due to the 
truncated errors, when the initial parameters contains large errors, the finite element model may 
not be updated with this method. 

2.2. The system matrix error method 

Derivation of the system matrix error method begins with the measured frequency response 
functions, which is briefly introduced in this section. 

According to Eq. (1), when a unit force is applied as excitation, the Equations of motion of the 
experimental model and the analytical model of the system can respectively be written as: ሾ−߱ଶۻ஺ + ۹஺ሿ۶஺ = ۷, (17)ሾ−߱ଶۻா + ۹ாሿ۶ா = ۷. (18)

The superscripts ܣ and ܧ denote FE model and experimental model, respectively. 
Assuming that: ۹ா = Δ۹ + ۹஺,   ۻா = Δۻ + ,஺ۻ ۶ா = Δ۶ + ۶஺, (19)

where Δ۹, Δۻ, Δ۶ are the stiffness, mass and frequency response function errors in the finite 
element model. 

Substituting Eqs. (19) into (18), we have: ሾ(Δ۹ + ۹஺) − ߱ଶ(Δۻ + ஺)ሿ(Δ۶ۻ + ۶஺) = ۷. (20)

Rearranging Eq. (20), it gives: (۹஺ − ߱ଶۻ஺)۶஺ + (۹஺ − ߱ଶۻ஺) Δ۶ + (Δ۹ − ߱ଶΔۻ)(Δ۶ + ۶஺) = ۷. (21)

Substituting Eq. (17) into (21), we have: (۹஺ − ߱ଶۻ஺)Δ۶ + (Δ۹ − ߱ଶΔ۶(ۻா = ૙, (22)(Δ۹ − ߱ଶΔ۶(ۻா = −(۹஺ − ߱ଶۻ஺) Δ۶. (23)

Eq. (23) can be employed to solve for the unknown modeling errors. However, before this can 
be achieved, some parameterization is needed. To parameterize the modeling errors, it is assumed 
that the error mass and stiffness matrices can be expressed as linear combinations of elemental 
mass and stiffness matrices, respectively: 
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Δۻ = ෍ ܽ௜ሾۻ஺ሿ௜௘௟௘,ۼ
௜ୀଵΔ۹ = ෍ ܾ௜ሾ۹஺ሿ௜௘௟௘,ۼ

௜ୀଵ
(24)

where ሾۻ஺ሿ௜௘௟௘ and ሾ۹஺ሿ௜௘௟௘ are the ݅th element mass and stiffness matrices, respectively. ܽ௜ and ܾ௜  are the perturbation in design parameters corresponding to the ݅th  element. Notation Σ 
represents the summation. Substituting Eq. (24) into Eq. (23), we can obtain the following 
equation: 

൥෍ ܾ௜ሾ۹஺ሿ௜௘௟௘ே
௜ୀଵ − ߱ଶ ෍ ܽ௜ሾۻ஺ሿ௜௘௟௘ே

௜ୀଵ ൩ ۶ா = −(۹஺ − ߱ଶۻ஺) Δ۶. (25)

Eq. (25) can be transformed into a set of linear algebraic equations in terms of unknown 
perturbations in design parameters which denoted as ܽ௜ (݅ = 1, 2,…, ܰ) and ܾ௜ (݅ = 1, 2,…, ܰ), 
respectively: ሾݏଵ௔ ⋯ ଵ௕ݏ    ே௔ݏ ⋯ ே௕ݏ ሿ ቄ܊܉ቅ = −(۹஺ − ߱ଶۻ஺)Δ۶, (26)

where s௜௔, s௜௕, ܉ and ܊ are: 

۔ۖەۖ
s௜௔ۓ = −߱ଶሾۻ஺ሿ௜௘௟௘۶ா,s௜௕ = ሾ۹஺ሿ௜௘௟௘۶ா,܉ = (ܽଵ ⋯ ܽே)்,܊ = (ܾଵ ⋯ ܾே)். (27)

Eq. (26) is formulated based on measured response function data with one measurement 
frequency selected. In practical vibration test, response function data are measured at many 
different measurement frequencies. When response function data at sufficient number ݊  of 
measurement frequencies are used, Eq. (26) can be transformed as a set of over-determined 
algebraic equations: ܘ܁ = (28) ,ܙ

where: 

܁ = ቎ݏଵ௔(߱ଵ) ⋯ ⋮ே௔(߱ଵ)ݏ ⋱ ଵ௔(߱௡)ݏ⋮ ⋯ ே௔(߱௡)ݏ ଵ௕(߱ଵ)ݏ ⋯ ே௕ݏ (߱ଵ)⋮ ⋱ ଵ௕(߱௡)ݏ⋮ ⋯ ே௕ݏ (߱௡)቏, (29)

