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Abstract. Consider the effect of nonlinear spring and linear viscous damping in structure, the 

motion equations of a helicopter blade-absorber system has been established by Lagrange 

equation. Since the helicopter blade-absorber system exists motion coupling, the inertia and 

stiffness terms of equations are decoupled via equivalent principal coordinate transformation. The 

stability and local bifurcation behaviors of the principal coordinate equations are investigated with 

the aid of multiple scales method and normal form theory. Two kinds of critical points for the 

bifurcation response equations near the combination resonance are considered, which are 

characterized by a pair of purely imaginary eigenvalues and double zero eigenvalues. The Hopf 

bifurcation solution, bifurcation path, and transition curves of the model are investigated 

respectively. For each case, the numerical results obtained by Runge-Kutta method coincide with 

the analytical predictions. These results may provide some guidance for parameter design of 

helicopter blade-absorber system. 
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1. Introduction 

Normal form method is one of the basic methods in the study of nonlinear vibration. The 

essential idea of the normal form method is using successive coordinate transformations to 

systematically establish the simplest possible form of the original differential equations. The 

simple form can demonstrate all possible dynamical properties of the original system in the 

neighborhood of the bifurcation point. Normal forms are generally not uniquely defined, and 

finding a normal form for a given system of differential equations is not a simple task. In recent 

years, normal form methods have got much development. Among them, Yu et al. have proposed 

and improved a normal form method with a combination of perturbation analysis and computer 

algebra in [1-8]. Since the reduced system obtained by this normal form method can be more 

convenient to study bifurcation and stability, Zhang [9] studied the local bifurcation of a nonlinear 

viscoelastic panel in supersonic flow model via this method, which is characterized by a pair of 

purely imaginary eigenvalues. Subsequently, she and coauthors researched the stability and local 

bifurcation of functionally graded material plate under transversal and in-plane excitations in [10]. 

In addition, Zhou et al. studied several dynamical behaviors for a two degrees of freedom pitch-roll 

ship via this normal form method in [11]. Wang et al. [12] research on the stability and bifurcation 

for a flexible beam under a large linear motion with a combination parametric resonance. 

Vibration problem has always restricted the development of helicopter, and it is also an 

important problem which scholars have been dedicated to research and solve. During flight, there 

are many factors leading to helicopter vibration. In particular, blade flapping, lagging and 

aerodynamical action can make a significant rotor vibration, meanwhile, fuselage vibration 

transfers along hub and interacts with rotor, which will aggravate overall vibration. In order to 

reduce the vibration level of helicopter blade and fuselage, people take a method of setting 

absorber on blade or hub. For instance, absorbers installed on Boeing Vertol 347, Lynx and Black 

Hawk have been achieved satisfactory effects [13, 14]. However, if absorber parameters are 

designed unreasonable, not only may generate resonance phenomenon, but also may cause entire 
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system instability or even leading to a disastrous consequences [15, 16]. Therefore, the research 

on helicopter blade-absorber system dynamics behavior is of important theoretical and practical 

significance. 

Helicopter blade-absorber system not only contains complex nonlinear structure but also exists 

motion coupling between each degrees of freedom, therefore, its mathematical modeling and 

theoretical analysis both have certain difficulties. At present, the research on this system usually 

adopts experiment or numerical simulation [17-20]. Since the analysis objects of analytic method 

generally can not be too complicated, the qualitative study on helicopter blade-absorber system is 

relatively rare [13, 21, 22]. Among them, Nagasaka et al. [21, 22] respectively established two 

degrees of freedom blade-absorber and three degrees of freedom blade-absorber-fuselage model, 

numerical simulated the vibration response and verified the numerical results by van der Pol 

method. However, in the above two models, only linear structure is considered, and it is obviously 

not enough for the in-depth study on dynamical behaviors. 

In view of the above problems, in this paper the normal form method proposed by Yu will be 

first introduced to the dynamics analysis of helicopter blade-absorber system, also, at modeling 

time, structure nonlinear will be considered. Firstly, establish a helicopter blade-absorber model 

by Lagrange equation. As the helicopter blade-absorber system exists motion coupling, the inertia 

and stiffness terms of equations are decoupled via equivalent principal coordinate transformation. 

The stability and local bifurcation behaviors of the principal coordinate equations are investigated 

with the aid of multiple scales method and normal form theory. Two kinds of degenerated 

equilibrium points of the bifurcation response equations are considered, which are characterized 

by a pair of purely imaginary eigenvalues and a pair of complex conjugate having negative real 

part as well as a double zero eigenvalues. Finally, Hopf bifurcation solution, bifurcation path and 

transition curves are obtained. The analytical predictions agree with the results of Runge-Kutta 

method. 

This paper is organized as follows: in Section 2, a helicopter blade-absorber model is 

established. In Section 3, the bifurcation response equations near combination resonance are 

obtained using multiple scales method. The detailed stability and local bifurcation analysis of the 

bifurcation response equations in the vicinity of the critical points are given in Section 4, which is 

followed in Section 5 by a short conclusion. 

