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Abstract. Considering the time-varying magnetic coupling stiffness caused by the component 

eccentricity, the parametric vibration model of the field modulated magnetic gear (FMMG) system 

is founded and the corresponding dynamic differential equations are deduced. The expressions of 

the combination resonances are worked out when the excited frequency is close to the combination 

frequency between the meshing frequency and the natural frequencies, and the resonance 

responses are discussed. The results show that the resonance amplitudes are much bigger when 

the excited frequency is close to the combination frequency between the meshing frequency and 

the natural frequency of the inner rotor torsional mode than when the frequency is close to other 

combination frequencies. Meanwhile, because the magnetic coupling stiffnesses are much smaller 

than the supporting stiffness, the resonance displacement of only one degree of freedom is always 

much bigger than the displacements of other degrees of freedom. The combination resonances 

make the stability regions of the FMMG system decrease and worsen the dynamic characteristics. 

All these can lay the foundation for the parameter optimization of the FMMG system. 

Keywords: magnetic gear, field modulated, eccentricity, parametric vibration, combination 

resonance. 

1. Introduction 

The field modulated magnetic gear (FMMG) can transmit or switch movement or force 

between two components by the field modulated mechanism [1-2]. Compared with the traditional 

magnetic gears which adopt the parallel shaft topology, FMMG adopts a coaxial topology. So, it 

has many advantages, such as free from lubrication, lower noise, inherent overload protection, and 

so on, besides the higher utilization of the permanent magnets (PMs), larger torque and higher 

torque density [3-4]. Also, it can be widely used in the medicine, vehicle, navigation, aerospace 

and other fields [5]. 

FMMG has got much attention of scholars because of its many virtues. Extensive researches 

have been carried out, such as transmission mechanism [1-3], torque characteristics [6], 

transmission efficiency [7], the effect of eddy current on dynamic characteristics [8], and so on. 

Especially the parameter optimizations for the cogging torque [9-10], the component eccentricities 

[11] and other dynamic characteristics are studied. All these have promoted the rapid applications 

of FMMG in aerospace and other fields. Meanwhile, a variety of new type of magnetic gears [12] 

and the permanent magnet motors [13-14] have been developed. The structural designs and the 

control systems of the permanent magnet motors have been discussed deeply. 

Because FMMG system adopts a coaxial topology and there are manufacture and installation 

errors, the component eccentricities that will lead to the periodic fluctuations of torques [11] and 

the magnetic coupling stiffnesses are inevitable. Now, FMMG system is a typical parametric 

vibration system. Similar to the parametric vibration of mechanical gears system arose from the 

time-varying mesh stiffnesses, the component eccentricities will lead to the main resonances and 

the combination resonances of the FMMG system. The combination resonances will make the 
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dynamic characteristics more complicated and must be avoided in parameter designs. 

2. Parametric vibration model of the FMMG system 

2.1. Time-varying magnetic coupling stiffnesses 

FMMG system shown in Fig. 1 consists of four basic elements: (a) the inner rotor; (b) the outer 

rotor; (c) the stator; (d) PMs arranged uniformly on the inner and outer rotors. The stator takes 

charge of modulating the magnetic fields in two air-gaps beside it in order to make the inner and 

outer rotors couple with equal magnetic poles. 

  
Fig. 1. Topology and prototype of the field modulated magnetic gear 

Although the high precisions of the manufacturing and installation in the FMMG system are 

required, the eccentricities of the inner and outer rotors that will lead to the fluctuation of the 

torques and the magnetic coupling stiffnesses are inevitable. So, the component eccentricities can't 

be ignorable. Because the effects of two rotors eccentricities on the magnetic coupling stiffnesses 

are similar, only the eccentricity of the inner rotor is considered in this paper. 

