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Abstract. For energy-dissipation devices, identification of the physical behavior is a more 
difficult task than their design. This study develops an identification technique that is useful for 
the acquirement of the dynamic characteristics of buildings with symmetric ductile braces (SDBs) 
which exhibit bilinear behavior. The considered system is a linear multi-story building with SDBs 
regarded as a bilinear hysteretic model. The complex multi-degree-of-freedom problem was 
solved in the pseudo-single-degree-of-freedom domain, and the dynamic parameters of primary 
building as well as the SDBs are sequentially identified from top to bottom stories based on the 
input and output responses of floors. To simplify the nonlinear problem, a backbone curve, where 
the multi-values restoring force is transformed into a single-valued function, is applied to 
characterize the hysteretic model. A numerical study demonstrates that the proposed identification 
technique was able to extract the physical parameters of the primary building and the SDBs 
individually from the floor responses. It may be applied to the health monitoring of buildings 
protected by nonlinear energy-dissipation devices. 
Keywords: energy-dissipated building, physical-parameter identification, hysteretic model, 
pseudo-single-degree-of-freedom, structural health monitoring. 

1. Introduction 

Conventional buildings rely on self-ability to dissipate the vibration energy from earthquakes. 
In the past two decades, numerous scholars and engineers worldwide have devoted their attention 
to methods that help to reduce damage to structures during strong earthquakes. Specifically, a 
number of extant studies have focused on base-isolated systems that directly reduce base input 
energy; other scholars have used energy dissipation systems, which appropriately integrate energy 
dissipation devices with structures. Energy dissipation systems convert the inter-story 
displacement or relative velocity of a structure into the mechanical force that drives energy 
dissipation devices, thus absorbing seismic energy propagating in structures. Energy dissipation 
systems can be categorized into two types. The first type employs the plastic deformation of metal 
materials to absorb energy from hysteretic loops produced during cyclic loading. The second type 
of energy dissipation system utilizes the relative motion within dampers to generate resistance by 
driving the flows of materials that consist of fluids or quasi-solid substances or by generating a 
vibration-resistant force from the materials’ viscosity, such as in viscous-fluid dampers [1]. Wang 
and Chang Chien [2] applied the nonlinear behavior of Pre-bent strips (PBSs) under dynamic 
loading and proposed a buckling-structured damping device. This study of component analysis 
indicated that a PBS under cyclic loading displays an asymmetric mechanical behavior. Chang 
Chien [3] further modified the PBS into a ductile brace, and employed ductile braces with a 
symmetric setting to explore their vibration resistance. Compared to Buckling-restrained braces 
(BRBs), which do not tend to yield in response to seismic forces, this research results showed that 
symmetric ductile braces (SDBs) allowed buckling and deformation, which, when slightly 
deformed, produced yield and subsequently provided hysteretic loops. Thus, SDBs are able to 
dissipate seismic energy early in an earthquake. Furthermore, according to his study, SDBs 
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comprising PBSs display a symmetric hysteretic behavior similar to bilinear hysteresis. 
In this study, a pseudo-single-degree-of-freedom system identification procedure is developed 

to investigate the dynamic characteristics of energy-dissipated buildings equipped with symmetric 
ductile braces (SDBs). The primary structure is assumed to be linear on account of substantial 
reduction of seismic forces due to the installation of SDBs for which a bilinear hysteretic model 
is considered. The hysteretic model is in turn characterized by a backbone curve by which the 
multi-valued restoring force is transformed into a single-valued function. With the introduction of 
backbone curves, the system identification analysis of inelastic structures is simplified to a large 
extent. The proposed algorithm extracts individually the physical parameters of each primary 
structure and each energy-dissipation device that are considered useful information in the 
structural health monitoring. A numerical example is conducted to demonstrate the feasibility of 
using the proposed technique for physical parameter identification of partially inelastic 
energy-dissipated buildings. 

