
 

2572 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. AUGUST 2014. VOLUME 16, ISSUE 5. ISSN 1392-8716  

1355. Optical music recognition of the singer using 
formant frequency estimation of vocal fold vibration and 
lip motion with interpolated GMM classifiers 

Ing-Jr Ding1, Chih-Ta Yen2, Che-Wei Chang3, He-Zhong Lin4 
Department of Electrical Engineering, National Formosa University, Yunlin, Taiwan 
2Corresponding author 
E-mail: 1ingjr@nfu.edu.tw, 2chihtayen@gmail.com, 310165107@gm.nfu.edu.tw, 4hajo0819@yahoo.com.tw 
(Received 18 October 2013; received in revised form 21 December 2013; accepted 28 December 2013) 

Abstract. The main work of this paper is to identify the musical genres of the singer by performing 
the optical detection of lip motion. Recently, optical music recognition has attracted much 
attention. Optical music recognition in this study is a type of automatic techniques in information 
engineering, which can be used to determine the musical style of the singer. This paper proposes 
a method for optical music recognition where acoustic formant analysis of both vocal fold 
vibration and lip motion are employed with interpolated Gaussian mixture model (GMM) 
estimation to perform musical genre classification of the singer. The developed approach for such 
classification application is called GMM-Formant. Since humming and voiced speech sounds 
cause periodic vibrations of the vocal folds and then the corresponding motion of the lip, the 
proposed GMM-Formant firstly operates to acquire the required formant information. Formant 
information is important acoustic feature data for recognition classification. The proposed 
GMM-Formant method then uses linear interpolation for combining GMM likelihood estimates 
and formant evaluation results appropriately. GMM-Formant will effectively adjust the estimated 
formant feature evaluation outcomes by referring to certain degree of the likelihood score derived 
from GMM calculations. The superiority and effectiveness of presented GMM-Formant are 
demonstrated by a series of experiments on musical genre classification of the singer. 
Keywords: musical genre classification, acoustic formant, vocal fold vibration, lip motion, 
Gaussian mixture model. 

1. Introduction 

Speech signal processing techniques, such as speech recognition [1], speaker identification [2], 
speaker verification [3], speech synthesizing [4], speech coding [5], and optical musical 
recognition (OMR) have been popular and widely-seen in lots of electronic application products. 
Most of those techniques focus on the data processing of acoustic vibration signals. The acoustic 
analysis of human vocal vibration signals is one of the most complex and important issues during 
the speech processing. The detection, quantification, analysis and classification of vocal fold 
vibrations and the lip motion have attracted much attention in medical voice assessment [6], 
speech communication systems [7], computer visualization [8] and optical musical recognition in 
this study. Figure 1 depicts the structure of human vocal fold and uttered voice signals through 
oscillation of human vocal fold. It is shown in Fig. 1, oscillations of vocal folds within the larynx 
cause human voice signals. In fact, the voice signal is constructed by the excitation of the air 
stream. The vibration of vocal folds provides essential information associated with phonation and 
has a direct impact on the properties of voices including the features of pitch, energy and formants. 
In the general speech pattern recognition applications including musical genre classification of the 
singer in this work, features of oscillated speech signals can be used for decision evaluation of 
recognition outcomes. The quality of the acoustic feature extracted from the vibrated speech 
signals will decide directly the classification performance. 

This work performs musical genre classification of the singer in the area of optical music 
recognition using acoustic formant analysis of vibrated speech signals. Since optical musical 
recognition can automatically determine the musical style of the singer by optically detecting 
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vibrated voice signals and then calculating the required formant features without any professional 
musicians, OMR has been an important topic in the fields of Opto-Mechatronics and pattern 
recognition [9-12]. 

