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Abstract. The aeroelasticity of the wind turbine blade has been emphasized by the related fields 

as the size of blade increased dramatically. The eigenvalue approach and the time domain method 

are applied to analyze the aeroelastic responses of wind turbine blade to determine the flutter 

region respectively. In order to clarify the difference of the flutter analysis for different blade, two 

different airfoils are used. The flutter region will be obtained directly by judging the sign of the 

real part of the eigenvalue of the blade system using the eigenvalue approach. Then the time 

domain analysis of flutter of wind turbine blade will be carried out through the use of the 

four-order Runge-Kutta numerical method, so the flutter region will be acquired in another way. 

The time domain analysis can give the changing tread of the aeroelastic responses in great detail 

than that of the eigenvalue method. For the two different airfoils, the flutter region given by the 

eigenvalue approach coincides with that of the time domain analysis method accurately. There are 

two critical tip speed ratios for the two airfoils, the lower tip speed ratio and the higher tip speed 

ratio. The flap displacement of these two different airfoils will change from convergence to 

divergence, and change from divergence to convergence. But the extent of flutter differs with the 

different blade airfoil. The flutter of airfoil NACA63-418 diverges much more dramatically than 

that of the airfoil FX77-W-153. So the latter is better for the wind turbine blade. The eigenvalue 

approach combined with the time domain method can be applied to choose the blade airfoil and 

to determine the flutter region in order to avoid the flutter of wind turbine blade. 

Keywords: wind turbine blade, flutter, aeroelasticity, time domain analysis, eigenvalue approach. 

1. Introduction 

Wind electricity has become one of the most important representatives as the new energy and 

clean energy in the world. Wind turbines are focusing on the upsizing with the developing of the 

wind electricity industry. As one of the most critical parts of the wind turbine, the wind turbine 

blade is moving for the direction of more upsizing and flexibilily [1]. Because the flutter wind 

turbine blade will give rise to the severe accident, the aeroelatic problem of the wind turbine, 

especially the dynamic aeroelaticity, that is, flutter, has been one of the key subjects of relative 

fields [2, 3]. Zhang J. P. et al. researched the dynamic stability of large wind turbine blade under 

complicated offshore wind conditions [4]. Many researchers have made the studies of wind turbine 

flutter, totally in two aspects, frequency domain analysis and the time domain analysis. So they 

could get the critical flutter speed using the frequency domain analysis [5, 6], M. H. Hansen solved 

the flutter of the wind turbine blade with eigenvalue approach [7]. 

P. K. Chaviaropoulos presented a numerical tool for investigating the aeroelastic stability, that 

is, the stall flutter, of a single wind turbine blade subjected to combined flp/lead-lag motion, based 

on the extended ONERA lift and drag models [8, 9]. S. Sarkar investigated the nonlinear 

aeroelastic behavior of a two-dimensional rotor blade in the dynamic stall regime [10]. 

However, there are little researches for the flutter of wind turbine blade airfoil using the time 

domain analysis method combined with the eigenvalue method. These two methods will be used 

to determine the flutter region of the wind turbine blade airfoil respectively. 

The outlines of the paper are: the structural model of wind turbine blade airfoil, the eigenvalue 

approach for the flutter of wind turbine blade airfoil, the time domain solution to the aeroelastic 

response of the blade airfoil, the numerical simulation and results analysis and the conclusions in 
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the end. 

2. The structural model of wind turbine blade airfoil 

Fig. 1 shows the two-dimension model of wind turbine blade, that is, the airfoil of wind turbine 

blade. The aerodynamic force 𝐹 and aerodynamic torque 𝑀 under the air fluid will apply on the 

blade of wind turbine. The aerodynamic force can be divided into lift 𝐿 and drag 𝐷, which is 

vertical and parallel to the velocity of air fluid respectively. 

 
Fig. 1. The airfoil of wind turbine blade 

Where 𝐸 is the aerodynamic center, 𝐺 means the center of mass of airfoil, 𝑂 is the center of 

stiffness, 𝑒 denotes the distance between the center of mass and center of stiffness, 𝛼 is angle of 

attack, 𝛿 means the distance between the aerodynamic center and the center of stiffness. 

