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Abstract. A troublesome problem in application of local mean decomposition (LMD) is that the 

moving averaging process is time-consuming and inaccurate in processing the mechanical 

vibration signals. An improved spline-LMD (SLMD) method is proposed to solve this problem. 

The proposed method uses the cubic spline interpolation to compute the upper and lower 

envelopes of a signal, and then the local mean and envelope estimate functions can be derived 

using the envelopes. Meanwhile, a signal extending approach based on self-adaptive waveform 

matching technique is applied to extend the raw signal and overcome the boundary distortion 

resulting from the process of computing the upper and lower envelopes. Subsequently, this paper 

compares SLMD with LMD in four aspects through a simulative signal. The comparative results 

illustrate that SLMD consumes less computation time and produces more accurate decomposed 

results than LMD. In the experimental part, SLMD and LMD are respectively applied to analyze 

the vibration signals resulting from a rotor-bearing system with rub-impact fault. The results show 

that SLMD can more efficiently and accurately extract the important fault features, which 

demonstrates that SLMD performs better than LMD in analyzing the mechanical vibration signals. 

Keywords: local mean decomposition, cubic spline interpolation, self-adaptive waveform 

matching, vibration analysis, rotating machinery. 

1. Introduction 

Signal analysis is very useful for obtaining the important information about the object of study 

in many fields, such as machine fault diagnosis, medical examination and structural damage 

detection [1-3]. Using a suitable signal analysis method, one can effectively analyze the signals 

acquired from the object of study and then make a correct decision. However, in most modern 

industries, especially in the field of condition monitoring and fault diagnosis of rotating machinery, 

important feature information about machine faults is extremely difficult to extract from the 

corresponding vibration signals. There are three main reasons for this. Firstly, most of rotating 

machines are non-linear due to their complicated structures. Secondly, the rotating machinery is 

usually under non-stationary operating condition. Thirdly, random and system noises are always 

unavoidable. These three factors make the sampled dynamic signals possess severe 

non-stationarity and high complexity, so it is markedly difficult to select a suitable and effective 

method to process this kind of signals [4]. For example, FFT is a conventional signal analysis 

method, and for the linear and stationary signals, it performs very well in frequency spectrum 

analysis; while FFT cannot reveal any local characteristics or obtain any instantaneous 

information of the complicated non-stationary signals [5]. 

Overall the past decades, time-frequency analysis methods [6], such as wavelet transform, 

have been widely used and deeply studied in non-stationary signal analysis. Wavelet transform 

can represent the time-frequency distribution of a non-stationary signal because it has the variable 

time-frequency window. However, some intrinsic deficiencies of wavelet transform have been 

reported in the previous literatures [5, 7]. The most fundamental one is that wavelet transform is 

essentially a kind of Fourier transform with an adjustable window, so it is still a non-adaptive 

signal processing method [5]. Due to the deficiencies of wavelet transform, some novel signal 



1161. AN IMPROVED SPLINE-LOCAL MEAN DECOMPOSITION AND ITS APPLICATION TO VIBRATION ANALYSIS OF ROTATING MACHINERY WITH RUB-

IMPACT FAULT. LINFENG DENG, RONGZHEN ZHAO 

 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. FEBRUARY 2014. VOLUME 16, ISSUE 1. ISSN 1392-8716 415 

processing methods such as empirical mode decomposition (EMD) [7] and local mean 

decomposition (LMD) [8] were proposed to analyze the non-stationary signals. Both EMD and 

LMD can decompose any complicated non-stationary signal into a small number of relatively 

simple components based on the local characteristic time scale of the signal. These components 

are called intrinsic mode functions (IMFs) in EMD and product functions (PFs) in LMD, 

respectively. Because the decomposition processes of EMD and LMD only depend on the signal 

itself, both they are self-adaptive signal processing methods. However, compared with EMD, 

LMD suffers from slight boundary distortion and can obtain more accurate instantaneous 

characteristics of the non-stationary signals [9]. These advantages are mainly attributed to their 

different schemes of forming the local mean function and envelope estimate function, and of 

computing the corresponding instantaneous amplitude (IA) and instantaneous frequency (IF) of 

the derived components [8, 9]. 

Because of these merits mentioned above, recently LMD has received more attention than 

EMD in non-stationary signal processing, especially in vibration signal analysis for machine 

condition monitoring, fault detection and diagnosis [9-17]. In fact, LMD-based fault diagnosis 

techniques, including the combined use of LMD and other artificial intelligence methods, have 

been deeply studied. The corresponding results show that LMD is very effective for vibration 

signal analysis and fault feature extraction [9-17]. However, some inherent defects of LMD also 

are found in these practical applications. One of the troublesome problems is that the process of 

calculating the local mean function and envelope estimate function is lowly efficient and accurate. 