2. Helicopter blade-absorber modeling 

This paper focuses on the stability and local bifurcation behaviors of a helicopter blade-

absorber system. Consider pendulum absorber is designed in helicopter blade flapping direction, 

and there is a harmonic excitation 𝑦0𝑅cos𝜔0𝑡 acting on rotor hub position. The connections of 

blade-hub and blade-absorber are simplified as damping and elastic hinge restrictions. The 

horizontal displacement of hub is omitted. The blade-absorber system physical model is shown in 

Fig. 1. Aerodynamic force model adopts blade micro segment aerodynamic force Ω2𝐹𝑏cos𝜔1𝑡, 
which can be found in [22]. 

Take blade flapping angle 𝛽1  and absorber swinging angle (relative to the blade) 𝛽2  as 

generalized coordinate. Let upward direction is positive. The coordinate of blade micro segment 

𝑚𝑅𝑑𝑟 on the 𝑟𝑅 position is: 

𝑥1 = (𝑒 + 𝑟cos𝛽1)𝑅, (1) 

𝑧1 = (𝑟sin𝛽1 + 𝑦0cos𝜔0𝑡)𝑅. (2) 

If blade rotates with angular velocity Ω, then its velocity in 𝑌 direction is: 

�̇�1 = 𝑥Ω. (3) 
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Fig. 1. Physical model of a helicopter blade-absorber system 

The coordinate of absorber mass 𝑚0 is: 

𝑥2 = [𝑒 + 𝑙1cos𝛽1 + 𝑙2cos(𝛽1 + 𝛽2)]𝑅, (4) 

𝑧2 = [𝑙1sin𝛽1 + 𝑙2sin(𝛽1 + 𝛽2) + 𝑦0cos𝜔0𝑡]𝑅. (5) 

It has 𝑌 direction velocity: 

�̇�2 = 𝑥Ω. (6) 

Using Lagrange equation and small angle assumption, blade-absorber system flapping motion 

equations can be obtained as follows: 

𝑅2 [
1

3
(1 − 𝑒)3𝑚𝑅 + (𝑙1 + 𝑙2)

2𝑚0] �̈�1 + 𝑅
2𝑙2𝑚0(𝑙1 + 𝑙2)�̈�2

+Ω2𝑅2 {[
1

2
(1 − 𝑒)2𝑒 +

1

3
(1 − 𝑒)3]𝑚𝑅 + [(𝑙1 + 𝑙2)

2 + 𝑒(𝑙1 + 𝑙2)]𝑚0} 𝛽1

+Ω2𝑅2𝑙2𝑚0(𝑒 + 𝑙1 + 𝑙2)𝛽2 + 𝑘1(𝛽1) + 𝑐1(�̇�1)

= 𝑅2𝜔0
2𝑦0cos(𝜔0𝑡) ⋅ [

1

2
(1 − 𝑒)2𝑚𝑅 + (𝑙1 + 𝑙2)𝑚0] + 𝑅

2Ω2𝐹𝑏cos(𝜔1𝑡)(1 − 𝑒), 

(7) 

𝑅2𝑙2𝑚0(𝑙1 + 𝑙2)�̈�1 + 𝑅
2𝑙2
2𝑚0�̈�2 + Ω

2𝑅2𝑙2𝑚0(𝑒 + 𝑙1 + 𝑙2)𝛽1
+Ω2𝑅2𝑙2𝑚0(𝑒 + 𝑙1 + 𝑙2)𝛽2 + 𝑘2(𝛽2) + 𝑐2(�̇�2) = 𝑙2𝑚0𝑅

2𝜔0
2𝑦0cos(𝜔0𝑡), 

(8) 

where 𝑘1(𝛽1),  𝑘2(𝛽2),  𝑐1(�̇�1),  𝑐2(�̇�2)  are blade-absorber hinge-spring and hinge-damping 

constitutive relation respectively. For linear viscous damper and weak nonlinear spring condition, 

there are: 

𝑐1(�̇�1) = 𝜀𝑐1
′�̇�1,    𝑐2(�̇�2) = 𝜀𝑐2

′ �̇�2, (9) 

𝑘1(𝛽1) = 𝑘1𝛽1 + 𝜀𝑘2𝛽1
2 + 𝜀𝑘3𝛽1

3,    𝑘2(𝛽2) = 𝑘4𝛽2 + 𝜀𝑘5𝛽2
2 + 𝜀𝑘6𝛽2

3, (10) 

where 𝜀 is a small parameter and 𝜀 > 0. 

Supposing 𝜔0 = 𝜔1 = Ω, 𝜓 = Ω𝑡, and applying dimensionless method, Eq. (7) and (8) can be 

simplified as follows: 
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𝛽1
′′ + 𝑎1𝛽1

′′ + 𝜔1
2𝛽1 + 𝑏1𝛽2 + 𝜀(𝑐1𝛽1

′ + 𝑑1𝛽1
2 + 𝑒1𝛽1

3) = 𝑓1cos(𝜔𝜓), (11) 