The differential equation of motion for the airfoil will be seen as Eq. (1): 

[
𝐽0 0
0 𝑚

] [𝜃̈
𝑥̈

] + [𝑘 + 𝑒2𝑠 −𝑒𝑠
−𝑒𝑠 𝑠

] [
𝜃
𝑥

] = [
𝑀
𝐹

], (1) 

where 𝐽0 is the moment of inertia of the airfoil around the center of mass, 𝑚 is the mass of airfoil, 

𝑠 is the stiffness of linear spring, 𝑘 is the stiffness of torsion spring. 

The aerodynamic force 𝐹 and torque 𝑀 are very complicated and nonlinear, there are some 

ways to calculate them. According to [11], the aerodynamic force and torque can be given as 

Eq. (2) based on the aerodynamic stiffness and aerodynamic damping: 

[
𝑀
𝐹

] = − [
𝑑11 𝑑12

𝑑21 𝑑22
] [𝜃̇

𝑥̇
] − [

𝑆11 𝑆12

𝑆21 𝑆22
] [

𝜃
𝑥

], (2) 

where 𝑆11, 𝑆12, 𝑆21, 𝑆22 mean the aerodynamic stiffness, 𝑑11, 𝑑12, 𝑑21, 𝑑22 denote the aerodynamic 

damping. 

3. The eigenvalue approach for the flutter of wind turbine blade airfoil 

In order to calculate the aerodynamic force and aerodynamic torque and to solve the Eq. (1), 

assume that there is no relations between the flap displacement, the rotate angle and the 

aerodynamic loads. That is to say, 𝑆12 = 𝑆22 = 0, 𝑑11 = 𝑑21= 0 . So the other aerodynamic 

stiffness and aerodynamic damping can be expressed as Eq. (3) [11]: 

𝑆11 =
𝜕𝑀

𝜕𝜃
=

1

2
𝜌𝑐𝐵𝑊0𝛿 [

𝑑𝐶𝐿(𝛼)

𝑑𝛼
cos𝛼 +

𝑑𝐶𝐷(𝛼)

𝑑𝛼
sin𝛼 + 𝐶𝐷cos𝛼 − 𝐶𝐿sin𝛼] , 

𝑆21 =
𝜕𝐹

𝜕𝜃
=

1

2
𝜌𝑐𝐵𝑊0 [

𝑑𝐶𝐿(𝛼)

𝑑𝛼
cos𝛼 +

𝑑𝐶𝐷(𝛼)

𝑑𝛼
sin𝛼 + 𝐶𝐷cos𝛼-𝐶𝐿sin𝛼] , 

𝑑12 =
𝜕𝑀

𝜕𝑥
=

𝜕𝑀

𝜕𝑊

𝑑𝑊

𝑑𝑥
+

𝜕𝑀

𝜕𝛼

𝑑𝛼

𝑑𝑥
,    𝑑22 =

𝜕𝐹

𝜕𝑥
=

𝜕𝐹

𝜕𝑊

𝑑𝑊

𝑑𝑥
+

𝜕𝐹

𝜕𝛼

𝑑𝛼

𝑑𝑥
, 

(3) 

http://dict.cn/differential%20equation%20of%20motion
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where 𝜌 is the density of air, 𝑐 is the semi-chord length, 𝐵 is the number of blades of wind turbine, 

𝐶𝐿  means the lift coefficient, 𝐶𝐷  means the drag coefficient. 𝑊0=√(𝑅Ω)
2
+𝑉0

2  means relative 

velocity, 𝑉0 is the velocity of air fluid, is the radius of blade, Ω is the rotating angular velocity. 𝜆 

is the tip speed ratio. 

Substituting the Eq. (3) into Eq. (1), the following equation will be obtained as Eq. (4): 

[
𝐽0 0
0 𝑚

] [𝜃̈
𝑥̈

] + [
0 𝑑12

0 𝑑22
] [𝜃̇

𝑥̇
] + [

𝑘 + 𝑒2𝑠+𝑆11 −𝑒𝑠
−𝑒𝑠+𝑆21 𝑠

] [
𝜃
𝑥

] = {
0
0

}. (4) 

The eigenvalue equation of the Eq. (4) is as: 

|
𝑘 + 𝑒2𝑠+𝑆11+𝜏2𝐽0 𝑑12𝜏 − 𝑒𝑠

𝑒𝑠+𝑆21 𝑠+𝑚𝜏2+𝑑22𝜏
| = 0. (5) 

So the Eq. (5) will be changed into Eq. (6): 

𝑟4𝜏4+𝑟3𝜏3+𝑟2𝜏2+𝑟1𝜏+𝑟0 = 0, (6) 

where 𝑟0 = 𝑠(𝑒𝑆21 + 𝑘 + 𝑆11), 𝑟1 = 𝑑22(𝑘 + 𝑒2𝑠 + 𝑆11) − 𝑑12(𝑆21 − 𝑒𝑠), 

𝑟2 = 𝑠𝐽0 + 𝑚(𝑘 + 𝑒2𝑠 + 𝑆11), 𝑟3 = 𝐽0𝑑22, 𝑟4=𝑚𝐽0. 