2. Motion equation 

Consider a ܰ-story energy-dissipated building structure with SDBs, as shown in Fig. 1. The 
primary structure is assumed to be linear on account of the reduction in seismic forces due to the 
SDBs. Accordingly, the equations of motion of the energy-dissipated structure can be expressed 
as: ݉ேݔሷே + ሶேݔ)ேܥ − (ሶேିଵݔ + ேݔ)ேܭ − (ேିଵݔ + ܿௗ(ே)(ݔሶே − (ሶேିଵݔ + ℎே(ݔே − =(ேିଵݔ −݉ேݔሷ, (1)݉ିଵݔሷିଵ + ሶିଵݔ)ିଵܥ − (ሶିଶݔ + ିଵݔ)ିଵܭ − (ିଶݔ + ܿௗ(ିଵ)(ݔሶିଵ − +(ሶିଶݔ ℎିଵ(ݔିଵ − (ିଶݔ − ሶݔ)ܥ − (ሶିଵݔ − ݔ)ܭ − (ିଵݔ − ܿௗ()(ݔሶ − +(ሶିଵݔ ℎ(ݔ − (ିଵݔ = −݉ݔሷ, ݅ = 3, … , ܰ, (2)݉ଵݔሷଵ + ሶଵݔଵܥ + ଵݔଵܭ + ܿௗ(ଵ)ݔሶଵ + ℎଵ(ݔଵ) − ሶଶݔ)ଶܥ − (ሶଵݔ − ଶݔ)ଶܭ − (ଵݔ − ܿௗ(ଶ)(ݔሶଶ − −(ሶଵݔ ℎଶ(ݔଶ − (ଵݔ = −݉ଵݔሷ, (3)

where ݔ is the displacement of the ݅th floor relative to ground; ݉ is the mass of the ݅th floor; ܥ 
and ܭ  represent the damping coefficient and stiffness coefficient of the ݅th primary structure, 
respectively; and ܿௗ() is the coefficient of damping, and ℎ(•) refers to the hysteretic restoring 
force of the ݅th SDBs to be defined later; ݔሷ is the horizontal ground acceleration. 

 
Fig. 1. Energy-dissipated building 

3. Pseudo-single-degree-of-freedom system 

Dividing both sides of Eq. (1) by ݉ே  and subtracting ݔሷேିଵ  from the quotient forms a 
pseudo-SDOF motion equation of the ܰth floor as: 
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ሷேݔ) − (ሷேିଵݔ + ே݉ேܥ ሶேݔ) − (ሶேିଵݔ + ே݉ேܭ ேݔ) − (ேିଵݔ + ܿௗ(ே)(ݔሶே − +ሶேିଵ)݉ேݔ ℎே(ݔே − ேିଵ)݉ேݔ = −൫ݔሷ + .ሷேିଵ൯ݔ (4)

Similarly, (2) and (3) were rewritten as pseudo-SDOF motion equations for floors ݅ − 1 to 1 
as: (ݔሷேିଵ − (ሷேିଶݔ + ேିଵ݉ேିଵܥ ሶேିଵݔ) − (ሶேିଶݔ + ேିଵ݉ேିଵܭ ேିଵݔ) − (ேିଶݔ + ܿௗ(ேିଵ)݉ேିଵ ሶேିଵݔ) − +(ሶேିଶݔ ℎேିଵ(ݔேିଵ − ேିଶ)݉ேିଵݔ = − ݔሷ + ሷேିଶݔ + ݉ே݉ேିଵ ൫ݔሷ + ,ሷே൯൨ݔ (5)

ሷଵݔ ⋮ + ଵ݉ଵܥ ሶଵݔ + ଵ݉ଵܭ ଵݔ + ܿௗ(ଵ)݉ଵ ሶଵݔ + ℎଵ(ݔଵ)݉ଵ= − ݔሷ + ݉ଶ݉ଵ ൫ݔሷ + ሷଶ൯ݔ + ݉ଷ݉ଵ ൫ݔሷ + ሷଷ൯ݔ + ⋯ + ݉ே݉ଵ ൫ݔሷ + .ሷே൯൨ݔ (6)

4. Bilinear hysteretic model 

The restoring force, ℎ(•), is path-dependent. In general, all hysteresis loops are smooth except 
at the turning points. They can usually be characterized by skeleton curves (or backbone curves). 
Under steady-state cyclic loadings, the hysteretic behavior of these models can be properly 
described by Masing criterion [4], which assumes that the unloading portion of the hysteresis loop 
follows the same skeleton curve as the reloading but with the scale expanded by a factor of two 
and the origin translated to the point of force reversal [4, 5], as shown in Fig. 2. The restoring 
force of the ܰth SDBs after the first unloading is discretized and expressed as: 