ܘ = ቄ܊܉ቅ ܙ   , = ൝−(۹஺ − ߱ଵଶۻ஺) Δ۶(߱ଵ)⋮−(۹஺ − ߱௡ଶۻ஺) Δ۶(߱௡)ൡ. (30)

The coefficient matrix ܁ and the vector ܙ can be calculated in advance which is formed using 
the analytical model and the measured response function data. Eq. (28) can be solved for ܘ using 
linear least-square method and then the solution ܘ is used to reconstruct the updated analytical 
model together with the original analytical model. However, when the test data is incomplete and 
contaminated with noise, Eq. (28) is needed to be transformed and constraints have to be added. 
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2.3. Frequency point selection 

Frequency response function are very sensitivity to damping properties at resonance peaks, 
local modes influence is include and no modal analysis is required, so that it contains much more 
information than modal data, at each frequency point, the major  system information are included. 
In the updating procedure, because of the huge number of frequency points, it is necessary to select 
frequency point for improving the convergence speed and the precision, the selected frequencies 
should ensure the rank of the coefficient matrix in Eqs. (16) or (28) is not less than the number of 
the parameters which need to be updated, and when the experimental FRF data is contaminated 
with measurement noises, frequency points selection seems more important. 

There are two main principles of frequency are given in references [3, 12]: 
1) Choose updating frequencies at the foot of experimental resonances peaks, and 
2) Avoid frequencies between corresponding analytical and experimental resonances. 
The first rule assures the coefficient matrix in Eqs. (16) or (28) to be well-posed. The second 

one avoids the problem of large residuals, as shown in Fig. 1, if frequencies between 
corresponding analytical and experimental resonances are selected, in the process of the analytical 
data approaching to the experimental frequency response function, the analytical resonances will 
definitely moving to the select frequency, and the amplitude at resonance is much bigger than the 
other positions, therefore, the right hand side (Residual 2) may become unbalance easily during 
the iterations, this will cause the difficulties in solving linear algebraic equations. At each iteration 
step, it is necessary to ensure the chosen frequencies comply with the rules. 

 
Fig. 1. Iteration problem if frequencies are selected between corresponding analytical  

and experimental resonances 

2.4. Solution strategies 

Finite element model updating can often be transformed into optimization problem, for 
accurately reflecting the practical situations and the physical significances of the updated model, 
and the solution of the optimum solution is often subject to a certain constraint. Due to the above 
reasons, based on the derivation of the updating theory, the linear algebraic Eq. (16) or (28) can 
be transformed to an optimization problem with constrains: ൜Min‖ܠۯ − ۰ۺ܄   .ଶଶ,s.t‖܊ ≤ ܠ ≤ ,۰܃܄ (31)

where ۰ۺ܄ and ۰܃܄ are respectively the lower limit and the upper limit of the parameter vector ܠ. Solving this problem by use of mathematical method to get the estimated vector Δܘ, the 
iteration procedure will continue until the norm of Δܘ converged to a small quantity. 
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3. Numerical case study 

3.1. GARTEUR Truss 

The simulation study using a GARTEUR Truss [14] is shown in Fig. 2, which is a cantilever 
truss. The numerical model of the Truss consists of 78 2-D beam elements, 74 nodes. Each node 
of the beam element has three dofs (two translations and one rotation) and hence, the total number 
of dofs in the FE model is 222. The material properties are used in the FE model: Young’s modulus 
is assumed to be ܧ = 0.75×1011 N/m2 and density ߩ = 2800 kg/m3. The cross-sectional areas are ܣ௛ = 0.004 m2  (horizontal), ܣ௩ = 0.006 m2  (vertical), and ܣௗ = 0.003 m2  (diagonal), the 
bending moment is assumed to be the same for all the elements and is assumed to be  ܫ = 0.0756 m4. 
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Fig. 2. GARTEUR Truss model 

Two simulated cases are carried out based on the GARTEUR Truss model. For Case-I, in order 
to generate the experimental data, stiffness modeling errors are introduced in the elements of the 
analytical model of the structure by changing the bending stiffness of elements as shown in Table 1, 
assuming that the stiffness of element shown in Table 1 are all overrated 20 % in the FE model. 
While in Case-II, the stiffness of elements in the FE model is overrated or underestimated have 
apparent discrepancies, details are shown in Table 2. 

