
 

 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. FEBRUARY 2014. VOLUME 16, ISSUE 1. ISSN 1392-8716 183 

1139. A finite element based optimal vibration 

suppression for constrained layer damped rotating 

plates 

Zhengchao Xie1, Xinjian Xue2, Pak-kin Wong3 
1, 3Department of Electromechanical Engineering, Faculty of Science and Technology 

University of Macau, Macau, China 
2Department of Mechanical Engineering, University of South Carolina, Columbia, SC, USA 
1Corresponding author 

E-mail: 1zxie@umac.mo, 2xue@sc.edu, 3fstpkw@umac.mo 

(Received 7 December 2013; received in revised form 21 December 2013; accepted 28 December 2013) 

Abstract. This paper investigates the vibration and optimal design of a rotating constrained layer 

damped plate system. Most of the existing researches treat the plate structures as beams. This 

work, however, models rotating structures as plates. At the same time, the existing research shows 

that the constrained layer damping (CLD) is an effective technique for vibration suppressions. 

Through the models investigated, this paper develops a single layer plate finite element model for 

a constrained layer damped rotating plate to improve both the accuracy and versatility over 

previous beam CLD models. Due to the multiple design variables and complex responses, a 

genetic algorithm (GA) is applied to determine the thicknesses of the viscoelastic damping layer 

and the constraining layer so that the amplitudes with first two modes of the driving point mobility 

at a selected point of the rotating plate can be minimized. Numerical results show that GA works 

effectively with developed single layer plate finite element model to find out the optimum 

configuration. 

Keywords: damping, rotating plate, finite element method (FEM), optimization. 

1. Introduction 

Constrained layer damping (CLD) is an effective approach for vibration suppressions. The 

fundamental mechanism of CLD is that the relative motion of two face layers leads to the 

deformation of the damping layer; the energy consumed through the deformation of the damping 

layer results in the damping effects. Relatively large damping ratios can be achieved through a 

wide range of available viscoelastic materials. 

In literature, investigations have been conducted on constrained layer damping for beam 

structures. These researches widely employed an assumption proposed by Ross, Ungar and 

Kerwin (RKU) [1], suggesting that there is only shear deformation (pure shear) in the damping 

layer. In this assumption, the two face layers are treated as Euler-Beams while the core layer only 

experiences shear deformation. The motions associated with this assumption are illustrated in 

Fig. 1. For the convenience of the discussion, two face layers are called the constraining layer and 

the base layer respectively in this paper, while the middle layer is called the core layer. The layers 

are also denoted by numbers 1, 2 and 3, respectively, throughout this work. The displacements 𝑢1 

and 𝑢3  are employed to represent the longitudinal displacements of face layers 1 and 3 

respectively. 𝑤 is utilized to denote the transverse displacement of sandwich structure, which is 

identical for each of the three layers. Shear deformation in the core layer is determined from the 

relative motion between 𝑢1 and 𝑢3. 

While the assumptions described above are widely used, they are not always valid in certain 

structures. Rao [2] studied the problem using the same transverse displacement assumption as that 

in [1] but with additional assumptions that the longitudinal displacement varies linearly across the 

thickness of each layer, and the displacement is continuous across the layer connections. In that 

work, all of three layers are treated as Timoshenko beams instead of Euler beams used in the RKU 

model. Zapfe and Lesieutre [3] presented a beam finite element that can be regarded as the finite 

element implementation of the Rao’s model. Based on the work of [3], Xie and Shepard [4] 
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developed a new plate finite element to consider the compression effect of CLD structures. 

 
Fig. 1. RKU model displacements for a CLD sandwich beam 

Recently the constrained layer damping is employed for the vibration suppressions of rotating 

structures, which has wide applications in industries such as wind turbines, helicopters, and 

vessels. Rotating beams, a simplification of rotating plates, have been extensively investigated, 

including fundamental dynamics [5] and constrained layer damping studies [6-7]. Fung et al. [8] 

studied active constrained layer damping (ACLD) application on rotating beam. Yoo et al. [9-11] 

studied the dynamics of rotating bare plates using analytical approach. Based on the work in [8], 

Liu et al. [12] developed a plate finite element model for a rotating bare plate. Liu et al. [13] 

extended their own work in [12] to the active control of rotating bare plates through the finite 

element approach. It is worth noting that all of the work mentioned above utilized the same 

assumptions as those in RKU model that there is only shear strain in the core layer, whereas the 

constraining and base layers experience only longitudinal extension strain. 