ℎே(ݔே − (ேିଵݔ = ℎே(ݔேூ − ேିଵூݔ ) + 2 ே݂ ቆ൫ݔே − ேିଵݔ ൯ − ேூݔ) − ேିଵூݔ )2 ቇ, (7)

in which ܫ is the instant of most recent loading reversal; ݔே  is the ܰth floor displacement at instant ݅ with ݅ = ,ܫ ܫ + 1, …, and ே݂(•) is a function representing the skeleton curve which is assumed to 
be bilinear in this study characterized by three line segments with slopes of ݇ௗ or ݇ௗ as: 

݂(ݒ) = ቐ݇ௗݒ, ܦ− ≤ ݒ ≤ ௗܾ,ܦ + ݇ௗݒ, ݒ > ௗܾ−,ܦ + ݇ௗݒ, ݒ < ,ܦ− (8)

where ܦ denotes the yielding displacement and ܾௗ is the characteristic strength. 
When Eq. (7) is substituted into Eq. (4), the governing equation of the ܰth floor at instant ݅ 

becomes: 

൫ݔሷே − ሷேିଵݔ ൯ + ே݉ேܥ ൫ݔሶே − ሶேିଵݔ ൯ + ே݉ேܭ ൫ݔே − ேିଵݔ ൯ + ܿௗ(ே)݉ே ൫ݔሶே − ሶேିଵݔ ൯
+ ℎே(ݔேூ − ேିଵூݔ )݉ே + 2 ே݂ ቆൣ൫ݔே − ேିଵݔ ൯ − ேூݔ) − ேିଵூݔ )൧2 ቇ݉ே = −൫ݔሷ + ሷேିଵݔ ൯. (9)
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Fig. 2. Hysteresis loops based on skeleton loading curve 

At instant ݅ = ேூݔ)the above equation reduces to: ℎே ,ܫ − ேିଵூݔ )݉ே = −൫ݔሷூ + ሷேିଵூݔ ൯ − ሷேூݔ) − ሷேିଵூݔ ) − ே݉ேܥ ሶேூݔ) − ሶேିଵூݔ ) − ே݉ேܭ ேூݔ) − ேିଵூݔ )        − ܿௗ(ே)݉ே ሶேூݔ) − ሶேିଵூݔ ). (10)

Substituting Eq. (10) for ℎே(ݔேூ − ேିଵூݔ )/݉ே into Eq. (9), one gets: 

ൣ൫ݔሷே − ሷேିଵݔ ൯ − ሷேூݔ) − ሷேିଵூݔ )൧ + ே݉ேܥ ൣ൫ݔሶே − ሶேିଵݔ ൯ − ሶேூݔ) − ሶேିଵூݔ )൧+ ே݉ேܭ ൣ൫ݔே − ேିଵݔ ൯ − ேூݔ) − ேିଵூݔ )൧ + ܿௗ(ே)݉ே ൣ൫ݔሶே − ሶேିଵݔ ൯ − ሶேூݔ) − ሶேିଵூݔ )൧
+ 2 ே݂ ቆൣ൫ݔே − ேିଵݔ ൯ − ேூݔ) − ேூݔ )൧2 ቇ݉ே = −ൣ൫ݔሷ + ሷேିଵݔ ൯ − ൫ݔሷூ + ሷேିଵூݔ ൯൧.

(11)

Defining: ݑே = ൣ൫ݔே − ேିଵݔ ൯ − ேூݔ) − ேିଵூݔ )൧, (12)

in Eq. (12) and substituting it into Eq. (11), the governing equation can be rewritten as: 

ሷݑ ே + ܿௗ(ே)݉ே ሶݑ ே + 2 ே݂ ൬ݑே2 ൰݉ே = −ൣ൫ݔሷ − ሷேିଵݔ ൯ − ൫ݔሷூ + ሷேିଵூݔ ൯൧ − ே݉ேܥ ሶݑ ே − ே݉ேܭ ேݑ . (13)