When the eccentricity of the inner rotor � is equal to 0.05 mm, the fluctuation of the moment 

of inertia of the inner rotor is very small and can be ignored. When the eccentricity of the inner 

rotor occurs, the finite element model of the FMMG system shown in Table 1 can be founded in 

Ansys and shown in Fig. 2. The inner rotor can turn around its translation axis, but the outer rotor 

and the stator are fixed. When the inner rotor rotates, the static torque characteristics and the static 

magnetic coupling stiffnesses of the FMMG system can be worked out by the Maxwell stress 

tensor [15]. Meanwhile, the time-varying magnetic coupling stiffnesses can be obtained and 

shown in Fig. 3(a). The fast Fourier transform (FFT) of the time-varying magnetic coupling 

stiffnesses can be calculated and shown in Fig. 3(b). 

 
Fig. 2. The finite element model of the FMMG system 
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a) Time-varying magnetic coupling stiffnesses 

 
b) The fast Fourier transform curve 

Fig. 3. The time-varying magnetic coupling stiffnesses and the corresponding FFT curves 

Table 1. Parameters of example FMMG system 

Number of pole pairs on the inner rotor 4 Number of pole pairs on the inner rotor 17 

Number of the ferromagnetic pole pieces 21 Outer diameter of the outer rotor yoke / mm 214 

Inside diameter of the outer rotor yoke / mm 194 Thickness of PMs on the outer rotor / mm 10 

Outer diameter of the outer airgap / mm 174 Inside diameter of the outer airgap / mm 172 

Outer diameter of the inner airgap / mm 142 Inside diameter of the inner airgap / mm 140 

Outer diameter of the inner rotor yoke / mm 120 Inside diameter of the inner rotor yoke / mm 80 

Thickness of PMs on the inner rotor / mm 10 Axial length / mm 400 

Remanence of PMs/T 1.3 Coercive force of PMs/KOe 11.6 

Fig. 3(a) shows that the tangential magnetic coupling stiffnesses among the inner rotor, the 

outer rotor and the stator fluctuate all. But, the magnetic coupling stiffness on the inner rotor 

fluctuates more sharply and the wave of the magnetic coupling stiffness on the outer rotor can be 

ignored. 

In Fig. 3(b), � is the harmonic frequency of the torque waves. There are multiple harmonic 

components in the tangential time-varying magnetic coupling stiffness �����,  and the main 

harmonic is the product of the rotary angular frequency and the number of pole pairs on the inner 

rotor, and will increase with the rotate speed increasing. Then, ����� can be expressed as follows: 

�I��� 	 �
I � Δ�I�
��� � Δ�I��
��� 	 �
I�1 � ��
��� � ���, (1)

where �  is a small parameter, � 	 Δ�� �
�⁄ ; ��  is the wave frequency of ����� , namely, the 

meshing frequency, �� 	 2��� 60��⁄ ; �� is the revolutions per minute of the inner rotor; ��  is the 

pole pairs of PMs on the inner rotor; �� is the conjugate complex number of the right expression 

in Eq. (1), �� 	 ���
���. 

2.2. Parametric vibration model and dynamic differential equation 

The dynamic model of the FMMG system shown in Fig. 4 consists of two subsystems, namely, 

the inner rotor/stator subsystem and the outer rotor/stator subsystem, when the stator is fixed. The 

dynamic model allows each part rotate about their central axes. 

In the FMMG system, there are not frictions among the stator, the inner and the outer rotors. 

But, there are frictions between each part and foundation. The friction forces on all parts can be 

given as follows: 

� ! 	 �!"# ! ,    $ 	 %, &, 0, (2)

where �!, with $ 	 %, &, ', is the torsional damping coefficient among the inner rotor, the outer 
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rotor, the stator and the foundation, respectively. 