Lips motion

Vocal folds vibration

Vibrated voice signals 
with formant features

 
Fig. 1. The structure of vocal folds and lips of a singer, and vibrated voice signals through  

both vocal folds oscillation and human lips motion 

This paper focuses on the areas of musical genre categorization of the singer. In fact, musical 
genre classification has been seen in lots of studies in the recent years. Musical genre classification 
applications could be viewed as a branch in the field of speech signal processing. Research 
pertaining to speech signals processing encompasses myriad branches including 
encoding/decoding, identification/verification and analysis/synthesis [13]. Musical genre 
classification of OMR is also frequently categorized into the class of identification/verification. 

Studies on musical genre classification of the singer focus on two main classification 
techniques, which are feature-based and model-based categories of methods. Different to those 
conventional methods to use only the unique feature-based or model-based method on singer 
classification, this study adopts a combined feature-based and model-based method. In the 
feature-based category of techniques, formant frequency estimate of speech signals [14] is 
employed in this paper. Formant-based musical genre classification of the singer is getting more 
and more attention. 

The category of model-based techniques for musical genre classification of the singer is to 
establish a statistical model and then the trained model is used to classify the input test music and 
decide the tendency characteristics of the music. Gaussian mixture model (GMM) [15] has been 
a popular classification model in the field of popular music\song classification for its excellent 
recognition accuracy. In fact, GMM is frequently used in the field of speaker recognition [16, 17]. 
The GMM classifier is a typical classification scheme of pattern recognition applications. The 
architecture of a typical identification system is associated with established GMM classification 
models, where the input test acoustic samples are segmented into the frame sequence, and from 
which acoustic features are extracted to estimate the likelihood degree of GMM classification 
models via the classifier operation. When collecting the likelihood degree estimates at a 
predefined time period, the classification operation is completed and the decision of the 
classification tendency of this input test acoustic sample can then be made. Due to the 
effectiveness of GMM on voice signals classification, this paper employs GMM for the model-
based technique. 

Although the above-mentioned feature-based and model-based classification techniques could 
perform well in a general music genre classification application, the classification accuracy of the 
system will be doubtful when encountering an adverse environment where the input test 
acoustic\musical data is substandard or scarce. Few studies focus on the fusion mechanism of 
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feature-based and model-based classification techniques. In this paper, to increase the recognition 
accuracy of musical style classification of the singer, a fusion scheme that combines GMM 
model-based calculations and acoustic formant feature-based analysis, called GMM-Formant, is 
developed. The proposed GMM-Formant method uses acoustic formant analysis of oscillated 
speech signals of vocal fold vibrations and lip motions with interpolated GMM estimates to make 
a classification decision. GMM-Formant takes use of linear interpolation for combining GMM 
likelihood estimates and acoustic formant evaluation results appropriately, which will be 
introduced in the following sections. In this work of music genre classification of the singer, four 
musical styles are set, which are ‘Brisk’, ‘Rock’, ‘Lyrics’ and ‘Happy’ categories. Therefore, all 
the singers will be divided into four different categories, and the singer will be recognized as one 
of four classes. 

The linear interpolation technique utilized in this work is particularly useful to deal with the 
problem of improper training data for GMM vocal model establishments or the problem of scarce 
test data for musical style recognition of the GMM classifier. Many approaches for speaker 
adaptation in the field of automatic speech recognition also employ such linear interpolation 
techniques, such as MAP of the Bayesian-based adaptation category, MAPLR of the 
transformation-based adaptation category and eigenspace-based MLLR (eigen-MLLR) of 
Eigenvoice adaptation category [18]. MAP estimate is a typical representative of Bayesian-based 
adaptation that uses the linear interpolation framework [19]. Following the idea of MAP estimate, 
the developed GMM-Formant for optical musical recognition utilizes the similar formulation of 
linear interpolation where the amount of test data available for recognition is specifically taken 
into account in linear interpolation design. 

2. Feature-based and model-based singer classification 

Generally, automatic musical style recognition of the singer in OMR could be performed by 
two main categories of techniques, feature-based and model-based approaches. In feature-based 
music recognition, the formant parameter obtained from vocal fold vibrations and lip motions is 
an important acoustic feature for evaluation. In model-based classification techniques, GMM is 
widely used for its simplicity. Two main classification techniques, model-based and feature-based 
determination mechanisms, for singer classification recognition are adopted in this work for their 
effectiveness and efficiency on classification performances. This section will describe the 
widely-used formant feature analysis of vibrated speech signals and the popular Gaussian mixture 
model classification methods. 