Substituting Eq. (8) into Eq. (13), and denoting the right-hand side of Eq. (13) as ݑሷ ே , the 
governing equation can be rewritten as: 

ሷݑ ே + ܿௗ(ே)݉ே ሶݑ ே + ݇ௗ(ே)݉ே ேݑ = ሷݑ ே , − ܦ ≤ ே2ݑ ≤ ,ܦ ሷݑ(14) ே + ܿௗ(ே)݉ே ሶݑ ே + 2ܾௗ(ே)݉ே + ݇ௗ(ே)݉ே ேݑ = ሷݑ ே , ே2ݑ > ,ܦ ሷݑ(15) ே + ܿௗ(ே)݉ே ሶݑ ே − 2ܾௗ(ே)݉ே + ݇ௗ(ே)݉ே ேݑ = ሷݑ ே , ே2ݑ < .ܦ− (16)
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Eqs. (14)-(16) are used to identify the parameters of the ܰ th floor of energy-dissipated 
building. 

5. Physical identification 

Identification of the system parameters can be conducted once the dynamic responses of the 
structure subjected to the input excitation are available [6]. Based on an output-error concept [7], 
the system parameters are obtained by minimizing the discrepancy between the recorded and 
predicted responses of the system. The system parameters so evaluated are considered optimal. 

Using the first set of data for | ேݑ 2⁄ | ≤  and Eq. (14), the partial measure-of-fit can be ܦ
defined as: 

݁ேଵ =  ݑሷ ே + ܿௗ(ே)݉ே ሶݑ ே + ݇ௗ(ே)݉ே ேݑ − ሷݑ ே ൨ୀଵ
ଶ. (17)

The values of ܿௗ(ே) and ݇ௗ(ே) are obtained by simultaneously solving: ߲݁ேଵ߲(ܿௗ(ே) ݉ே⁄ ) = 0,   ߲݁ேଵ߲(݇ௗ(ே) ݉ே⁄ ) = 0. (18)

Similarly, application of the second data set for ݑே /2 >  and Eq. (15) produces another ܦ
partial measure-of-fit as: 

݁ேଶ =  ቈݑሷ ே + ܿௗ(ே)݉ே ሶݑ ே + 2ܾௗ(ே)݉ே + ݇ௗ(ே)݉ே ேݑ − ሷݑ ே ୀଵ
ଶ, (19)

extremization of Eq. (19) with respect to the unknowns yields: ߲݁ேଶ߲(ܿௗ(ே) ݉ே⁄ ) = 0,   ߲݁ேଶ߲(2ܾௗ(ே)/݉ே), ߲݁ேଶ߲(݇ௗ(ே) ݉ே⁄ ), (20)

from which the values of ܿௗ(ே), ܾௗ(ே) and ݇ௗ(ே) are obtained. Finally, application of the third 
data set for −ݑ /2 <  :and Eq. (16), the third partial measure-of-fit is defined as ܦ−

݁ேଷ =  ቈݑሷ ே + ܿௗ(ே)݉ே ሶݑ ே − 2ܾௗ(ே)݉ே + ݇ௗ(ே)݉ே ேݑ − ሷݑ ே ୀଵ
ଶ. (21)

Minimization of ݁ேଷ with respect to ܿௗ(ே) ݉ே⁄ , 2ܾௗ(ே)/݉ே and ݇ௗ(ே) ݉ே⁄  respectively, i.e. 
solving the system equations of: ߲݁ேଷ߲(ܿௗ(ே) ݉ே⁄ ) = 0,   ߲݁ேଷ߲(2ܾௗ(ே)/݉ே), ߲݁ேଷ߲(݇ௗ(ே) ݉ே⁄ ). (22)

However, to ensure satisfaction of a prescribed criterion, say, the global measure-of-fit defined 
as: ݁ே = ݁ேଵ + ݁ேଶ + ݁ேଷ. (23)

The set of ܿௗ(ே),  ܾௗ(ே),  ݇ௗ(ே),  ݇ௗ(ே), ேܥ   and ܭே  that gives the minimum global 
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measure-of-fit is regarded as the solution. Moreover, parameters identified from different set of 
data are somewhat different. In such a circumstance, the average value of all is adopted. Similarly, 
physical parameters of floors ܰ − 1  to 1  could be obtained using Eqs. (5) and (6) and the 
aforementioned procedures. 