The eigenvalue will be solved as Eq. (7): 

𝜏1,2
2 = −

𝑟2

2𝑟4
±

√𝑟2
2-4𝑟4

2𝑟0

2𝑟4
. (7) 

Therefore, the stability of the airfoil aeroelasticity will be judged directly according to sign of 

the real part of the eigenvalues of the wind turbine blade. If the real part is positive, it means the 

wind turbine blade is unstable and the flutter will occur, and if the real part is minus, it means the 

wind turbine blade in stable and the flutter will not occur. Under the same tip speed ratio, if only 

there is one unstable real part of eigenvalue, the wind turbine blade will be considered unstable, 

that is, the flutter will occur, at the given tip speed ratio. According to the rules of flutter 

determination, the flutter region of the wind turbine blade will be given directly by the eigenvalue 

approach. 

4. The time domain solution to the aeroelastic response of blade airfoil 

Considering Eq. (1), the four-order Runge-Kutta method was used to calculate the aeroelastic 

responses of wind turbine blade. Firstly, let: 

𝑦1=𝜃,   𝑦2=𝜃̇,   𝑦3=𝑥,   𝑦4=𝑥̇. (8) 

Then the first-order equation and the other order equation were seen as Eq. (9) and Eq. (10): 

𝑦1
′ = 𝑦2, 

𝑦2
′ = 𝜃̈ =

𝑀 − (𝑘 + 𝑒2𝑠)𝑦1 + 𝑒𝑠𝑦3

𝐽0
, 

𝑦3
′ = 𝑦4, 

𝑦4
′ = 𝑥̈ =

𝐹 + 𝑒𝑠𝑦1 − 𝑠𝑦3

𝑚
, 

(9) 
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𝑦1,𝑛+1 = 𝑦1,𝑛 +
1

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4), 

𝑦2,𝑛+1 = 𝑦2,𝑛 +
1

6
(𝑙1 + 2𝑙2 + 2𝑙3 + 𝑙4), 

𝑦3,𝑛+1 = 𝑦3,𝑛 +
1

6
(𝑝1 + 2𝑝2 + 2𝑝3 + 𝑝4), 

𝑦4,𝑛+1 = 𝑦4,𝑛 +
1

6
(𝑞1 + 2𝑞2 + 2𝑞3 + 𝑞4), 

(10) 

where 𝑘1 , 𝑙1 , 𝑝1 , 𝑞1 , 𝑘2 , 𝑙2 , 𝑝2 , 𝑞2 , 𝑘3 , 𝑙3 , 𝑝3 , 𝑞3 , 𝑘4 , 𝑙4 , 𝑝4 , 𝑞4  are the parameters for the 

Runge-Kutta method, which can be determined by Eq. (9). 

The solution procedure in time domain can be expressed as: 

1) Initialize 𝜃0,  𝑥̇0. 

2) Calculate the initial aerodynamic force and torque from Eq. (2). 

3) Solve the new values of 𝜃1, 𝜃̇1, 𝑥̇, 𝑥 at the next step using the Runge-Kutta method. 

4) Solve the new aerodynamic force and aerodynamic torque from Eq. (2). 

5) Repeat the 3), 4) and 5) procedures until the end condition was met. 

6) At last, the flap displacement and torsion angular displacement, the flap velocity and 

torsional angular velocity will be obtained. 

5. The numerical simulation and results analysis 

In order to discuss the results of the time domain analysis of wind turbine blade together with 

the eigenvalue approach, two different airfoils, that is, NACA63-418 and FX77-W-153, are 

applied. The structural parameters and the section parameters of airfoil NACA63-418 are as: 

elastic modulus is 22 GPa, shear modulus is 8.27 GPa, air density is 1.225 kg/m3, axial moment 

of inertia is 22174 cm4, mean radius is 17 m, mass is 8.39 kg, chord is 0.9775 m, section area is 

106.88.1 cm2, polar moment of inertia is 2165200 cm4, torsional center in chordwise is 0.35 chord, 

angle of incidence is 1.26 deg, moment of inertia is 1.6997 kgm2. 