𝛽2
′′ + 𝑎2𝛽2

′′ + 𝑏2𝛽1 + 𝜔2
2𝛽2 + 𝜀(𝑐2𝛽2

′ + 𝑑2𝛽2
2 + 𝑒2𝛽2

3) = 𝑓2cos(𝜔𝜓), (12) 

where 𝑎1 = 𝑙2(𝑙1 + 𝑙2)𝛾Δ , 𝑏1 = 𝑙2𝛾(𝑒 + 𝑙1 + 𝑙2)Δ, 𝑐1 = 2𝜂1𝜔𝛽1 [1 + 3(𝑙1 + 𝑙2)
2𝛾 (1 − 𝑒)3⁄ ]⁄ , 

𝑑1 =
𝑘2𝛾

Ω2𝑅3𝑚
, 𝑒1 =

𝑘3Δ

Ω2𝑅3𝑚
, 𝑓1 = {[

1

2
(1 − 𝑒)2 + (𝑙1 + 𝑙2)𝛾] 𝑦0 + 𝐹𝑏(1 − 𝑒)}𝜔

2Δ, 

𝜔1 = √{
1

2
(1 − 𝑒)2𝑒 +

1

3
(1 − 𝑒)3 + [(𝑙1 + 𝑙2)2 + 𝑒(𝑙1 + 𝑙2)]𝜎} ⋅ 𝛾 +

𝜔𝛽1
2

[1+3(𝑙1+𝑙2)
2𝛾 (1−𝑒)3⁄ ]

 , 

𝑎2 = 1 +
𝑙1

𝑙2
, 𝑏2 = 1 +

𝑒

𝑙2
+

𝑙1

𝑙2
, 𝜔2 = √1+

𝑒

𝑙2
+

𝑙1

𝑙2
+𝜔𝛽2

2 , 𝑐2 = 2𝜂2𝜔𝛽2 , 𝑑2 =
𝑘5

Ω2𝑅2𝑙2
2𝑚0

, 

𝑒2 =
𝑘6

Ω2𝑅2𝑙2
2𝑚0

, 𝑓2 =
𝜔2𝑦0

𝑙2
. Among them, 𝛾 =

𝑚0

𝑚𝑅
, 𝜔 =

𝜔0

𝛺
, Δ =

1
1

3
(1−𝑒)3+(𝑙1+𝑙2)

2𝛾
,  

𝐼𝑏 =
1

3
(1 − 𝑒)3𝑚𝑅3, 𝜔𝛽1 = √

𝑘1

Ω2𝐼𝑏
, 𝜂1 =

𝑐1
′

2Ω𝜔𝛽1𝐼𝑏
, 𝜔𝛽2 = √

𝑘4

Ω2𝑅2𝑙2
2𝑚0

, 𝜂2 =
𝑐2
′

2Ω𝜔𝛽2𝑅
2𝑙2
2𝑚0

. 

In order to decouple the inertia and elastic terms in Eq. (11) and Eq. (12), we use coordinate 

transformations: 

(
𝛽1
𝛽2
) = 𝑄 (

𝑥1
𝑥2
), (13) 

where 𝑥1, 𝑥2 are the principal coordinates of undamped derivation system and 𝑄 = (
1 1
𝑞21 𝑞22

). 

𝑞21 = −
𝜔1
2 −

−𝑎2𝑏1 − 𝑎1𝑏2 +𝜔1
2 +𝜔2

2 −√(𝑎2𝑏1+ 𝑎1𝑏2 − 𝜔1
2 −𝜔2

2)2 − 4(1 − 𝑎1𝑎2)(−𝑏1𝑏2+𝜔1
2𝜔2

2)

2(1 − 𝑎1𝑎2)

𝑏1 −

𝑎1 (−𝑎2𝑏1− 𝑎1𝑏2 + 𝜔1
2 +𝜔2

2 − √(𝑎2𝑏1+ 𝑎1𝑏2 −𝜔1
2 −𝜔2

2)2 − 4(1− 𝑎1𝑎2)√−𝑏1𝑏2+𝜔1
2𝜔2

2)

2(1 − 𝑎1𝑎2)

, 
 

𝑞22 = −
𝜔1
2 −

−𝑎2𝑏1 − 𝑎1𝑏2 +𝜔1
2 +𝜔2

2 −√(𝑎2𝑏1+ 𝑎1𝑏2 − 𝜔1
2 −𝜔2

2)2 − 4(1 − 𝑎1𝑎2)(−𝑏1𝑏2+𝜔1
2𝜔2

2)

2(1 − 𝑎1𝑎2)

𝑏1 −

𝑎1 (−𝑎2𝑏1− 𝑎1𝑏2 + 𝜔1
2 +𝜔2

2 + √(𝑎2𝑏1+ 𝑎1𝑏2 −𝜔1
2 −𝜔2

2)2 − 4(1− 𝑎1𝑎2)√−𝑏1𝑏2+𝜔1
2𝜔2

2)

2(1 − 𝑎1𝑎2)

. 
 