  
Fig. 4. Dynamic model of field modulated magnetic gear system 

Considering the eccentricities, the driving torque fluctuation of the motor, and other excitations, 

the torques on the inner and outer rotors always fluctuate. If the torque waves can be simplified 

into the cosine function, the differential equation of the parametric vibration system can be written 

as follows: 

()
))
*
))
)+ ,�-�. "/ � � ��"# � � �
��"� − "1� 	

2
34

Δ5��
�6�-� − �
���
����"� − "1�
+ Δ5���
�6�-� − �
����
����"� − "1�7

89 ,
,1-1. "/ 1 + �1"# 1 + �1"1 − �
��"� − "1� + �:�"1 − ":� = ; �
���
����"� − "1�+�
����
����"� − "1�< ,
,:-:. "/ : + �:"# : − �:�"1 − ":� = Δ5:�
�=�-: + Δ5:��
�=�-: ,

 (3)

where "1, "� and ": are the torsional vibration displacements, of the stator, the inner and the outer 

rotors, respectively; ,�, ,: and ,1 are the moments of inertia of the inner rotor, the outer rotor and 

the stator, respectively, ,� = >� ⋅ -�. 2⁄ , ,1 = >1 ⋅ -1. 2⁄ , ,: = >: ⋅ -:. 2⁄ ; >�, >: and >1 are the 

masses of the inner rotor, the outer rotor and the stator, respectively; -�, -: and -1 the turning 

radii of the inner rotor, the outer rotor and the stator, respectively; �
� is the average magnetic 

coupling stiffness along tangential direction between the inner rotor and the stator; �:  is the 

average magnetic coupling stiffness along tangential direction between the outer rotor and the 

stator; �1 is the torsional supporting stiffness of the stator; ��  and �: are the excited frequencies 

of the torques on the inner and outer rotors, respectively; Δ5�  and Δ5: are the wave amplitudes of 

the torques on the inner and outer rotors, respectively.  

Eq. (3) can be expressed in the following matrix form: 

@A/ + BA# + CA = ΔD + ΔCA. (4)

In Eq. (4), A, @, C, ΔD, B and ΔC are the displacement vector, the mass matrix, the stiffness 

matrix, the incremental load vector, the damping matrix and the incremental stiffness matrix. They 

have the following expressions: 

F = ["� "1 ":]I ,    @ = diag NO ,I-I.
,s-s.

,o-o.RS, 
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C 	 T �
I −�
I 0−�
I �s + �o + �
I −�o0 −�o �o

U ,   ΔD = O− Δ5�cos���-� 0 −Δ5:cos�:�-: RI , 
� = W�� 0 00 �1 00 0 �:

X ,   ΔC = �
�cos��� W−� � 0� −� 00 0 0X. 
When the time-varying components of the magnetic coupling stiffnesses are neglected, the 

dynamic differential equations of the linear time-invariant system can be got in the matrix form: 

@A/ + BA# + CA = ΔD. (5)

Based on the linear system in the Eq. (5), Eq. (4) can be normalized into the following form: 

A/ Y + BYA# Y + CYAY = ΔDY . (6)

In Eq. (6), AY, CY and DY are the normal displacement vector, the normal stiffness matrix and 

the normal load vector, which have the following expressions: 

AY = ["YZ "Y. "Y[]I ,    CY = W�YZ 0 00 �Y. 00 0 �Y[
X = \$]^�[�Z. �.. �[.]�, 

ΔDY = [Δ�YZ Δ�Y. Δ�Y[]I ,    _Y = T_YZ,Z _YZ,. _YZ,[_Y.,Z _Y.,. _Y.,[_Y[,Z _Y[,. _Y[,[
U, 

∆�YZ = −�aZ"� + a."1���
��
��� − _YZ,ZΔ5��
�6�-�
−_Y[,ZΔ5:�
�=�-:  

      −�aZ"� + a."1���
���
��� − _YZ,ZΔ5���
�6�-�
−_Y[,ZΔ5:��
�=�-: , 

Δ�Y. = −�a["� + ab"1���
��
���� − _YZ,.Δ5��
�6��-�
−_Y[,.Δ5:�
�=�-:  

      −�a["� + ab"1���
���
���� − _YZ,.Δ5���
�6��-�
−_Y[,.Δ5:��
�=�-: , 

Δ�Y[ = −�ac"� + ad"1���
��
���� − _YZ,[Δ5��
�6�-�
−_Y[,[Δ5:�
�=�-:  

      −�ac"� + ad"1���
���
���� − _YZ,[Δ5���
�6�-�
−_Y[,[Δ5:��
�=�-: , aZ = _YZ,Z − _Y.,Z,    a. = −_YZ,Z + _Y.,Z,   a[ = _YZ,. − _Y.,., ab = −_YZ,. + _Y.,.,    ac = _YZ,[ − _Y.,[,    ad = −_YZ,[ + _Y.,[, 

where �1, �2 and �3 are the natural frequencies of the FMMG system; _Y is the normal shape 

matrix of the FMMG system; _Y!,
 is the element on the $ line and the e column in _Y. 