Formants are essentially the free resonance of the human vocal-tract system [14]. As 
mentioned before, voice signals are made through oscillation of human vocal fold and formant is 
one of the most important acoustic features. Formant is the regional frequency of the sound energy 
and can calculate the low frequency region that the person’s ear could hear. Formant puts 
extremely little emphasis on a high and rough frequency region. Formant spectrum was produced 
by calculating the input musical data. Formant spectrum contains lots of peak values in every 
spectrum. For example, there are totally ܰ formant in the spectrum, generally denoting as ܨଵ, ܨଶ, ܨଷ,…, ܨே, each of which represents a different frequency and energy. 

Linear predictive coding (LPC) is the most popular formant estimation technique. LPC is an 
important procedure during feature extraction of traditional speech recognition. Assume that ݔ(݊) 
is the original speech signals, the ܥܲܮ form of ݔ(݊) is shown as follows: 

ݏ݈ܽ݊݃݅ݏ ℎܿ݁݁ݏ ݂ ݉ݎ݂ ܥܲܮ =  ܽ ⋅ ݊)ݔ − ݅)
ୀଵ , (1)

where ܽ, ݅ = 1,2, . . . , ܲ, is the ܥܲܮ coefficients. For obtaining ܽ an autocorrelation approach is 
adopted where the error between the original speech signals ݔ(݊) and the LPC form of ݔ(݊) is to 
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be minimized, and the following relation is constructed: 

(߬)௫ݎ =  ܽ ⋅ ௫(ݎ
ୀଵ ߬ − ݅), ߬ = 1,2, . . . , ,ܮ (2)

where ݎ௫(߬) is the autocorrelation function of the original speech signals ݔ(݊) with lag values  ߬ = 1,2, . . . ,  :Given the autocorrelation function as shown in Eq. (2), the coefficient parameters ܽ can be determined by solving a set of linear equations as follows .ܮ

ێێۏ
ۍ ௫(0)ݎ ௫(−1)ݎ ⋯ ܲ−)௫ݎ + ௫(1)ݎ(1 ௫(0)ݎ ⋯ ܲ−)௫ݎ + 2)⋮ ⋮ ܲ)௫ݎ⋮ − 1) ܲ)௫ݎ − 2) ⋯ ௫(0)ݎ ۑۑے

ې ൦ܽଵܽଶ⋮ܽ൪ = ൦ݎ௫(1)ݎ௫(2)⋮ݎ௫(ܲ)൪. (3)

In formant feature analysis, an all-pole mode for defining the characteristics of a song before 
calculating the envelopment is necessary, which is shown as follows [14]: (ݖ)ܪ = (ݖ)ܣܩ = 1ܩ − ∑ ܽ ⋅ ୀଵିݖ . (4)

In Eq. (4), the parameter ܩ , called as gain factor, is a constant and usually set as 1, the 
parameter ܲ denotes the linear predictive order and ܽ means the linear prediction coefficients, 
also known as the autoregressive parameters of the filter (ݖ)ܣ, which could be derived from 
Eq. (3). For simplicity on practical evaluation of input acoustic signals, the above formant feature 
analysis is transformed into the following operation formula: 

(ݔ)ݕܿ݊݁ݑݍ݁ݎ݂ = ௦݂݂݁ݖ݅ݏ݁݉ܽݎ ⋅ ,ݔ݁݀݊݅ (5)

where ݂(ݔ)ݕܿ݊݁ݑݍ݁ݎ  is the frequency of the ݔ th peak value, ௦݂  denotes the sampling rate, ݂݁ݖ݅ݏ݁݉ܽݎ means the length of a frame and the parameter ݅݊݀݁ݔ is the index value of a peak 
value. 