Then the original equations Eq. (11) and Eq. (12) can be transformed into equivalent principal 

coordinate equations with inertia and elastic decoupling as: 

𝑥1
′′ + 𝜔𝑛1

2 𝑥1 = 𝜀(−𝛾1𝑥1
′ + 𝛾2𝑥2

′ + 𝜇1𝑥1
2 + 𝜇2𝑥1𝑥2 + 𝜇3𝑥2

2 + 𝑣1𝑥1
3 + 𝑣2𝑥1

2𝑥2 

                       +𝑣3𝑥1𝑥2
2 + 𝑣4𝑥2

3) + 𝑝1cos(𝜔𝜓), 
(14) 

𝑥2
′′ + 𝜔𝑛2

2 𝑥2 = 𝜀(𝛾3𝑥1
′ − 𝛾4𝑥2

′ + 𝜇4𝑥1
2 + 𝜇5𝑥1𝑥2 + 𝜇6𝑥2

2 + 𝑣5𝑥1
3 + 𝑣6𝑥1

2𝑥2 

                       +𝑣7𝑥1𝑥2
2 + 𝑣8𝑥2

3) + 𝑝2cos(𝜔𝜓), 
(15) 

where: 

𝜔𝑛1,𝑛2
2 =

1

2(1 − 𝑎1𝑎2)
[

𝜔1
2 + 𝜔2

2 − 𝑎1𝑏2 − 𝑎2𝑏1

±√(𝜔1
2 +𝜔2

2 − 𝑎1𝑏2 − 𝑎2𝑏1)
2 − 4(1 − 𝑎1𝑎2)(𝜔1

2𝜔2
2 − 𝑏1𝑏2)

].  

Since the other coefficients of Eq. (14) and Eq. (15) are too complex, using symbols instead 

of them, and the specific forms are omitted here. 
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3. Combination resonance analysis 

Utilizing multiple scales method, the first-order approximate solution of Eq. (14) and Eq. (15) 

can be expanded as: 

𝑥𝑖(𝜓, 𝜀) = 𝑥𝑖0(𝑇0, 𝑇1) + 𝜀𝑥𝑖1(𝑇0, 𝑇1),   𝑖 = 1, 2, (16) 

where 𝑇0 = 𝜓 is fast variable, and 𝑇1 = 𝜀𝜓 is slow variable. Suppose: 

𝑑

𝑑𝜓
=

𝜕

𝜕𝑇0

𝑑𝑇0
𝑑𝜓

+
𝜕

𝜕𝑇1

𝑑𝑇1
𝑑𝜓

= 𝐷0 + 𝜀𝐷1, (17) 

𝑑

𝑑𝜓
=

𝜕

𝜕𝑇0

𝑑𝑇0
𝑑𝜓

+
𝜕

𝜕𝑇1

𝑑𝑇1
𝑑𝜓

= 𝐷0 + 𝜀𝐷1. (18) 

Applying the relation of Eq. (17) and Eq. (18), we obtain: 

{
𝐷0
2𝑥10 +𝜔𝑛1

2 𝑥10 = 𝑝1cos(𝜔𝜓),

𝐷0
2𝑥20 + 𝜔𝑛2

2 𝑥20 = 𝑝2cos(𝜔𝜓),
 (19) 

{
 
 

 
 𝐷0

2𝑥11 + 𝜔𝑛1
2 𝑥11 = (

−2𝐷0𝐷1𝑥10 − 𝛾1𝐷0𝑥10 + 𝛾2𝐷0𝑥20 + 𝜇1𝑥10
2 + 𝜇2𝑥10𝑥20

+𝜇3𝑥20
2 + 𝑣1𝑥10

3 + 𝑣2𝑥10
2 𝑥20 + 𝑣3𝑥10𝑥20

2 + 𝑣4𝑥20
3 ) ,

𝐷0
2𝑥21 + 𝜔𝑛2

2 𝑥21 = (
−2𝐷0𝐷1𝑥20 + 𝛾3𝐷0𝑥10 − 𝛾4𝐷0𝑥20 + 𝜇4𝑥10

2 + 𝜇5𝑥10𝑥20
+𝜇6𝑥20

2 + 𝑣5𝑥10
3 + 𝑣6𝑥10

2 𝑥20 + 𝑣7𝑥10𝑥20
2 + 𝑣8𝑥20

3 ) .

 (20) 

The solutions of zero-order approximate Equation (19) can be expressed as: 

𝑥10 = 𝐴1(𝑇1)exp(𝑖𝜔𝑛1𝑇0) + 𝐵1exp(𝑖𝜔𝑇0) + 𝑐𝑐, (21) 

𝑥20 = 𝐴2(𝑇1)exp(𝑖𝜔𝑛2𝑇0) + 𝐵2exp(𝑖𝜔𝑇0) + 𝑐𝑐, (22) 

where 𝐴𝑖 is plural form free vibration amplitude, and 𝐵𝑖 is real form forced vibration amplitude, 

𝐵𝑖 =
𝑝𝑖

2(𝜔𝑛𝑖
2 −𝜔2)

, 𝑖 = 1, 2. 𝑐𝑐 represents the conjugate term of all the previous terms. 