The structural parameters and the section parameters of airfoil FX77-W-153 are as: elastic 

modulus is 22 GPa, shear modulus is 8.27 GPa, air density is 1.225 kg/m3, axial moment of inertia 

is 17453 cm4, mean radius is 10 m, mass is 185 kg, chord is 1.073 m, section area is 1093.1 cm2, 

polar moment of inertia is 676010 cm4, torsional center in chordwise is 0.35 chord, angle of 

incidence is 1.63 deg, moment of inertia is 11.492 kgm2. 

According to the eigenvalue approach mentioned above, the real parts of eigenvalues under 

different tip speed ratios for the two different airfoils will be curved as Fig. 2 and Fig. 3. 

  
Fig. 2. The real part of unstable eigenvalues for 

airfoil NACA63-418 

Fig. 3. The real part of unstable eigenvalues for 

airfoil FX77-W-153 
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eigenvalues and two real parts curves of two unstable eigenvalues. Fig. 2 is the real part curve of 

one of unstable eigenvalues for Airfoil NACA63-418. Fig. 3 is the real part curve of one of 

unstable eigenvalues for airfoil FX77-W-153. 

Fig. 2 shows that the airfoil NACA63-418 will be unstable, for the real parts of the eigenvalues 

are positive during [0.73, 2.48]. That is to say, the flutter of blade airfoil will occur during 

[0.73, 2.48]. Therefore, [0.73, 2.48] can be considered as the flutter region of NACA63-418 airfoil. 

As for the airfoil FX77-W-153, the flutter region will be [0.5, 2.5]. In addition, the values of the 

unstable real part of airfoil NACA63-418 are much bigger than those of the airfoil FX77-W-153. 

And the unstable real part of airfoil NACA63-418 changes very dramatically, while the unstable 

real part of airfoil FX77-W-153 changes quite slightly. So, it can be found that the flutter of airfoil 

FX77-W-153 will be slightly, and the flutter of the airfoil NACA63-418 will be dramatically. But 

the much more detail information about the flutter can’t be found using the eigenvalue approach. 

Then the time domain analysis of two wind turbine blade airfoils is also carried out by the 

four-order Runge-Kutta method, using the different tip speed ratios. There are four different 

responses, such as: the torsional angular displacement and velocity, flap displacement and the flap 

velocity of the two different wind turbine blade airfoils. The torsional motion keeps almost stable 

when the tip speed ratio changes. The flap motion shows very complicated phenomenon than the 

torsional one. And the flap displacement and the velocity change in very similar way with just the 

difference in dimension. So in the following part of the paper, the flap displacement will be chosen 

to analyze the flutter of the wind turbine blade airfoil. 

There is extremely complicated changing tread for the flap displacement, so the flutter of the 

wind turbine blade airfoil will change extremely complicated. 

  
Fig. 4. The flap displacement responses of airfoil NACA63-418 when 𝜆 are 0.61 and 0.726 

  
Fig. 5. The flap displacement responses of airfoil NACA63-418 when 𝜆 are 0.73 and 2.45 
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According to Fig. 4, when the tip speed ratio is 0.61, the flap displacement of the blade airfoil 

NACA63-418 converges greatly. When tip speed ratio is 0.726, the flap displacement of the blade 

airfoil converges slightly. However, according to Fig. 5, when the tip speed ratio becomes 0.73, 

the flap displacement of the blade NACA63-418 airfoil diverges slightly. When the tip speed ratio 

changes a little, just from 0.726 to 0.73, the aeroelastic response changes from convergence to 

divergence. So the flutter of wind turbine blade will occur of great sudden, but the flutter 

magnitude is just relative small. 

Then the tip speed ratio increases from 0.73 on, the divergence becomes more and more 

dramatically. When the tip speed ratio becomes larger and larger, the divergence becomes more 

and more dramatically according to the value of longitudinal coordinates. What is more, based on 

Fig. 5, when the tip speed ratio is about 2.45, the flap displacement response will diverge the most 

seriously, the flutter will occur extremely dramatically. So 2.45 is the dangerous tip speed ratio, 

should be avoided in the design of the wind turbine blade. 