Since it is often desired to obtain the best performance for a particular application, design 

optimization can often be a significant issue. Many optimization methods are available, such as 

calculus-based methods like the conjugate gradient method and differential correction. In some 

cases, the model associated with optimization issue is complicated or even unknown; it is difficult 

for these methods to handle such optimization issues. Genetic algorithm (GA) could be a good 

choice because GA is an optimization method based on stochastic search, requiring only the 

knowledge of the objective function and not any of its derivatives. GA uses natural evolutionary 

principles to obtain offspring with characteristics better than those of the parents. The optimization 

results are typically at or close to the global optimum. Some GA optimization methods have been 

applied to the constrained-layer damped structures. Hau et al. [14] constructed a FEM model 

which contains the frequency-dependent viscoelastic material for a rotating beam. This model was 

then combined with GA to obtain an optimum configuration. 

In this research, a plate finite element model is originally developed to extend the previous 

research from the beam to the plate and is employed to model the multi-layer rotating plates. A 

GA approach is then used with the model to find the optimal thickness for both the damping layer 

and the constraining layer for vibration suppressions. A comparison is provided in the numerical 

examples, demonstrating that the optimum solutions obtained from GA can obtain the best 

vibration suppression effects while minimizing the utilization of the damping material. The 

proposed plate finite element model is applicable for multi-layer (more than three) rotating plates, 

and the design approach can be extended to optimize more complex damped rotating structures 

such as wind turbines in the future. 

2. Finite element modeling and validation 

2.1. Assumptions and kinematics relations 

Prior to introducing the rotating plate finite element model, the assumptions as those in [2] 
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should be introduced. Note that the assumptions in [2] are for beams. 

1) The transverse displacements of all three layers are equal. 

2) The longitudinal displacement is linearly distributed across the thickness of each layer. 

3) There is no slip between the layers. 

 

  
Fig. 2. Proposed displacement field 

These assumptions are used in this work to model the rotating plate. Fig. 2 shows the proposed 

displacement field for the rotating plate with angular velocity 𝜔. 𝑢𝑖 and 𝑣𝑖 are the longitudinal 

displacements at the contacting interfaces of different layers, and the longitudinal displacement of 

each layer varies linearly between the top and the bottom surfaces as shown in Fig. 2. 𝑤 is the 

transverse displacement for all of the three layers. Note that there are two coordinate systems in 

Fig. 2, i.e., a rotating coordinate system 𝑜-𝑥𝑦𝑧  attached to the rotating plate, and a global 

coordinate system 𝑂-𝑋𝑌𝑍  that is fixed without rotation. The plate rotates with the rotating 

coordinate system 𝑜-𝑥𝑦𝑧  around the 𝑌  axis of the fixed coordinate system 𝑂-𝑋𝑌𝑍.  The 

transformation matrix between two coordinate systems is defined as [10]: 

𝐴 = [
cos𝜃 0 −sin𝜃

0 1 0
sin𝜃 0 cos𝜃

], (1) 

where 𝜃 is the angle between the 𝑥 axis and 𝑋 axis. Taking an arbitrary point on the rotating plate 

which moves from 𝑃  to 𝑃′  after the deformation, the 
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, is the so-called ‘stiffening 

effect’ [11], which are the coupling terms between the transverse displacement and the 

longitudinal displacement due to the centrifugal force of the rotation. The 𝑢, 𝑣, and 𝑤 are the 

linear displacement of point 𝑃 in the rotating coordinate system 𝑜-𝑥𝑦𝑧. The transformation of the 
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displacement from the 𝑜-𝑥𝑦z coordinate system to the 𝑂-𝑋𝑌𝑍 coordinate system can be made as 

follows: 

𝑂𝑃𝑋𝑌𝑍
′ = 𝐴

(
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0
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0 ]

 
 
 
 
 
 

)

 
 
 
 

. (2) 

With the proposed displacement field, the kinetic and strain energy can be obtained 

respectively. The equations of motion can then be derived accordingly, and they are presented in 

the following sections. 

2.2. Strain and kinetic energies  

Given the displacement field, the strain energy of the 𝑖th layer in the rotating plate can be 

represented as: 
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𝑉𝑖

𝑑𝑣, (3) 

where 𝐻𝑖 is the thickness of the 𝑖th layer, 𝐸𝑖 and 𝐺𝑖 are the Young’s and shear modulus of the 𝑖th 

layer respectively. 