Table 1. Stiffness modeling errors location (case 1) 
Element no. 1 2 28 29 43 44 45 46 47 48 49 50 
Error (%) –20 –20 –20 –20 –20 –20 –20 –20 –20 –20 –20 –20 

Table 2. Stiffness modeling errors location (case 2) 
Element no. 1 2 28 29 43 44 45 46 47 48 49 50 
Error (%) –90 –90 100 100 100 100 10 –90 –90 –90 –90 –90 

The two cases are employed to investigate the two methods introduced in Section 2, the 
updated results of coordinates incomplete and coordinates complete are discussed. Considering 
the small modeling error firstly, and then the large modeling errors. 

3.2. Updated results evaluation criterions 

To assess the progress of iterations and to compare different updated models certain model 
quality indices have been constructed. Percentage average error in natural frequencies (AENF) is 
calculated using following expressions: 
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AENF = 100݉ ෍ abs ቆ݂஺ − ݂ா݂ா ቇ ,௠
௜ୀଵ (32)

where ݂஺  and ݂ா  are the natural frequencies, ݉ is the number of the considering modes. The 
updated model should have the abilities of reflect the test results in the considering frequency 
domain, outside of which the test results predicted. 

Percentage average error in parameters (AEP) is calculated as error in the predicted parameters 
as a percentage of the known exact parameters: 

AEP = 100 × ෍ abs൫݌௘௫௔௖௧௜ − ௨௣ௗ௔௧௘ௗ௜݌ ൯abs൫݌௘௫௔௖௧௜ ൯௡௣
௜ ൘݌݊ , (33)

where ݊݌ is the number of the parameters, ݌௘௫௔௖௧௜  and  ݌௨௣ௗ௔௧௘ௗ௜  are the value of the parameters. 

3.3. Results and discussions 

In order to demonstrate their practical application, the two model updating methods using 
frequency response function of GARTEUR Truss model which is introduced in Section 3.1. For 
comparative investigation on these methods, two cases including small modeling error and large 
modeling error are studied. In each case, the measured coordinates complete and incomplete are 
investigated, the complete case means the response of all coordinates of the structure can be tested, 
and the incomplete case meaning only translation degree of freedoms can be obtained. 

3.3.1. Case-I small modeling error 

For the sensitivity method, calculation of the frequency response function matrix ۶௝஺(߱,  (ܘ
with respect to the parameter vector ܘ is very time-consuming, and a more important question is 
that the sensitivity matrix ܁ will easily become ill-posed, therefore, the selection of parameters to 
be updated is also a very important aspect. In this case study, at first, we select the stiffness of all 
elements in the structure as parameters, the equation is an ill-posed problem, it is hard to get a 
credible solution. However, assume the position of the errors are known in advance, and select 
appropriate frequency points, iteration process is required during updating. The identification of 
element modeling errors is shown in Fig. 3. It can be seen that all the introduced modeling errors 
are well identified after convergence. The response function curves of the experimental, analytical 
and updated models are shown in Fig. 4. 

 
Fig. 3. Comparison of the exact and identified modeling errors (method 1, coordinates incomplete) 
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Fig. 4. Comparison of the analytical, the experimental and the updated response function curves (method 1)  

(—o— updated, —— experimental, —*— analytical) 

With regard to the second method, for the case of coordinates complete, it is need not to 
consider many limitations, the frequency point can be selected randomly, the identification of 
element modeling errors is shown in Fig. 5, and it is found that the agreement between the exact 
error and the identified error is excellent. But, in vibration test, it is not realistic that all coordinates 
which are specified in the analytical model have been measured. Therefore, the effect of 
coordinate incompleteness upon the updating procedure should be assessed. For the case of 
incomplete data, the model condensation and coordinates expansion technique should be used to 
solve this problem. In this work, those unmeasured elements of the response function vector are 
replaced by their analytical counterparts. The results for the identification of element modeling 
errors are shown in Fig. 6. The response function curves of the experimental, analytical and 
updated models are shown in Fig. 7. From this figure, there are a few differences between the 
regenerated and experimental response function data. 