In each mode of the FMMG system, the relative displacement of only one degree of freedom 

(DOF) is much bigger than other degree of freedoms (DOFs), namely, _YZ,Z, _Y.,. and _Y[,[ are 

maxima in the torsional modes of the inner rotor, the outer rotor and the stator, respectively. The 

relative displacement in each mode is a difference of more than 20 times. So, ac and ad can be 

approximately equal to zero. 

Because the damping matrix B is the diagonal matrix, the elements on the primary diagonal are 

much bigger than other elements. So, the normal damping matrix BY in Eq. (6) can be simplified 

into a diagonal matrix as follows: 
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BY 	 W�YZ 0 00 �Y. 00 0 �Y[X. 
Eq. (6) can be solved by the multi-scale method. In order to balance the effects of the damping 

forces and the time-varying stiffnesses, the following assumptions are adopted: 

f"Y! = "Y!g�5g, 5Z� + �"Y!Z�5g, 5Z� + ⋯ ,�Y! = ��Y!i ,  (7)

where $ = 1, 2, 3; 5k is the multi-scale time, 5k = �k�. 

In the actual coordinate system, the solution A of Eq. (5) can be calculated by A = lYAY , 

namely: 

m"� = _YZ,Z"YZ + _YZ,."Y. + _YZ,["Y[,"1 = _Y.,Z"YZ + _Y.,."Y. + _Y.,["Y[,": = _Y[,Z"YZ + _Y[,."Y. + _Y[,["Y[. (8)

When the excited frequency is away from the natural frequencies of the FMMG system, the 

following differential equations can be obtained by substituting Eq. (7) and Eq. (8) into Eq. (6), 

and making the same order coefficients of the small parameters � on both sides of the equations 

equal. 

Zero order: 

()
))
))
)*
))
))
))
+ng."YZg + �Z."YZg =

2
34 − _YZ,ZΔ5��
�6�-� − _Y[,ZΔ5:�
�=�-:− _YZ,ZΔ5���
�6�-� − _Y[,ZΔ5:��
�=�-: 7

89 ,

ng."Y.g + �.."Y.g =
2
34 − _YZ,.Δ5��
�6��-� − _Y[,.Δ5:�
�=�-:− _YZ,.Δ5���
�6��-�

−_Y[,.Δ5:��
�=�-: 7
89 ,

ng."Y[g + �[."Y[g =
2
34 − _YZ,[Δ5��
�6�-� − _Y[,[Δ5:�
�=�-:− _YZ,[Δ5���
�6�-� − _Y[,[Δ5:��
�=�-: 7

89 .

 (9)

The first order: 

()*
)+ng."YZZ + �Z."YZZ = N −2ngnZ"YZg − �YZi ng"YZg�oZ"YZg + o."Y.g+o["Y[g��
��
��� + �oZ"YZg + o."Y.g + o["Y[g��
���
���S ,

ng."Y.Z + �.."Y.Z = N −2ngnZ"Y.g − �Y.i ng"Y.g + �pZ"YZg + p."Y.g+p["Y[g��
��
��� − �pZ"YZg + p."Y.g + p["Y[g��
���
���S ,
ng."Y[Z + �[."Y[Z = −2ngnZ"Y[g − �Y[i ng"Y[g,

 (10)

where oZ = −q_YZ,Z − _Y.,Z r.
,  o. = −q_YZ,Z − _Y.,Zrq_YZ,. − _Y.,.r,  o[ = −q_YZ,Z − _Y.,Zrq_YZ,[ − _Y.,[r,  pZ = −q_YZ,. − _Y.,.rq_YZ,Z − _Y.,Zr,  
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p. 	 −q_YZ,. − _Y.,. r.
, p[ = −q_YZ,. − _Y.,.rq_YZ,[ − _Y.,[r. 