The kinetic energy is dependent on structure’s motion. Taking the time derivative of 

displacement 𝑂𝑃′𝑋𝑌𝑍 in Eq. (2) gives: 
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. (4) 

The kinetic energy of the 𝑖th layer then can be calculated as: 

𝑇𝑖 =
1

2
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2
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𝑥

0

))𝑑𝑣, 

(5) 

where 𝜔 = 𝜃̇ is the angular velocity of the plate, and 𝜌𝑖 is the material density of the 𝑖th layer. 

2.3. Finite element discretization 

Once the kinetic and strain energy are obtained, the displacement field can be discretized using 

the new plate finite element. Fig. 3 shows the 𝑖th layer of the proposed new plate finite element. 
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It is worth noting that the middle nodes are employed to avoid shear locking [3]. As a consequence, 

there are 25 degrees of freedom for the 𝑖th layer as shown in Fig. 3 and 41 degrees of freedom for 

all of three layers. 

 

 
For nodes p, q, m, k 

 
For all other nodes 

Fig. 3. Proposed new plate finite element 

The displacement vector of the 𝑖th layer with this new plate finite element becomes as follows: 

𝑞𝑖 = [
𝑢𝑝𝑖 𝑢𝑝(𝑖+1) 𝑣𝑝𝑖 𝑣𝑝(𝑖+1) 𝑤𝑝 𝑤1 𝑢𝑞𝑖 𝑢𝑞(𝑖+1) 𝑣𝑞𝑖 𝑣𝑞(𝑖+1) 𝑤𝑞 𝑤2 𝑤3 𝑤4

                                                       𝑢𝑚𝑖 𝑢𝑚(𝑖+1) 𝑣𝑚𝑖  𝑣𝑚(𝑖+1) 𝑤𝑚 𝑤5 𝑢𝑘𝑖 𝑢𝑘𝑖 𝑣𝑘𝑖 𝑣𝑘(𝑖+1) 𝑤𝑘
]
𝑇

. (6) 

For the 𝑖 th layer of plate finite element, the proposed displacement field (Fig. 3) can be 

organized as: 

[
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𝑞𝑖 = 𝐵𝐹𝑞𝑖 = 𝑁𝑞𝑖 , 𝑎, (7) 

and the dimensions of matrix 𝐵 and 𝐹 are 3×5 and 5×25, respectively. Both matrixes are given as 

follows: 

𝐵 =

[
 
 
 
 
𝑧

𝐻𝑖
1 −

𝑧

𝐻𝑖
0 0 0

0 0
𝑧
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0
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, (8) 

where 𝑧 and 𝐻𝑖 are respectively the transverse coordinate and the thickness of the 𝑖th layer. And: 

𝐹 =

[
 
 
 
 
𝑛1 0 0 0 0 0 𝑛2 0 0 0 0 0 0 0 𝑛3 0 0 0 0 0 𝑛4 0 0 0 0
0 𝑛1 0 0 0 0 0 𝑛2 0 0 0 0 0 0 0 𝑛3 0 0 0 0 0 𝑛4 0 0 0
0 0 𝑛1 0 0 0 0 0 𝑛2 0 0 0 0 0 0 0 𝑛3 0 0 0 0 0 𝑛4 0 0
0 0 0 𝑛1 0 0 0 0 0 𝑛2 0 0 0 0 0 0 0 𝑛3 0 0 0 0 0 𝑛4 0
0 0 0 0 𝑏1 𝑏2 0 0 0 0 𝑏3 𝑏4 𝑏5 𝑏6 0 0 0 0 𝑏7 𝑏8 0 0 0 0 𝑏9]

 
 
 
 

, (9) 
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where 𝑛1~𝑛4 are the shape functions for the longitudinal displacement and 𝑏1~𝑏9 are the shape 

functions for the transverse displacement. Since they can be calculated according to many finite 

element textbooks, they are not given in detail in this work. 

Also, the displacement vector 𝑞𝑖 can be assembled to the global displacement vector 𝑞 of the 

whole plate finite element with three layers: 

𝑞 = ∑𝑇𝑅𝑖𝑞𝑖 ,

3

𝑖=1

 (10) 

where 𝑇𝑅𝑖 is a 𝑛 × 25 mapping matrix of the 𝑖th layer, and 𝑛 is the total number of degrees of 

freedom in the plate finite element (41 for three layers). 