Moreover, to assess the overall accuracy of the identification process, an error index is defined 
as: 

ܫܧ = ൝ ሾ(ݔሷ) − ௧ݐ௧ሿଶ݀(ሷݔ)  ሾ(ݔሷ)ሿଶ݀ݐ௧ ൡଵ ଶ⁄ , (24)

where (ݔሷ)  is the recorded or measured acceleration response of the ݅ th floor and (ݔሷ)௧  the 
corresponding theoretical or predicted response. The latter is calculated from the identified system 
parameters with the recorded input excitation. 

6. Numerical example 

As an effort to verify the proposed methodology for system identification of buildings, a 
numerical example is considered using a 3-story energy-dissipated building with SDBs. The 
system parameters considered in this study include: (1)  ݉ଵ = ݉ଶ = ݉ଷ = 116.64×103 kg;  ܭଵ = ଶܭ = ଷܭ = 168.06 MN/m  and ܥଵ = ଶܥ = ଷܥ = 321.0 kN s/m  for the primary structure; 
(2) ܾௗ(ଵ) = ܾௗ(ଶ) = ܾௗ(ଷ) = 74.556 kN s/m;   ݇ௗ(ଵ) = ݇ௗ(ଶ) = ݇ௗ(ଷ) = 44.145 MN/m;  ݇ௗ(ଵ) = ݇ௗ(ଶ) = ݇ௗ(ଷ) = 6.867 MN/m and ܿௗ(ଵ) = ܿௗ(ଶ) = ܿௗ(ଷ) = 156.0 kN s/m for the SDBs. 

Dynamic responses of the energy-dissipated building under the N-S component of the 1940 El 
Centro earthquake are calculated using Newmark’s linear acceleration method with a time-step of 
0.02 sec. The acceleration responses contaminated with an artificial white noise signal of 5 % 
noise-to-signal ratio are considered in the system identification analysis to simulate the measured 
data in a more realistic manner.  

Fig. 3 presents the nonlinear restoring force of the 3rd SDBs with a yielding displacement of 
0.199 cm and a ductility ratio of 2.49. The force-displacement relationship of the story shear at 
the 3rd primary structure is almost linear, as illustrated in Fig. 4. 

In the first cycle of the identification process, the initial value of ܥଷ is arbitrarily set to be zero. 
The global measure-of-fit with respect to ܭଷ is presented in Fig. 5 from which the least squares 
estimate of ܭଷ is shown to be 170.0 MN/m. The minimization process is then proceeded further 
to find ܥଷ and other system parameters by keeping ܭଷ at this value. The optimal estimate of ܥଷ 
reads 280 kN s/m , as illustrated in Fig. 6. Meanwhile, the parameteric values of SDBs are 
identified as ܿௗ(ଷ) = 198 kN s/m,  ܾௗ(ଷ) = 75.274 kN,  ݇ௗ(ଷ) = 42.170 MN/m  and  ݇ௗ(ଷ) = 5.064 MN/m, respectively. 

 
Fig. 3. Nonlinear restoring force of the 3rd 

symmetric ductile braces 
Fig. 4. Restoring force and displacement  

of the 3rd primary structure 
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Fig. 5. Global measure-of-fit in the first  

cycle setting ܥଷ = 0 kN s/m 
Fig. 6. Global measure-of-fit in the first  

cycle setting ܭଷ = 170 MN/m 

The second iterative cycle is next proceeded by considering the initial value of ܥଷ  as 
280 kN s/m derived from the previous cycle. Minimizing the global measure-of-fit, we have  ܭଷ = 167.0 MN/m, as shown in Fig. 7. Table 1 summarizes the system parameters of the 3rd 
SDBs and 3rd primary structure identified in three iterative cycles, while all the parameters used 
to describe the 1st SDBs, 2nd SDBs, and 1st and 2nd primary structures are further listed in 
Table 2 and Table 3, respectively. 