The solution of Eq. (9) can be expressed as: 

"Y!g = _!�
�s� + a!�
�6� + �!�
�=� + _!��
�s� + a!��
�6� + �!��
�=� ,   $ = 1, 2, 3, (11)

where: 

a! = _YZ,!Δ5�-���!. − ��.�,   �! = _Y[,!Δ5:-:��!. − �:.�. 
The following differential equations can be got by substituting Eq. (11) into Eq. (10): 

()
))
))
))
*
))
))
))
)+

ng."YZZ + �Z."YZZ =
2
33
33
4 −2e�1_# 1�e�1� − 2e�1_#t1�−e�1�−�u1′ �e�1_1�e�1� + e�%a1�e�%� + e�'�1�e�'��−�u1′ qe�1_t1�−e�1� + e�%a1�−e�%� + e�'�1�−e�'�r+o1�t%�_1�e��1±����+_t1�−e��1±���� + a1�e��%±���� + �1�e��'±����r+o2�t%q_2�e��2±���� + _t2�−e��2±���� + a2�e��%±���� + �2�e��'±����r+o3�t%q_3�e��3±���� + _t3�−e��3±���� + a3�e��%±���� + �3�e��'±����r7

88
88
9

,

ng."Y.Z + �.."Y.Z =
2
333
4 −2e�2_# 2�e�2� − 2e�2_#t2�−e�2�−�u2′ qe�2_2�e�2� + e�2_t2�−e�2� + e�%a2�e�%� + e�'�2�e�'�r−p1�t%q_1�e��1±���� + _t1�−e��1±���� + a1�e��%±���� + �1�e��'±����r−p2�t%q_2�e��2±���� + _t2�−e��2±���� + a2�e��%±���� + �2�e��'±����r−p3�t%q_3�e��3±���� + _t3�−e��3±���� + a3�e��%±���� + �3�e��'±����r7

888
9 ,

ng."Y[Z + �[."Y[Z = ; −2e�[_#[�
�x� − 2e�[_#̅[��
�x�−�Y[i qe�[_[�
�x� + e�[_̅[��
�x� + e��a[�
�6� + e�:�[�
�=�r< .

(12)

From Eq. (12), we know that the resonances will occur when the excited frequency is close to 

the natural frequencies of the FMMG system. Meanwhile, the resonances will occur too when the 

excited frequency comes near to the combination frequencies between the meshing frequencies 

and the natural frequencies, namely, �� = �! ± ��  or �: = �! ± ��  (= 1, 2). These are called as 

the combination resonances. 

3. Combination resonances 

When the excited frequency on the inner rotor ��  is close to the combination frequency 

between the meshing frequency and the first order natural frequency, the following assumption is 

introduced: 

�� = �Z + �� + �z. (13)

By substituting Eq. (13) into Eq. (12) and eliminating the secular terms, the following 

differential equations can be obtained: 

m−2e�Z_#Z − cYZi e�Z_Z + �
��oZaZ + o.a. + o[a[��
{I| = 0,−2e�._#. − cY.i e�._. = 0,−2e�[_#[ − cY[i e�[_[ = 0.  (14)

The solutions of Eq. (14) can be expressed as: 
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()
)*
))
+_Z 	

2
34

nZ��}~|� I| � �
��oZaZ � o.a. � o.a[��Z��YZi. � 4z. �
��|�{I|�

� �
��oZaZ � o.a. � o[a[��Z��YZi. � 4z. ��
��|�{I|� 7
89 ,

_. = n.��}~�� I| ,_[ = n[��}~�� I| ,
 (15)

where: 

sin�Z = �YZi
��YZi. + 4z. ,   cos�Z = z��YZi. + 4z.. 