The framework of a popular song classification system that uses the model-based technique is 
associated with established audio models, frequently-seen GMM for example, where the input 
popular music from the database is segmented into the frame sequence, and from which audio 
features are extracted to evaluate the characteristic and the classification tendency of this music 
via classification operations cooperated with GMM audio model calculations. 

Mathematically, a GMM is a weighted sum of ܯ Gaussians, denoted as [15]: 

ߣ = ,ݓ} ,ߤ Σ},   ݅ = 1, 2, . . . , ,ܯ  ெݓ
ୀଵ = 1, (6)

where ݓ is the weight, ߤ is the mean and Σ is the covariance. In this study, four parameter sets, ߣଵ, ߣଶ, ߣଷ and ߣସ (four audio GMM models, that is), for representing the musical characteristics 
of four different categories, ‘Brisk’, ‘Rock’, ‘Lyrics’ and ‘Happy,’ are determined, respectively. 

After completing the training of the four audio GMM models, the recognition procedure can 
then be executed based on these four trained GMM models. Note that the musical genre classifier 
deployed here is a GMM classifier consisting of four separate audio GMM models: the first is for 
the ‘Brisk’ classification, the second is for the ‘Rock’ classification, the third is for the ‘Lyrics’ 
classification and the last is for the ‘Happy’ classification. Consider the classifier operating with 



1355. OPTICAL MUSIC RECOGNITION OF THE SINGER USING FORMANT FREQUENCY ESTIMATION OF VOCAL FOLD VIBRATION AND LIP MOTION 
WITH INTERPOLATED GMM CLASSIFIERS. ING-JR DING, CHIH-TA YEN, CHE-WEI CHANG, HE-ZHONG LIN 

2576 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. AUGUST 2014. VOLUME 16, ISSUE 5. ISSN 1392-8716  

a decision window (or equivalently, over a time interval) covering ݊ audio feature vectors of D 
dimensions, ܺ = ݅|ݔ} = 1,2, … , ݊}, combined with four audio classification models, ߣଵ, ߣଶ, ߣଷ 
and ߣସ. 

During the recognition phase of musical style classification, the class of ߕ is determined by 
maximizing a posteriori probability ܲ(ߣ௦|ܺ): 

ݏ̂ = argmax௦ୀ{ଵ,ଶ,ଷ,ସ}ܲ(ߣ௦|ܺ) = argmax௦ୀ{ଵ,ଶ,ଷ,ସ} (ܺ)ܮ(௦ߣ|ܺ)ܮ ⋅ .(௦ߣ)ܲ (7)

Note that: 

(௦ߣ|ݔ)ܮ =  ݓ ⋅ெ
ୀଵ

(ߨ2)1 ଶ⁄ ⋅ ቚΣ௦ೕቚଵ ଶ⁄ ⋅ exp ൜− 12 ቀݔ − ௦ೕቁ்ߤ ቀΣ௦ೕቁିଵ ቀݔ − .௦ೕቁൠߤ (8)

In real implementation, Eq. (7) is replaced by: 

ݏ̂ = argmax௦ୀ{ଵ,ଶ,ଷ,ସ}  logܮ(ݔ|ߣ௦)
ୀଵ , (9)

for simplicity. In addition, at the end of the recognition procedure, the test audio signal ߕ is then 
classified as one of four musical categories indicated by ̂ݏ. 

3. Proposed GMM-formant using acoustic formant features with interpolated GMM 
estimation for singer classification 

Following the thought line of MAP estimate performed on speech recognition, the proposed 
GMM-Formant method for optical musical recognition employs MAP-like linear interpolation 
where the amount of test data available will be specifically taken into account in linear 
interpolation design. 