Substitute zero-order approximate solutions (21) and (22) into first-order Eq. (20). By 

frequency combination relation 𝜔 = 𝜔𝑛1 + 𝜔𝑛2 + 𝜀𝜎 (𝜎 is a tuning parameter), secular terms can 

be eliminated. We obtain the following equations with respect to 𝐴1, 𝐴2: 

−2𝑖𝜔𝑛1𝐴1
′ − 𝛾1𝑖𝜔𝑛1𝐴1 + 2𝑣3𝐴1𝐴2�̅�2 + 6𝑣1𝐴1𝐵1

2 + 3𝑣1𝐴1
2�̅�1 + 4𝑣2𝐴1𝐵1𝐵2 

       +2𝑣3𝐴1𝐵2
2 + (𝜇2�̅�2𝐵1 + 2𝜇3�̅�2𝐵2)exp(𝑖𝜎𝑇1) = 0, 

(23) 

−2𝑖𝜔𝑛2𝐴2
′ − 𝛾4𝑖𝜔𝑛4𝐴2 + 2𝑣6𝐴1𝐴2�̅�1 + 6𝑣8𝐴2𝐵2

2 + 3𝑣8𝐴2
2�̅�2 + 4𝑣7𝐴2𝐵1𝐵2 

       +2𝑣6𝐴2𝐵1
2 + (𝜇5�̅�1𝐵2 + 2𝜇4�̅�1𝐵1)exp(𝑖𝜎𝑇1) = 0, 

(24) 

where ()′ =
𝑑

𝑑𝑇1
 and ()̅ represents conjugated term. From the process of eliminating secular terms, 

it can be seen that when using multiple scales method to investigate nonlinear effect on motion 

characteristics of blade-absorber system, only combination resonance in 𝜔 ≈ 𝜔𝑛1 + 𝜔𝑛2 case can 

be considered. 

Suppose 𝐴1(𝑇1) = (𝑔𝑟1 + 𝑖𝑔𝑖1)exp (
1

2
𝑖𝜎𝑇1), 𝐴2(𝑇1) = (𝑔𝑟2 + 𝑖𝑔𝑖2)exp (

1

2
𝑖𝜎𝑇1), where 𝑔𝑟1, 

𝑔𝑖1, 𝑔𝑟2 and 𝑔𝑖2 are all real number. Substituting 𝐴1 and 𝐴2 into Eq. (23), (24) yields: 

𝑔𝑟1
′ = −

𝛾1
2
𝑔𝑟1 + (

𝜎

2
+

𝐿

𝜔𝑛1
)𝑔𝑖1 −

𝐾

2𝜔𝑛1
𝑔𝑖2 +

3𝑣1
2𝜔𝑛1

𝑔𝑖1(𝑔𝑖1
2 + 𝑔𝑟1

2 ) +
𝑣3
𝜔𝑛1

𝑔𝑖1(𝑔𝑟2
2 + 𝑔𝑖2

2 ), (25) 
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𝑔𝑖1
′ = −(

𝜎

2
+

𝐿

𝜔𝑛1
)𝑔𝑟1 −

𝛾1
2
𝑔𝑖1 −

𝐾

2𝜔𝑛1
𝑔𝑟2 −

3𝑣1
2𝜔𝑛1

𝑔𝑖1(𝑔𝑖1
2 + 𝑔𝑟1

2 ) −
𝑣3
𝜔𝑛1

𝑔𝑖1(𝑔𝑟2
2 + 𝑔𝑖2

2 ), (26) 

𝑔𝑟2
′ = −

𝑀

2𝜔𝑛2
𝑔𝑖1 −

𝛾4
2
𝑔𝑟2 + (

𝜎

2
+
𝑁

𝜔𝑛2
)𝑔𝑖2 +

3𝑣8
2𝜔𝑛2

𝑔𝑖2(𝑔𝑟2
2 + 𝑔𝑖2

2 ) +
𝑣6
𝜔𝑛2

𝑔𝑖2(𝑔𝑟1
2 + 𝑔𝑖1

2 ), (27) 

𝑔𝑖2
′ = −

𝑀

2𝜔𝑛2
𝑔𝑟1 − (

𝜎

2
+

𝑁

𝜔𝑛2
)𝑔𝑟2 −

𝛾4
2
𝑔𝑖2 −

3𝑣8
2𝜔𝑛2

𝑔𝑟2(𝑔𝑟2
2 + 𝑔𝑖2

2 ) −
𝑣6
𝜔𝑛2

𝑔𝑖2(𝑔𝑟1
2 + 𝑔𝑖1

2 ), (28) 

where 𝐾 = 𝜇2𝐵1 + 2𝜇3𝐵2,  𝐿 = 2𝑣2𝐵1𝐵2 + 3𝑣1𝐵1
2 + 𝑣3𝐵2

2,  𝑁 = 2𝑣7𝐵1𝐵2 + 3𝑣8𝐵2
2 + 𝑣6𝐵1

2, 

𝑀 = 𝜇5𝐵2 + 2𝜇4𝐵1. 
The Jacobi matrix of system (25) to (28) on the initial equilibrium solution 

(𝑔𝑟1, 𝑔𝑖1, 𝑔𝑟2, 𝑔𝑖2) = (0,0,0,0) is: 

𝐽 =

[
 
 
 
 
 
 
 