In Eq. (15), the components n!���~s� I| will gradually tend to zero with the time increasing. So, 

the zero-order analytical solution of the FMMG system in the normal coordinate system can be 

deduced: 

())
)*
)))
+

"YZg =
2
33
4 �
��oZaZ + o.a. + o[a[��Z��YZi. + 4z. �
��|���|�{I|� + aZ�
�6� + �Z�
�=�

+ �
��oZaZ + o.a. + o[a[��Z��YZi. + 4z. ��
��|���|�{I|� + aZ��
�6� + �Z��
�=�
= �cos��Z� + �Z + z5Z� + 2aZcos��� + 2�Zcos�:� 7

88
9 ,

"Y.g = a.�
�6� + �.�
�=� + a.��
�6� + �.��
�=� = 2a.cos��� + 2�.cos�:�,"Y[g = a[�
�6� + �[�
�=� + a[��
�6� + �[��
�=� = 2a[cos��� + 2�[cos�:�,
 (16)

where: 

� = 2�
��oZaZ + o.a. + o[a[��Z��YZi. + 4z. . 
When the transient components are neglected, the first-order analytical solution of the FMMG 

system in the normal coordinate system can be obtained: 

()
)))
)*
)))
))
+"YZZ =

2
34

�YZi ��aZ�Z. − ��. sin��� + �YZi �:�Z�Z. − �:. sin�:� − oZ��_Z���2�Z ± ��� cos��Z ± ����
+ �oZ�Z + o.�. + o[�[��
�cos��: ± �����Z. − ��: ± ��� 7

89 ,

"Y.Z =
2
34

�Y.i ��a.�.. − ��. sin��� + �Y.i �:�.�.. − �:. sin�:� + oZ��_Z�.. − ��Z ± ��� cos��Z ± ����
+ �pZ�Z + p.�. + p[�[��
�cos��: ± �����.. − ��: ± ��� 7

89 ,
"Y[Z = �Y[i ��a[�[. − ��. sin��� + �Y[i �:�[�[. − �:. sin�:�.

 (17)

By substituting Eq (15) into Eq. (17) and substituting Eq. (16), Eq. (17) into Eq. (7), the forced 

responses of FMMG system in the normal coordinate system can be got: 
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()
))
))
))
))
*
))
))
))
))
)+

"YZ 	

2
33
33
33
4�
��oZaZ � o.a. � o[a[��Z��iYZ. � 4z. cos��Z� � �Z � z5Z� � 2aZcos��� + 2�Zcos�:�

+�
2
33
34

�YZi ��aZ�Z. − ��. sin��� + �YZi �:�Z�Z. − �:. sin�:�
+ �
��oZ�Z + o.�. + o[�[��Z. − ��: ± ���. cos��: ± ��� �

− oZ�
�_Z���2�Z ± ��� cos��Z ± ���� 7
88
89 + ⋯

7
88
88
88
9

,

"Y. =
2
33
33
4 2a.cos��� + 2�.cos�:�

+�
2
33
34

�Y.i ����a.�.. − ��. sin��� + �Y.i ���:�.�.. − �:. sin�:�
+ oZ�
�_Z�.. − ��Z ± ���. cos��Z ± ��� �

+ �
��oZ�Z + o.�. + o[�[��.. − ��: ± ���. cos��: ± ����7
88
89 + ⋯

7
88
88
9

,

"Y[ = 2a[cos��� + 2�[�'&�:� + � ;�Y[i ����a[�[. − ��. sin��� + �Y[i ���:�[�[. − �:. sin�:�< + ⋯ .

 (18)

The forced responses of FMMG system in the natural coordinate system can be calculated by 

the special conversion, namely, A = lYAY. 

In the same way, the resonance responses of the FMMG system can be worked out when the 

excited frequency ��  comes near to the combination frequency �� ≈ �. ± �� , or when the 

excited frequency �: is close to the combination frequency �: ≈ �! ± �� , with $ = 1, 2. 

Fig. 5 shows the resonance responses and FFT curves of the example FMMG system shown 

in Table 2 when ��  is close to �Z + ��. 