Table 1. Identified parameters of the 3rd SDBs and 3rd primary structure 
Number 
of cycle 

ܿௗ(ଷ) 
kN s/m 

ܾௗ(ଷ) 
kN 

݇ௗ(ଷ) 
MN/m 

݇ௗ(ଷ) 
MN/m 

 ଷܥ
kN s/m 

 ଷܭ
MN/m 

1 198.0 75.274 5.064 42.170 280.0 170.00 
2 194.0 75.274 8.065 45.170 284.0 167.00 
3 194.0 75.274 7.965 45.070 284.0 167.10 

True value 156.0 74.556 6.867 44.145 321.0 168.06 
E. I. 0.3622 

Table 2. Identified parameters of the 2-nd SDBs and 2-nd primary structure 
Number 
of cycle 

ܿௗ(ଶ) 
kN s/m 

ܾௗ(ଶ) 
kN 

݇ௗ(ଶ) 
MN/m 

݇ௗ(ଶ) 
MN/m 

 ଶܥ
kN s/m 

 ଶܭ
MN/m 

1 227.0 72.141 15.392 51.613 290.0 160.00 
2 228.0 72.141 8.392 44.613 289.0 167.00 
3 228.0 72.141 8.392 44.613 289.0 167.00 

True value 156.0 74.556 6.867 44.145 321.0 168.06 
E. I. 0.3756 

Table 3. Identified parameters of the 1-st SDBs and 1-st primary structure 
Number 
of cycle 

ܿௗ(ଵ) 
kN s/m 

ܾௗ(ଵ) 
kN 

݇ௗ(ଵ) 
MN/m 

݇ௗ(ଵ) 
MN/m 

 ଵܥ
kN s/m 

 ଵܭ
MN/m 

1 145.0 75.248 4.940 43.096 300.0 170.00 
2 145.0 75.248 4.940 43.096 300.0 170.00 
3 140.0 75.247 6.040 44.196 305.0 168.90 

True value 156.0 74.556 6.867 44.145 321.0 168.06 
E. I. 0.4462 

Numerical results in this example suggest that three iterative cycles of identification are 
enough for sufficient accuracy. In addition, the skeleton curve estimated from the identified 
parameters of the 3rd SDBs using the Masing criterion is illustrated in Fig. 8. Comparisons of 
acceleration and displacement of the 3rd floor and the 1st floor are shown from Figs. 9-12, 
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respectively. Satisfactory agreement between the identified and measured responses has been 
observed indicating adequacy of the proposed identification scheme for partially inelastic dynamic 
systems. 

It is noted that by the proposed method, measurement of ground acceleration and full-state 
response data including acceleration, velocity and displacement of all degrees of freedom is 
required. As in most occasions, only the acceleration responses are measured. In this case, the 
responses of velocity and displacement need to be integrated from the acceleration records with 
baseline correction. This may inevitably introduce error to the physical parameters identified. 

 
Fig. 7. Global measure-of-fit in the second cycle 

setting ܥଷ = 280 kN s/m 
Fig. 8. Identified skeleton curve of the 3rd  

symmetric ductile braces 
 

 
Fig. 9. Comparison between identified and  

measured accelerations of floor 3 
Fig. 10. Comparison between identified and 

measured displacements of floor 3 
 

 
Fig. 11. Comparison between identified and 

measured accelerations of floor 1 
Fig. 12. Comparison between identified and 

measured displacements of floor 1 
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7. Conclusions 

For a structure protected by energy-dissipation devices with nonlinear behavior, it is needed 
to evaluate the damage of the devices after an earthquake so as to take an immediate action to 
repair or replace them. This study developed an identification technique for this purpose. A 
nonlinear system of a multi-story building with multiple SDBs was considered in this paper. A 
bilinear skeleton curve was used to characterize the behavior of SDBs so that the computational 
effort is reduced. The identification procedure is sequentially preceded from the top to the bottom 
stories based on the floor responses. 

The proposed procedure was verified via a numerical study which a 3-story building with 
SDBs in each story is assumed. The stiffness and damping coefficients of the building as well as 
the physical parameters representing the nonlinear characteristics of the SDBs were obtained in 
three iterative cycles, even though a noise with 5 % noise-to-signal ratio is contained in the floor 
responses. The results show that this methodology could be applied to health monitoring of 
passively controlled systems using devices whose dynamic behavior can be represented with some 
form of skeleton curve. The proposed identification technique can further be extended to solve 
systems with high nonlinearity.  
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