 
 −

𝛾1
2

𝜎

2
+

𝐿

𝜔𝑛1
0 −

𝐾

2𝜔𝑛1

−(
𝜎

2
+

𝐿

𝜔𝑛1
) −

𝛾1
2

−
𝐾

2𝜔𝑛1
0

0 −
𝑀

2𝜔𝑛2
−
𝛾4
2

𝜎

2
+
𝑁

𝜔𝑛2

−
𝑀

2𝜔𝑛2
0 −(

𝜎

2
+
𝑁

𝜔𝑛2
) −

𝛾4
2 ]

 
 
 
 
 
 
 
 
 

. (29) 

The characteristic polynomial of matrix (29) can be written as: 

𝑓(𝜆) = 𝜆4 + 𝑅1𝜆
3 + 𝑅2𝜆

2 + 𝑅3𝜆 + 𝑅4, (30) 

where: 

𝑅1 = 𝛾1 + 𝛾4,    𝑅2 =
𝛾1
2

4
+ 𝛾1𝛾4 +

𝛾4
2

4
+
𝜎2

2
+
𝐿2

𝜔𝑛1
2
+
𝐿𝜎

𝜔𝑛1
+
𝑁2

𝜔𝑛2
2
+
𝑁𝜎

𝜔𝑛2
−

𝐾𝑀

2𝜔𝑛1𝜔𝑛2
,  

𝑅3 =
1

4
[𝛾1

2𝛾4 + 𝛾1𝛾4
2 + 𝛾1𝜎

2 + 𝛾4𝜎
2 −

𝐾𝑀(𝛾1 + 𝛾4)

𝜔𝑛1𝜔𝑛2
] +

𝐿2𝛾4
𝜔𝑛1
2
+
𝐿𝛾4𝜎

𝜔𝑛1
+
𝑁2𝛾1
𝜔𝑛2
2
+
𝑁𝛾1𝜎

𝜔𝑛2
,  

𝑅4 =
1

16
(𝛾1

2𝜎2 + 𝛾4
2𝜎2 + 𝜎4 +

𝐾2𝑀2 − 8𝐾𝑀𝐿𝑁 + 16𝐿2𝑁2

𝜔𝑛1
2 𝜔𝑛2

2
+ 𝛾1

2𝛾4
2)

+
1

4
[
𝐿2(𝛾4

2 + 𝜎2)

𝜔𝑛1
2

+
𝐿(𝛾4

2𝜎 + 𝜎3)

𝜔𝑛1
+
𝑁2(𝛾1

2 + 𝜎2)

𝜔𝑛2
2

+
𝐿𝑁2𝜎 − 𝐾𝑀𝑁𝜎

𝜔𝑛1𝜔𝑛2
2

+
𝑁𝛾1

2𝜎 + 𝑁𝜎3

𝜔𝑛2

+
𝐿2𝑁𝜎 − 𝐾𝐿𝑀𝜎

𝜔𝑛1
2 𝜔𝑛2

] −
𝐾𝑀(𝛾1𝛾4 + 𝜎

2)

8𝜔𝑛1𝜔𝑛2
+
𝐿𝑁𝜎2

𝜔𝑛1𝜔𝑛2
. 

 

By Hurwitz criterion, when: 

𝑅1 > 0,   𝑅1𝑅2 − 𝑅3 > 0,   𝑅3(𝑅1𝑅2 − 𝑅3) − 𝑅1
2𝑅4 > 0,   𝑅4 > 0. (31) 

The initial equilibrium solution (𝑔𝑟1, 𝑔𝑖1, 𝑔𝑟2, 𝑔𝑖2) = (0,0,0,0) is stable, otherwise the initial 

equilibrium solution is unstable, and bifurcation may occur. 
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4. Stability and bifurcation analysis 

4.1. The case of a pair of pure imaginary eigenvalues 

If: 

𝑅3
𝑅1
(
𝑅3
𝑅1
− 𝑅2) + 𝑅4 = 0,   

𝑅3
𝑅1
> 0,   𝑅1 > 0,   𝑅4 > 0, (32) 

the eigenvalues of matrix (29) are 𝜆1,2 = ±√
𝑅3

𝑅4
, 𝜆3,4 = −𝜎1 ± 𝑖𝜎2, (𝜎𝑖 > 0, 𝑖 = 1, 2). Thus the 

stability of the initial equilibrium is violated and Hopf bifurcation may occur. 

In the calculation, the values of dimensionless parameters are taken as follows: 

𝑒 = 0.05,   𝜔𝛽1 = 2,   𝜔𝛽2 = 0.1,   𝜂1 = 𝜂2 = 0.01,   𝛾 = 0.15,   𝑑1 = 1,   𝑒1 = 5,    

𝑑2 = 0.001,   𝑒2 = 0.001,   𝑙1 = 0.01,   𝑦0 = 0.1,   𝑙2 = 0.0154,   𝜎 = 𝜎0 = 0.1. 
(33) 

The above data are partly based on Boeing Vertol 347 helicopter and the reference [13]. The 

eigenvalues of Jacobi matrix (29) are 𝜆1,2 = ±0.17688𝑖 and 𝜆3,4 = –0.0007156±0.03411𝑖. 
Considering parameter 𝜎 as a perturbation parameter and using the parameter transformation 

𝜎 = 𝜎0 + 𝛿 as well as the state variable transform: 