Substituting Eq. 7 into Eqs. (2), (3) and (5), and neglecting high order terms, the kinetic and 

strain energy of the 𝑖th layer can be reorganized as: 
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(11) 
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𝑇 ∫ (

𝜕𝑁3

𝜕𝑥
)

𝑇

(
𝜕𝑁3

𝜕𝑥
)𝑑𝑥
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0

𝑞𝑖 + 2𝑥𝑁1𝑞𝑖)𝑑𝑣, 

(12) 

where 𝑁𝑖 and 𝐹𝑖 are the 𝑖th row of the matrix 𝑁 and 𝐹, respectively. 

2.4. Equations of motion  

With Eqs. (11), (12) and (17), the global equations of motion for the rotating plate can be 

obtained using Lagrange formula as follows: 

[𝑀]𝑞̈ + [𝐶]𝑞̇ + [𝐾]𝑞 = 𝑓, (13) 

where: 

𝑀 = ∭𝑁𝑇𝑁
𝑉

𝑑𝑣,  

𝐶 = 2𝜔 ∭(𝑁3
𝑇𝑁1 − 𝑁1

𝑇𝑁3)𝑑𝑣
 

,  

𝐾 = 𝐾1 − 𝜔2 ∭(𝑁1
𝑇𝑁3 + 𝑁3

𝑇𝑁1)𝑑𝑣
 

+ 𝜔2𝑅𝑃 + 𝜔̇ ∭(𝑁3
𝑇𝑁1 − 𝑁1

𝑇𝑁3)𝑑𝑣
 

,  
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𝑓 = 𝜔 ∭ 𝑥𝑁1𝑑𝑣
𝑉𝑖

− 𝜔̇ ∭ 𝑥𝑁3𝑑𝑣
𝑉𝑖

,  

[𝑀] and [𝐾] are mass and stiffness matrix of the rotating plate, respectively. 𝐾1 and 𝑅𝑃 are the 

elastic strain stiffness in 𝑜-𝑥𝑦𝑧 coordinate system and stiffening matrix, respectively. 𝑞 is the 

global displacement vector of the rotating plate. 𝑞̇  and 𝑞̈  represent velocity and acceleration 

vectors, respectively. Since the same coupling terms between the transverse and longitudinal 

displacements are used, the derivation of RP in this work is similar to that in [12]. It is worth 

noting that the proposed displacement field and derivation approach in the present study are 

different from those in [12], where the bare rotating plate is investigated in the latter while the 

three layer CLD structure is considered in this study. Here the Lagrange formula is applied to each 

layer (𝑞𝑖) first, and then the local equation of motion of each layer is assembled to form the global 

Eq. (13). 

2.5. Validation of the finite element model 

In this section, the developed finite element model is validated using data from the open 

literature. We consider a rotating and constrained layer damped sandwich beam as in [8] with the 

length of 0.3 m, and detailed configurations can be found in [8]. The first three bending modes of 

this beam are calculated using the newly developed finite element model and compared with those 

in [8], where the rotation speed is set at 30 revolutions per-minute (rpm). One can see from Table 1 

that all of the first three modes obtained from the new finite element model match pretty well with 

those in [8]. It is interesting to note from Table 1 that the developed new finite element model is 

able to identify the first torsion mode while the beam model in [8] is not, and this is an advantage 

of plate model over the beam model. With the validated constrained layer damped plate model, it 

is possible to perform the optimization for the constrained layer damping plate. 

Table 1. Comparison between results of new plate finite element model and [7] with 30 rpm rotation speed 

Modes 

Frequency (Hz) 
Difference 

(%) 

Damping ratio (%) 
Difference 

(%) 
New FE 

model 

Reference 

[7] 

New FE 

model 

Reference 

[7] 

The first bending 20.2 20.2 0 3.8 3.8 0 

The second bending 106.1 104.0 2.0 2.3 2.3 0 

The first torsion 186.3 N/A N/A 0.49 N/A N/A 

The third bending 290.1 277.0 4.5 1.15 1.23 7.0 

3. Optimization via genetic algorithm (GA) 

GA is not new to the field of mechanical designs. In 1975, Holland published the book of 

‘Adaptation in Natural and Artificial System’ [15] and systematically described the topic of GA 

as applied to biological research. Since then, GA has been widely used in many fields such as 

structure optimizations. In general, GA uses stochastic search and natural evolutionary principles 

as the basis for optimizations. The algorithms first create a population of “individuals”, typically 

the binary strings coded to represent the parameters of the problem. The best elements of the 

population are then selected for various operations as shown in Fig. 4, and details on each 

operation can be found in [16]. The goal of each step in the algorithm is to obtain a new generation, 

referred to as offspring, which is closer to the optimal solution than the parent generation. 