MAP estimate is a type of direct speech recognition model adjustments that attempts to 
re-estimate the model parameters directly [19]. MAP offers a framework of incorporating newly 
acquired speaker-specific data into the existing models. However, MAP re-estimates only a 
portion of the model parameter units associated with the adaptation data. Therefore, MAP estimate 
usually requires a significant amount of data. The recognition performance of speech recognition 
is improved as the adaptation data increase and the adaptation gets covering the model space. 
When a sufficient amount of data is available, the MAP estimation yields recognition 
performances equal to those obtained using maximum-likelihood estimation. The linear 
interpolation form of MAP is shown in Eq. (10): ̂ߤ = ଵݓ ⋅ തݕ + ଶݓ ⋅ ,ߤ (10)

where: 

ଵݓ = ܰ߬ + ܰ, (11)ݓଶ = ߬߬ + ܰ, (12)ݓଵ + ଶݓ = 1. (13)

Observed from Eq. (10) to Eq. (13), the MAP estimate of the mean is essentially a weighted 
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average of the prior mean (ߤ) and the sample mean (ݕത), and the weights are functions of the 
number of adaptation samples ( ܰ) if ߬ is fixed. When ܰ  is equal to zero (i.e., no additional 
training data are available for adapting the ݇th Gaussian), the estimate is simply the prior mean of 
the ݇th Gaussian alone. Conversely, when a large number of training samples are used for the ݇th 
Gaussian ( ܰ → ∞ , to be exaggerative), the MAP estimate in Eq. (10) then converges 
asymptotically to the maximum likelihood estimate, i.e., the sample mean parameter with the ݇th 
Gaussian, ݕത. 

The proposed GMM-Formant for musical genre classification employs the MAP-like 
interpolation. As mentioned in the previous section, the operation procedure of GMM classifier 
performs a fast recognition classification calculation using the simple likelihood calculation as 
shown in Eq. (9) to obtain the likelihood score between the input acoustic song data and the song 
classification model. When given proper song data with standard property, classification operation 
by using the GMM classifier is effective. However, given substandard song data for recognition 
classification, the accuracy of the estimated likelihood score using Eq. (9) is dubious. Poor 
estimation of the likelihood score in turn leads to incorrect recognition results on song 
classification. The problem of improper testing data for GMM classifier classification operation 
can be alleviated by additionally referring to certain degree of evaluation information of 
feature-based classification operation using a MAP-like linear interpolation scheme. 

Given substandard test song data for classification, it is necessary to be more “conservative” 
in using the derived likelihood score for classification decisions. In other words, the effect of the 
improper data should be restricted so that the final decision does not reference too much from the 
model-based classification calculation outcome derived by GMM classifier estimate. Therefore, 
this study proposes the GMM-Formant approach which combines both model-based and 
feature-based classification operations as follow: ݈݅݁݇݅ܮ ݀݁ݐݏݑ݆݀ܣℎ݀ ݁ݎܿܵ = ߙ ⋅ ܯܯܩ + (1 − (ߙ ⋅ ,ݐ݊ܽ݉ݎܨ 0 ≤ ߙ ≤ 1, (14)

where ܯܯܩ is the likelihood score calculated by GMM classifier operation, i.e., Eq. (9) in the 
previous section and ݐ݊ܽ݉ݎܨ  is the estimated formant frequency information derived from 
formant feature analysis as described in the previous section. The likelihood score for song 
classification decisions is not determined by only the GMM likelihood estimate. Instead, this 
proposed approach as shown in Eq. (14) calculates a weighted sum of the GMM model-based 
estimate and the formant feature-based evaluation. The form of linear interpolation in Eq. (14) is 
used to tune the GMM likelihood score derived from Eq. (9), and with the proper adjustment of 
formant evaluated information, the final adjusted GMM likelihood score for recognition 
classification decision on input test songs will be more reliable and believable. 

Observed from the designed interpolation formula in Eq. (14), the interpolation form of 
proposed GMM-Formant behaves as that of the above-mentioned MAP estimate. A weight 
parameter ߙ governs the balance of ܯܯܩ and ݐ݊ܽ݉ݎܨ, mimicking the role of the parameter ߙ 
for tuning the likelihood score from the GMM classifier. Using a weighting scheme with the 
adjustable parameter ߙ should achieve satisfactory recognition classification performance even 
when encountering improper test song data for classification decisions. Note that the weight ߙ 
varies depending on how much confidence one has in the likelihood score derived from GMM 
classifier estimate. A possibly not so well estimate of the likelihood score calculated from Eq. (9) 
due to substandard test song data would preferably goes with ߙ approaching 0 so that the biased 
estimate of the GMM likelihood estimate will be restricted. Conversely, 1-approaching ߙ should 
be given. 