[

𝑔𝑟1
𝑔𝑖1
𝑔𝑟2
𝑔𝑖2

] = [

2.1601 0.51986 −1.74213 −0.03655
−0.51986 2.1601 −0.03655 1.74213
1.09371 −0.04591 −0.38763 −0.12941
−0.04591 −1.09371 0.12941 −0.38763

] [

𝑧1
𝑧2
𝑧3
𝑧4

]. (34) 

System (25)-(28) can be rewritten as: 

𝑧1
′ = 0.17688𝑧2 − 0.25993𝛿𝑧1 + 1.08005𝛿𝑧2 + 0.01828𝛿𝑧3 − 0.87107𝛿𝑧4 + 𝑓1, (35) 

𝑧2
′ = −0.17688𝑧1 − 1.08005𝛿𝑧1 − 0.25993𝛿𝑧2 − 0.87107𝛿𝑧3 − 0.01828𝛿𝑧4 + 𝑓2, (36) 

𝑧3
′ = −0.0007156𝑧3 + 0.03411𝑧4 + 0.02296𝛿𝑧1 + 0.54685𝛿𝑧2 + 0.0647𝛿𝑧3
− 0.19381𝛿𝑧4 + 𝑓3, 

(37) 

𝑧4
′ = −0.03411𝑧3 − 0.0007156𝑧4 + 0.54685𝛿𝑧1 − 0.02296𝛿𝑧2 + 0.19381𝛿𝑧3
+ 0.0647𝛿𝑧4 + 𝑓4, 

(38) 

where 𝑓𝑖 (𝑖 = 1, 2, 3, 4) represent nonlinear terms. For brevity, the specific forms of 𝑓𝑖 are omitted 

here. The Jacobi matrix evaluated on the initial equilibrium solution (𝑧1, 𝑧2, 𝑧3, 𝑧4) = (0,0,0,0) at 

the critical point 𝛿 = 0 is now in the canonical form: 

𝐽(𝑧𝑖=0) = [

0 0.17688 0 0
−0.17688 0 0 0

0 0 −0.0007156 0.03411
0 0 −0.03411 −0.0007156

]. (39) 

The local dynamic behaviors of system (35) to (38) are characterized by the critical variables 

𝑧1 and 𝑧2. Using the normal form method in reference [3] and the time scaling transformation  

𝜏 =
𝜏′

0.17688
, we can obtain the normal form in a polar coordinate system as follows: 

𝑑𝑟

𝑑𝜏′
= 𝑎𝛿𝑟 + 𝑏𝑟3, (40) 
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𝑑𝜃

𝑑𝜏′
= 1 + 𝑐𝛿𝑟 + 𝑑𝑟3, (41) 

where 𝑎 = –1.46953, 𝑏 = 184.88595, 𝑐 = 6.10612, 𝑑 = –113.15805. The steady state solutions 

of (40) are determined by setting 
𝑑𝑟

𝑑𝜏′
= 0, which yields the initial equilibrium 𝑟1 = 0 and Hopf 

bifurcation solution: 

𝑟2
2 = 0.01297𝛿. (42) 

The stability of these two steady state solutions are determined by: 

𝑑

𝑑𝑟
(
𝑑𝑟

𝑑𝜏′
) = 𝑎𝛿 + 3𝑏𝑟2. (43) 

Evaluating (43) on the initial equilibrium 𝑟1 = 0  yields 
𝑑

𝑑𝑟
(
𝑑𝑟

𝑑𝜏′
) = –1.46953𝛿 . The initial 

equilibrium is stable when 𝛿 > 0 and unstable when 𝛿 < 0. In the same way, evaluating (43) on 

Hopf bifurcation solution (42) yields 
𝑑

𝑑𝑟
(
𝑑𝑟

𝑑𝜏′
) = 5.72438𝛿. So Hopf bifurcation solution (43) is 

unstable when 𝛿 > 0 and no meaning when 𝛿 < 0. The bifurcation path is shown in Fig. 2. Fig. 3 

displays unsteady Hopf bifurcation solution. From the above situations and Eq. (42), we can 

conclude that when 𝛿 > 0 the stable region of system (25) to (28) is very small, and system 

response is easy to diverge. Therefore the original blade-absorber system is also extremely 

sensitive, and this is a very dangerous situation in engineering. 

  
Fig. 2. Bifurcation path Fig. 3. Unstable Hopf bifurcation solution 

Now different values of parameter 𝛿 are chosen to confirm the previous analytical results. 

Fourth-order Runge-Kutta method is adopted to simulate the response of Equations (25)-(28). 

Since this study focuses on local dynamic behaviors in the vicinity of critical point, the parameter 

𝛿 should be chosen near the critical point 𝛿 = 0. 