In this work, the thickness of the damping layer and the thickness of the constraining layer are 

treated as the design variables encoded into a binary string using a multi-parameter, mapped, 

fixed-point coding [16]. Each of the thicknesses is coded using 20 bits, so the total length of the 

string needed to describe the configuration of the sandwich beam is 40 bits. The population of 

each generation is composed of a specified number of such strings. The corresponding dynamic 
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response of the rotating plate, associated with each string is used to calculate the fitness of the 

string. The fitness is used to ultimately determine the survivability of the particular string in the 

evolution. In this research, the fitness is defined as the summation of reciprocals of maximum 

amplitudes of the structural response at its first two resonant frequencies. 

 
Fig. 4. Procedure for genetic algorithm 

The FEM code reads the strings generated from the GA code and calculates the dynamic 

response for each configuration. The dynamic response is then used in the embedded objective 

function in order to calculate the fitness for that particular solution. The particular objective 

functions considered for the optimization used herein are discussed below. 

4. Numerical example 

In order to examine the capabilities of the code, one can consider a constrained layer damped 

rotating plate with parameters as given in Table 2. For the GA parameters, the population size is 

40 with single point crossover. Furthermore, forty bits are allocated for strings which represent 

the two design variables with twenty bits for each. The mutation rate is set as the reciprocal of the 

string length, which is 0.025. For this study, the first two mode amplitudes of driving point 

mobility at one selected point of the rotating plate will be minimized. The location of the selected 

point is at the point with one half of the plate length away from the free end and two third of the 

plate width away from the front side edge. Consequently, the response is presented in the 

frequency domain. While the driving point mobility amplitudes are minimized here, the method 

is flexible to handle other objective function. 

Table 2. Parameters for the case study of optimization 

Parameters Value Parameters Value 

Thickness 1 Variable Shear modulus 1 24.96 Gpa 

Thickness 2 Variable Shear modulus 2 0.2615 Mpa 

Thickness 3 0.005 m Shear modulus 3 27.3 Gpa 

Young’s modulus 1 64.9 GPa Density 1 7600 kg/m3 

Young’s modulus 2 29.8 MPa Density 2 1250 kg/m3 

Young’s modulus 3 71 GPa Density 3 2700 kg/m3 

Width 1 m Length 1.5 m 

Rotation speed 300 rpm   

Loss factor 0.38   

1 – Constraining layer, 2 – Damping layer, 3 – Base material 
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Depending on the goals of the design, one can specify different objective functions for use in 

the GA optimization. Nakra [17] tried to maximize the system loss factor for certain modes. Zheng 

et al. [18] set the minimization of the vibration energy as the objective. Xie et al. [19] adopted GA 

to reduce the vibration amplitude of first two bending modes of composite beams. Since the 

response at the resonant frequencies is typically the most harmful, the initial objective function 

used here involves minimizing the driving point mobility amplitudes that would result from the 

simultaneous excitation of the first two modes (the first bending and the first torsion mode) at their 

respective resonance frequencies. For this case, the fitness (FS) is defined as 𝐹𝑆 =
1

𝑅1
+

1

𝑅2
 so that 

𝑅1 and 𝑅2 can be minimized when the GA finds the configuration of the maximum fitness. Here, 

𝑅1 and 𝑅2 are the first two mode amplitudes of the driving point mobility, respectively, at the 

selected point on the plate. As noted earlier, there are two design variables: 1) the thickness of 

damping layer 𝐻2 and 2) the thickness of constraining layer 𝐻1. In order to make the optimization 

practical, it is also necessary to specify the limits on the thickness of the two layers. For this 

problem, the thickness for these two layers must be kept within a predefined practical range, which 

can be expressed as: 

𝐻1min < 𝐻1 < 𝐻1max,   𝐻2min < 𝐻2 < 𝐻2max, (14) 

where the maximum and minimum values of both layers are 𝐻1max =𝐻2max = 0.0012 m and 

𝐻1min =𝐻2min = 0.0002 m, respectively. The decoded values of the binary strings are mapped 

into the range between the upper and lower limits automatically. 