When the tip speed ratio increases much larger, such as 2.49 (Fig. 6), the flap displacement 

response will diverge less dramatically than that of 2.45. When the tip speed ratio increases to 

2.491 (Fig. 6), the flap displacement will converge. So the aeroelastic response will change from 

divergence to convergence, the flutter will not occur when the tip speed ratio is bigger than 2.491. 

It can be seen that the flap displacement will change from divergence to convergence suddenly. 

  
Fig. 6. The flap displacement responses of airfoil NACA63-418 when 𝜆 are 2.49 and 2.491 

Therefore, based on the time domain analysis of the flutter of NACA63-418 airfoil, the flutter 

region will be [0.726, 2.491]. 0.726 and 2.491 can be treated as the lower critical tip speed ratio 
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the time domain response of the flap displacement when the tip speed ratios are 0.73 and 2.491 
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speed ration becomes 0.5, the aeroelastic responses will be found between the divergence and 

convergence, so 0.5 is critical for the blade flutter. And around the tip speed ratio, the divergence 

and convergence changes smoothly not suddenly. It doesn’t look like that of the airfoil 

NACA63-418. 

  
Fig. 7. The flap displacement responses of airfoil NACA63-418 when 𝜆 are 0.73 and 2.491 with half step 

  
Fig. 8. The flap displacement responses of airfoil FX77-W-153 when 𝜆 are 0.5 and 0.8 
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the lower tip speed ratio and another is the higher tip speed ratio. For the two kinds of airfoil, the 

flutter regions given by these two methods can coincide with each other. In addition, there are 

some differences between the aeroelasticities of the airfoil NACA63-418 and airfoil FX77-W-153. 

  
Fig. 9. The flap displacement responses of airfoil FX77-W-153 when 𝜆 are 2 and 2.6 

The flutter extent of airfoil NACA63-418 was much larger than that of the airfoil FX77-W-153. 

The largest magnitude of the vertical coordinate of time response of airfoil NACA 63-418 reaches 

almost to 10147, but the largest magnitude of the vertical coordinate of time response of airfoil 

FX77-W-153 is almost just 10-4. In addition, the tip speed ratio region which changes from 

convergence to divergence and from divergence to convergence is quite narrow and sudden for 

airfoil NACA63-418. The time response converges when the tip speed ratio is 0.726, but diverges 

when the tip speed ratio is 0.73. The time response diverges when the tip speed ratio is 2.49 with 

the magnitude of 1061 of vertical coordinate but converges when the tip speed ratio is 2.491 just 

with the magnitude of 10-5of vertical coordinate. So the changes from convergence to divergence 

or from divergence to convergence occur suddenly. That is why the flutter of wind turbine blade 

will occur extremely suddenly and cause extreme danger, and airfoil NACA63-418 is better not 

to be used for the wind turbine blade. As for the airfoil FX77-W-153, the changes from 

convergence to divergence or from divergence to convergence are very temperate, because the 

magnitude of the vertical coordinate of the time response changes very stable. And there is no 

obvious tip speed ratio of danger for the FX77-W-153. 

Therefore, the time domain analysis method can be combined with the eigenvalue approach to 

predict the flutter region of wind turbine blade and to estimate whether the blade airfoil fits for the 

design of the wind turbine blade. 

6. Conclusions 

The eigenvalue approach and the time domain analysis method are utilized respectively to 

solve the flutter problem of two different wind turbine blade airfoils. The eigenvalue method can 

determine the flutter region directly by judging whether the real part of the characteristic roots is 

positive or passive. Based on the four-order Runge-Kutta numerical methods, the time domain 

analysis of flutter of wind turbine blade is analyzed. The time domain analysis can give the 

changing tread of the aeroelastic responses in great detail than the eigenvalue approach. For the 

two different wind turbine blade airfoils, the results of the time domain analysis of the flutter of 

the blade airfoil can accurately coincides with those of eigenvalue approach. The flap 

displacement of wind turbine blade airfoil of NACA63-418 will change from convergence to 

divergence, and change from divergence to convergence extremely suddenly. The flutter will 

occur suddenly too. And during the flutter region, the flutter will occur dramatically. Therefore, 

the airfoil NACA63-418 is better not to be used for the wind turbine blade, but the airfoil 
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FX77-W-153 is better for the wind turbine blade. 
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