If the parameter is chosen as 𝛿 = 0.001, a numerical solution starting from the initial point 

(𝑔𝑟1, 𝑔𝑖1, 𝑔𝑟2, 𝑔𝑖2) = (0.01,0.01,0.01,0.01) converges to the initial equilibrium solution, i.e. initial 

equilibrium solution is stable. It is indicative that system (25)-(28) disturbed by a small 

perturbation can still return its original state, which is shown in Fig. 4. Choosing the parameter as 

𝛿 = –0.001  and starting from (𝑔𝑟1, 𝑔𝑖1, 𝑔𝑟2, 𝑔𝑖2) = (0.1,0.01,0.01,0),  system response is 

divergence. It is indicative that system will produce large amplitude vibration, thereby causing 

damage to the whole structure. The numerical results are in good agreement with the theoretical 

analysis. 
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Fig. 4. Trajectory projections converge to the initial equilibrium solution when 𝛿 = 0.001 

4.2. The case of double zero eigenvalues 

Taking parameters as follows: 

𝑒 = 0.05,   𝜔𝛽1 = 1.75518,   𝜔𝛽2 = 0.1,   𝜂1 = 𝜂2 = 0.01,   𝛾 = 0.15,   𝑑1 = 1,       

𝑒1 = 5,   𝑑2 = 0.001,   𝑒2 = 0.001,   𝑙1 = 0.01,   𝑙2 = 0.02,   𝜔𝛽1 = 2,   𝜎 = 𝜎0 = 0.1,    

𝑦0 = 0.597817. 

(44) 

Jacobi matrix (29) has the eigenvalues 𝜆1,2 = 0 ,  𝜆3,4 = –0.16099±1.36954𝑖 . We consider 

parameters 𝜔𝛽1  and 𝑦0  perturbation parameters and use the parameter transformation  

𝜔𝛽1 = 1.75518+ 𝛿1, 𝑦0 = 0.597817+ 𝛿2. Then characteristic polynomial of the Jacobi matrix 

(29) becomes: 

𝑓(𝜆) = 𝜆4 + �̃�1𝜆
3 + �̃�2𝜆

2 + �̃�3𝜆 + �̃�4, (45) 

where the specific forms of �̃�𝑖 (𝑖 = 1, 2, 3, 4) are too complex then omitted. 

By Hurwitz criterion, the stability conditions for the initial equilibrium solution 

(𝑔𝑟1, 𝑔𝑖1, 𝑔𝑟2, 𝑔𝑖2) = (0,0,0,0) are: 

Δ1 = �̃�1 > 0,   Δ2 = �̃�1�̃�2 − �̃�3 > 0,   Δ3 = �̃�1�̃�2 − �̃�3 > 0,   Δ4 = �̃�4 > 0. (46) 

From the four inequalities above, we get the following four transition curves: 

𝐿1: �̃�1 = 0,   𝐿2: �̃�1�̃�2 − �̃�3 = 0,   𝐿3: �̃�1�̃�2 − �̃�3 = 0,   𝐿4: �̃�4 = 0. (47) 

Since system local property near (𝛿1, 𝛿2) = (0,0) is only considered, 𝐿4 > 0 always holds in 

this region. Therefore when 𝐿𝑖 > 0 (𝑖 = 1, 2, 3), initial equilibrium solution is stable, otherwise it 

is unstable. The transition curves in the vicinity of (𝛿1, 𝛿2) = (0,0) and stable region (shaded part) 

for initial equilibrium solution (E.S.) are shown in Fig. 5. 
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Fig. 5. Transition curves and stable region in the case of double zero eigenvalue 

  

  
a) 

   
b) 

Fig. 6. a) 𝑔𝑟1, 𝑔𝑖1, 𝑔𝑟2, 𝑔𝑖2 response process and b) phase diagrams of convergence to the origin 
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Now we will confirm the previous analysis by fourth-order Runge-Kutta method. Choosing 

parameter values of 𝛿1 and 𝛿2 from the stable region for E.S., such as (𝛿1, 𝛿2) = (–0.001, 0.01), a 

numerical solution starting from an initial point (𝑔𝑟1, 𝑔𝑖1, 𝑔𝑟2, 𝑔𝑖2) = (0.01, 0.01, 0.01, 0.01) 

converges to the origin, implying that the E.S. is stable. 𝑔𝑟1, 𝑔𝑖1, 𝑔𝑟2, 𝑔𝑖2 response process as well 

as phase diagram projection on the 𝑔𝑟1-𝑔𝑟2 and 𝑔𝑖1-𝑔𝑖2 sub-spaces are shown in Fig. 6. 

5. Conclusions 

In this work, the dynamic behaviors of a helicopter blade-absorber model have been studied 

in detail. The research shows that helicopter blade-absorber vibration system has relatively rich in 

dynamic behaviors, and its dynamic analysis is of great necessity. When the stable conditions for 

the initial equilibrium solution of the bifurcation response equations are not satisfied, two kinds 

of critical points (characterized by a pair of purely imaginary eigenvalues and double zero 

eigenvalues) have been considered. Bifurcation path, transition curves and stable region have been 

obtained. All analytical predictions are agree with numerical results calculated by Runge-Kutta 

method. Note that in the blade-absorber system vibration process, the appearance of unstable Hopf 

solution is extremely dangerous, we should apply a bifurcation control or avoid taking system 

parameter in the vicinity of bifurcation point. Therefore, in order to achieve the purpose of 

absorbing vibration, ensure system safety, when designing system parameter, we must fully 

consider external excitation frequency, avoid the possible resonance region, and retain a certain 

safety margin. 
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