As the suggestion of MAP estimate in Eq. (10) to Eq. (13), the weight parameter ߙ in Eq. (14) 
could be further designed as follows: ߙ = ߪܰ + ܰ, (15)
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where ܰ is the data size of the test audio data for musical genre recognition (i.e., the total number 
of the audio frames) and ߪ denotes the weight control parameter. The parameter ߪ in Eq. (15) can 
be used to control the balance between GMM and formant recognition evaluation outcomes. When ܰ  is large (i.e., large-sized test data are available for musical style recognition), the GMM 
evaluation result that accumulates more likelihood estimates is therefore more reliable, the 
adjusted likelihood score is simply the GMM classification evaluation outcome alone. Conversely, 
when only a small number of test samples for musical genre recognition are available, developed 
GMM-Formant then approaches to the side of formant evaluation results. Now consider the other 
way round with ܰ being fixed, the parameter ߪ controls the balance in the interpolation between 
the ܯܯܩ-term and the ݐ݊ܽ݉ݎܨ-term, (as ܰ does). It could be viewed as the weight control 
parameter in that the balance between the ܯܯܩ-term and the ݐ݊ܽ݉ݎܨ-term can be achieved by 
choosing a proper value of ߪ. The parameter ߪ determines, to which side of, and for how close to 
the ܯܯܩ -term or the ݐ݊ܽ݉ݎܨ -term, the ݈݅݁݇݅ܮ ݀݁ݐݏݑ݆݀ܣℎ݁ݎܿܵ ݀ -term for recognition 
decision would be. 

4. Experiments and results 

The experiments on musical genre classification of the singers with the proposed 
GMM-Formant method are performed in a database which contains 50 Mandarin popular songs. 
These 50 Mandarin popular songs are recorded by a group of the designed singers. 

The analysis frames were 20-ms wide with a 10-ms overlap. For each collected song with PCM 
form, the wave header is then added to the front side of the PCM raw data. The related settings of 
each song with wave form were 1411 kbps (bitrates), 16 bits (resolutions), stereo (channels) and 
44100 samples per second (sampling rate). The analysis frames were 20-ms wide with a 10-ms 
overlap. For each frame, a 10-dimensional feature vector was extracted. The feature vector for 
each frame was a 10-dimensional cepstral vector. 

Table 1. The arranged group of singers with four categories of lip motions, each of which is to generate 
one of ‘Brisk’, ‘Rock’, ‘Lyrics’ and ‘Happy’ songs in the training phase 

Musical genre Songs that collected by the designed group of singers (in Mandarin) 
‘Brisk’ Singers 

 

“哇哈哈,”“牛仔很忙,”“撐腰,”“夏日瘋,”“向前衝,”“當我們宅一塊,”“離開地球表

面,”“轟炸,”“稻香,”“高高在下” 

‘Rock’ Singers 

 

“音浪,”“王妃,”“鬧翻天,”“我秀故我在,”“全面失控,”“Wake Up,”“超級右腦,”“強
心臟,”“舞極限,”“Count on Me” 

‘Lyrics’ Singers 

 

“Baby Tonight,”“王寶釧苦守寒窯十八年,”“凌晨三點鐘,”“末班車,”“累,”“忘記擁

抱,”“爸爸媽媽,”“城裡的月光,”“最寂寞的時候,”“還是愛著你,” 

‘Happy’ Singers 

 

“You Are My Baby,”“快樂頌,”“歐拉拉呼呼,”“歐兜拜,”“春天的吶喊,”“太空警

察,”“就像白癡一樣,”“完美男人,”“麻吉麻吉,”“要去高雄” 