 
Fig. 5. Comparison of the exact and identified modeling errors (method-2, coordinates complete) 

Table 3 is the error indices comparison for the Case-I of small modeling error, from the table 
it is can be found that, under coordinates complete condition, method-2 can get an excellent 
solution. 
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Fig. 6. Comparison of the exact and identified modeling errors (method-2, coordinates incomplete) 

 
Fig. 7. Comparison of the analytical, the experimental and the updated response function curves 

(method-2) (—o— updated, —— experimental, —*— analytical) 

Table 3. Error indices comparison for the Case-I of small modeling error (%) 

Experimental 
coordinates 

Percentage average error in natural 
frequencies (AENF) 

Percentage average error in parameters 
(AEP) 

Before 
updating 

Updated Before 
updating 

Updated 
Method-1 Method-2 Method-1 Method-2 

Coordinates 
complete 2.82 – 0 20 – 0 

Coordinates 
incomplete 2.82 0.01 0.18 20 0.08 0.59 

3.3.2. Case-II large modeling error 

For Case-II, the modeling error is much larger. It is hard to get a convergent solution by using 
of the sensitivity method; the reason is introduced in Section 2.1. But for the system matrix error 
method, in the case the coordinates is completely can be tested, it is also easy to get a reliable 
solution, the results can be seen in Fig. 8 and Fig. 9, it is shown that the solution is close to the 
exact error. However, for the case of incomplete coordinates, it is not easy get a convergent 
updating solution. But if we know the stiffness error position in advance, under this condition, the 
identification of stiffness error can be obtained. The comparison of the exact and identified 
modeling errors is shown in Fig. 10. 
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Fig. 8. Comparison of the exact and identified modeling errors (method-2, coordinates complete) 

 
Fig. 9. Comparison of the analytical, the experimental and the updated response function curves  

(method-2) (—o— updated, —— experimental, —*— analytical) 

 
Fig. 10. Comparison of the exact and identified modeling errors  

(method-2, known error position in advance) 

4. Experimental case study 

A cantilever beam is updated by using the sensitivity method with experimental frequency 
response function. Geometric dimensions, including cross section and length of the rectangle tube, 
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arrangement of excitation and accelerometer in experimentation are shown in Fig. 11 and Fig. 12. 
The tube is made of steel, the density and Young’s module of which are respectively  ߩ = 7900 kg/m3 and ܧ = 2.0×1011 N/m2. In this case, the experimental FRF data is obtained by 
using impact testing with single input single output method; and the measuring direction is along 
with ݖ axis as shown in Fig. 12. The range of sample frequency is 0-2000 Hz. 

The cantilever beam is modeled using beam element, three kinds of attributes (ܧଵ-ܧଷ) are 
assigned to six elements (element ①-⑥) which near the fixed end, ܧସ is assigned to rest twenty 
elements of the beam, the full finite element model consist of 27 nodes, 26 beam elements, and 
156 active degrees of freedom. 

 
Fig. 11. Experimental setup of the impact testing 

 
Fig. 12. The cantilever beam (Unit: mm) 

 
Fig. 13. Comparison of the analytical, the experimental and the updated response function curves  

(—o— updated, —— experimental, —*— analytical) 
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Table 4. Variation of parameters after model updating 
Parameters Initial values Updated Variation (%) ܧଵ (N/m2) 2.0×1011 1.86×1011 –7.0 ܧଶ (N/m2) 2.0×1011 1.73×1011 –13.5 ܧଷ (N/m2) 2.0×1011 1.72×1011 –14.0 ܧସ (N/m2) 2.0×1011 1.83×1011 –8.5 ܧଵ-ܧସ are selected parameters to be updated in the experimental case study. Comparison of the 

analytical, experimental, and updated response functions are shown in Fig. 12. The updated 
parameters are shown in Table 4. It is shown that, after model updating, the finite element model 
can more accurately reflect the dynamic characteristics in the frequency domain of 0-1000 Hz. 

5. Conclusions 

Two model updating methods using frequency response function data have been investigated. 
On the basis of results from the comparative study, the following conclusions are drawn. 

1) When the position of modeling errors are known in advance, the sensitivity method is good 
for solve the case with small errors. And it is difficult to get a convergent solution by using of the 
sensitivity method when the initial error is large, this indicated that the initial value of parameters 
to be updated and the optimization constraints are important. 

2) With regard to the system matrix error method. Under the condition of coordinates are 
measured completely, the frequency point can be selected randomly, and it is found that the 
agreement between the exact error and the identified error is excellent even when large modeling 
error exists; this method can also be used for localizing the inaccurate parameters. For the case of 
incomplete coordinates, it is not easy get a convergent updating solution. However, if we know 
the stiffness error position in advance, the identification of stiffness error can be obtained. 

3) The experimental cantilever beam is updated by adopting the sensitivity method with tested 
frequency response function, it is shown that the sensitivity method is effective even when the test 
data are extremely incomplete. 
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