By using the above objective function and the layer thickness limits, the GA algorithm can 

find the optimal thicknesses for the two layers. In this case study, where the first two modes are 

considered simultaneously, and viewed as the criteria of the optimum configuration. 

With the above settings, the GA and the FEM work together effectively such that the 

population appears to converge after the evolution of about sixteen generations, as shown in Fig. 5. 

The optimization takes about 72 hours (three days roughly) running on a 2.67 GHz PC, and most 

of the time is spent for the calculation of structure stiffness matrix which contains many 

differential operations. If a larger population size and more generations are used, the convergence 

of optimization process will take longer time. 

Fig. 6 shows the responses of several different configurations. In the optimum configuration, 

the resulting thicknesses for the layers are 0.0012 m, 0.00085 m and 0.005 m for the base layer, 

the damping layer and the constraining layer, respectively. The responses of a bare rotating plate 

with a thickness of 0.005 m are used for the comparison purposes. The responses for the two 

configurations that respectively have the maximum and minimum layer thicknesses (i.e.  

𝐻1 = 𝐻1max, 𝐻2 = 𝐻2max and 𝐻1 = 𝐻1min, 𝐻2 = 𝐻2min) are also employed for more comparison. 

Fig. 6 shows that the optimum configuration performs about as well as the maximum thickness 

configuration and the responses for these two configurations are clearly much lower than the 

configuration without damping. 

The reason that this work selects upper and lower end values of the thickness range is that 

engineers could benefit from this optimization by having maximum vibration reduction with the 

minimum material cost. It is not necessarily that more damping material can lead to better 

performance. As indicted previously, because of the complex modulus of viscoelastic material, 

the damping which to lower the vibration amplitude depends on the deformation of the damping 

layer. The more deformation in the damping layer, the more damping can be “squeezed” out of it. 

And this is the fundamental principle for the constrained layer damped structures. So, based on 

this consideration, following comparisons will made in order to illustrate the performance of 

proposed approach including CLD modeling, application, and optimization. 
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Fig. 5. Evolution of the best-so-far fitness vs. generation, during the optimization process 

 
Fig. 6. Comparison on frequency response function (FRF) of different configurations:  

solid line – optimum configuration; dashed line – maximum thickness configuration;  

dash dot line – minimum thickness configuration; dotted line – bare rotating plate 

Fig. 7 and 8 show detailed comparisons at the first and the second mode, respectively. It can 

be seen that the optimum configuration has about the same response level as the configurations 

with the maximum thickness at both resonant frequencies, while the damping layer thickness in 

the optimum configuration is lower than the configuration with the maximum thickness, indicating 

that less material can achieve about the same performance. Actually, the fitness values are 6597 

for the optimum configuration, and 6471 for the maximum thickness configuration. Also, both 

configurations have a much lower response level than the minimum thickness configuration and 

the bare rotating plate at both resonant frequencies. 

From the above comparisons, it can be seen that the first mode of the damped beam has a 

higher response than the response for the second mode. Since it is common to excite the first 

resonant frequency, the optimization of the first mode is more important and may be more 

important than the alternative selection of the optimum configuration over multiple resonant 

frequencies. Nevertheless, like some existing works [19], the selection of the best optimum 

approach must be based on some knowledge of the excitation and the critical response 

characteristics. 
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Fig. 7. Comparison on frequency response function (FRF) at the first resonant frequency:  

solid line –optimum configuration; dashed line – maximum thickness configuration;  

dash dot line – minimum thickness configuration; dotted line – bare rotating plate 

 
Fig. 8. Comparison on frequency response function (FRF) at the second resonant frequency:  

solid line – optimum configuration; dashed line – maximum thickness configuration;  

dash dot line – minimum thickness configuration; dotted line – bare rotating plate 

5. Conclusion 

This research is the first attempt at using a plate finite element method to model the rotating 

plates with three layers. The proposed displacement field and degrees of freedom enable this finite 

element model to capture the shear and extension deformation in all three layers. This model is 

validated using the results of natural frequencies and damping ratios from the published literature. 

In order to find the geometric configurations to achieve the best desired structural response, the 

GA method is originally used to minimize the driving point mobility amplitudes of the constrained 

layer damped rotating plate in a frequency range that includes the first bending and the first torsion 

modes. The optimization result shows that GA can effectively work with the developed single 

layer plate finite element for rotating CLD plate to yield a satisfactory and very close vibration 

reduction to the configurations with a thicker layer of damping materials. 
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