Table 2. Musical content in the testing phase for singer classification 
Musical genre Titles of popular songs (in Mandarin) 
Brisk, Rock, 

Lyrics or Happy 
“愛走秀,”“億萬分之一的機率,”“慢靈魂,”“Super Nice Girl,”“3D 舞力全失,”“星

晴,”“驚嘆號,”“超跑女神,”“漂流瓶,”“太熱” 
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Table 3. Recognition accuracy of proposed GMM-Formant  
with various values of ߙ in the testing experiment of singer classification 

Settings of ߙ value Recognition rate (%) ߙ = ߙ 45 0.1 = ߙ 52.5 0.2 = ߙ 52.5 0.3 = ߙ 52.5 0.4 = ߙ 52.5 0.5 = ߙ 62.5 0.6 = ߙ 65 0.7 = ߙ 67.5 0.8 = 0.9 72.5 

Table 4. Recognition performance comparisons of conventional GMM, conventional acoustic formant 
analysis, proposed GMM-Formant in the testing experiment of singer classification 

Settings of ߙ value Recognition rate (%) 
Conventional GMM 65 
Acoustic formant analysis 60 
GMM-Formant with ߙ = 0.9 72.5 

The database was composed of four types, ‘Brisk’, ‘Rock’, ‘Lyrics’ and ‘Happy’ singers. Each 
song recorded by the singer in the database belongs one of these four genres. The experiments of 
musical genre classification of the singers were divided into two phases, the training phase and 
the testing phase. Table 1 and Table 2 show the musical contents of the training data and the 
testing data respectively. Each popular Mandarin song collected by one designed singer with the 
specific musical style of singing was categorized to one of ‘Brisk’, ‘Rock’, ‘Lyrics’ and ‘Happy’ 
musical genres. As could be seen in Table 1, the singing persons  that are classified as one of four 
categories, ‘Brisk’, ‘Rock’, ‘Lyrics’ and ‘Happy’ classes, have different lips motions. 

The performances of the proposed GMM-Formant with various values of ߙ  on singers 
classification are shown in Table 3. Observed from Table 3, proposed GMM-Formant with the 
setting of ߙ = 0.9 has the highest recognition rate, which achieves to 72.5 %. Conversely, an 
improper setting of ߙ will restrict the GMM-Formant method. For example, when ߙ = 0.1 is set 
to GMM-Formant, the recognition accuracy is dissatisfactory, which is 45 % and uncompetitive. 
Experimental results from Table 3 reveal that proposed GMM-Formant has a better and more 
acceptable performance on recognition accuracy when the value of ߙ is set higher. As mentioned 
in the previous section, the weight parameter ߙ  governs the balance of two terms ܯܯܩ  and ݐ݊ܽ݉ݎܨ , and Table 3 suggests that an 1-approaching ߙ  set for GMM-Formant to form a 
weighted sum of the GMM model-based estimate and the formant feature-based evaluation will 
be a positive tendency. 

The competitiveness of the proposed GMM-Formant method is demonstrated in Table 4. From 
Table 4, proposed GMM-Formant with the setting of ߙ = 0.9  performs best. Proposed 
GMM-Formant is better than conventional GMM and acoustic formant analysis on recognition 
performances by 7.5 % and 12.5 %, respectively. 

5. Conclusions 

This paper proposes a GMM-Formant scheme for performing music genre classification of the 
singer. Optical musical recognition of the singer with proposed GMM-Formant will be as a more 
intelligent analytical tool for automatic classification of the singers. The proposed GMM-Formant 
takes use of the popular linear interpolation technique to perform a proper fusion between 
model-based and feature-based classification processing. In developed GMM-Formant, Gaussian 
mixture model is adopted for model-based classification, and acoustic formant feature analysis is 
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utilized to carry out feature-based classification. The presented GMM-Formant effectively 
overcomes the problem of the weakness of the unique classification technique. Experimental 
results demonstrated that developed GMM-Formant achieved competitive and acceptable 
performances on classification accuracy of singers. 
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