Table 2. Parameters of the example FMMG system -:  

mm 

-�  

mm 

-1  

mm 

�1  

MN/m 

��  

KN/m 

�:  

KN/m 

��  

N/(m/s) 

�:  

N/(m/s) 

�1  

N/(m/s) 

>�  

kg 

96.5 70.5 86 12 141 557 0.01 0.01 0.05 3.5 >1  

kg 

>:  

kg 

5� 
N·m 

5: 

N·m 

∆5� 
N·m 

∆5: 

N·m 

Δ�� 
KN/m 

��  

rad/s 
��  

2.5 5.6 40 170 1 5 5 210 4  

From Fig. 5, we know that the dominant frequency in the combination resonances is the natural 

frequency, rather than the combination frequency or the meshing frequency. However, the 

resonance amplitudes are much bigger when ��  is close to �Z + ��  than when ��  is close to  �. + ��, because the magnetic coupling stiffnesses are much smaller than the torsional supporting 

stiffness of the stator. 

In the normal coordinate system, the equivalent load DY! in each mode of the FMMG system, 

which is caused by torque waves, is decided by the first column of the normal shape matrix lY. 

Because the magnetic coupling stiffnesses are much smaller than the torsional supporting stiffness 

in FMMG system, the relative displacement of only one DOF in each order mode is much bigger 

than other degree of freedoms (DOFs). The normal shape matrix lY can be expressed by: 

lY = W 1 �Z �Z]Z �. 1]. 1 �.
X, 



1266. COMBINATION RESONANCES OF PARAMETRIC VIBRATION SYSTEM OF THE FIELD MODULATED MAGNETIC GEAR.  

XIUHONG HAO, XIAOMING YUAN, HONGFEI ZHANG, LIJIE ZHANG 

 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. MAY 2014. VOLUME 16, ISSUE 3. ISSN 1392-8716 1599 

where ]!, �! and �! are all smaller than 0.1, and ]Z � ].. 

 
a) 

   
b) 

 
c) 

 
d) 

Fig. 5. The resonance responses of the FMMG system with �� 	 �Z � ��  

From the mode characteristics of the FMMG system, the resonance amplitudes are much 

bigger when �� � �Z w �� than when �� � �. w ��. Meanwhile, the resonance amplitudes of 

the inner rotor and the outer rotor will respectively reach the maximum when ��  is respectively 

close to �Z � �� and �. � ��. Similarly, the torsional displacement of the outer rotor will be 

much bigger than the displacement of the inner rotor when �: is respectively close to �Z � �� or �. � ��. 

The torque wave on the inner rotor is much bigger than the outer rotor. So the resonance arising 

from the combination frequency �Z � �� will be the main resonance source and must be drawn 

more attention. 

When the damping coefficients among parts increase, the resonance amplitudes will rapidly 

decrease. But the increasing of the damping coefficients will lower the transmission efficiency 

and the method isn’t desirable. 

The average magnetic coupling stiffnesses are much smaller than the mechanical meshing 

stiffness. So, the natural frequencies are much lower than the mechanical gear systems, and the 

transient vibrations arising from resonances will decay very slowly. These will lead to some 

adverse effects, such as unstability or a certain components’ damages. In order to solve this 

problem, the electromagnetic coils are placed just below the surfaces of the inner and outer rotors, 

which can increase the electromagnetic damping and the delay of the transient displacements will 

be accelerated, and the dynamics of the FMMG system will be improved [16]. 
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a) 

 
b) 

Fig. 6. Resonance amplitude curves with the different damping coefficient 

4. Conclusion 

Considering the eccentricity will lead to the periodic variation of the magnetic coupling 

stiffnesses, the dynamics of FMMG system are the typical parametric vibration. Because the 

magnetic coupling stiffnesses are much smaller than the supporting stiffness, the resonance 

displacement of a certain DOF is much bigger than other DOFs, when the excited frequency is 

close to the combination frequency of the meshing frequency and the natural frequencies. The 

dominant frequency in the combination resonances is the natural frequency, rather than the 

combination frequency or the meshing frequency. Especially the resonance caused by the torque 

wave of the inner rotor is very big and must be avoided. 
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