This process uses the moving averaging algorithm to smooth the original local mean function and 

envelope estimate function. In this algorithm, the length of the moving window is an unknown 

parameter and the iterative procedure needs to be operated many times, so moving averaging is 

an uncertain iteration process [8]. As a result, the LMD algorithm is particularly time-consuming 

and the decomposed results are inaccurate in some practical applications, especially when the 

complicated non-stationary signals such as the mechanical vibration signals are decomposed. So, 

these defects affect the wider application of LMD. 

In order to eliminate these weaknesses of LMD and improve its efficiency and accuracy, an 

improved spline-LMD (SLMD) method is proposed in this paper. In the proposed method, we 

replace the moving averaging process in LMD with cubic spline interpolation to compute the 

corresponding local mean function and envelope estimate function; meanwhile, the raw signals 

are extended using a suitable signal extending scheme based on the self-adaptive waveform 

matching technique, which should be able to overcome the boundary distortion resulting from the 

process of computing the upper and lower envelopes. The effectiveness of the proposed method 

is demonstrated through the comparative analyses of SLMD and LMD which are used to process 

a simulative signal and a mechanical vibration signal, respectively. 

The rest of this paper is organized as follows. In Section 2, a brief introduction and analysis of 

LMD is presented. Section 3 mainly describes an improved SLMD method. A comparative study 

on the SLMD and LMD is given through processing a simulative signal in Section 4. An 

experimental verification via a rotor-bearing system with rub-impact fault is provided in Section 5. 

Finally, the conclusions of the study are summarized in Section 6. 

2. Theoretical background 

LMD is a novel time-frequency analysis method and it was initially proposed by Smith to 

analyze the EEG signal [8]. By using LMD, any complicated signal can be decomposed into a 

group of product functions (PFs) each of which represents a natural oscillation embedded in the 

signal. The corresponding instantaneous frequency (IF) and instantaneous amplitude (IA) can be 

gained along with the decomposition process, and they can be displayed together in the form of 

the demodulated signal time-frequency representation [8]. For the convenience of reading and 

describing the proposed method, in this section we briefly introduce the LMD algorithm and then 
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give a simple analysis to the moving averaging process. 

2.1. LMD algorithm 

The fundamental objective of LMD algorithm is to decompose amplitude and frequency 

modulated signals into a small set of PFs. The LMD process essentially involves progressively 

separating a frequency modulated signal from an amplitude modulated signal [8]. This separation 

procedure can be briefly described as follows: 

(1) Given a random signal 𝑥(𝑡), set the counter 𝑘 = 1. 

(2) Identify all the local extrema of 𝑥(𝑡), and then respectively calculate the local mean 𝑚𝑖 

and local magnitude 𝑎𝑖 between each two successive extrema 𝑛𝑖 and 𝑛𝑖+1 by: 

𝑚𝑖 =
𝑛𝑖 + 𝑛𝑖+1

2
, (1) 

𝑎𝑖 =
|𝑛𝑖 − 𝑛𝑖+1|

2
. (2) 

(3) All the local means can be plotted as different straight line segments, and these line 

segments produce an original mean function. Then, this function is smoothed using moving 

averaging to form a smoothly varying continuous local mean function 𝑚(𝑡). An envelope estimate 

function 𝑎(𝑡) which also possesses the smoothly varying continuous property can be produced 

through implementing the same procedures on the local magnitudes. 

(4) Subtract 𝑚(𝑡) from 𝑥(𝑡): 

ℎ(𝑡) = 𝑥(𝑡) − 𝑚(𝑡), (3) 

and subsequently, ℎ(𝑡) is divided by 𝑎(𝑡) to achieve amplitude demodulation: 

𝑠(𝑡) =
ℎ(𝑡)

𝑎(𝑡)
. (4) 

(5) If 𝑠(𝑡) is a purely frequency modulated signal, go to next step. Otherwise, treat 𝑠(𝑡) as 

𝑥(𝑡) and repeat the steps (2)-(4) until 𝑠(𝑡) satisfies the prescribed criterion that 𝑎(𝑡) is equal to 1 

at any time. In the meantime, the corresponding IA can be given by: 

𝑎𝑘(𝑡) = 𝑎𝑘1(𝑡)𝑎𝑘2(𝑡)⋯𝑎𝑘𝑛(𝑡) =∏𝑎𝑘𝑚(𝑡)

𝑛

𝑚=1

, (5) 

where 𝑘  denotes the number of the current PF, and 𝑛  denotes the number of iterations for 

computing the 𝑘th PF. 

(6) Multiplying 𝑠(𝑡) by 𝑎𝑘(𝑡) gives the 𝑘th PF: 

𝑃𝐹𝑘(𝑡) = 𝑎𝑘(𝑡)𝑠(𝑡), (6) 

and the corresponding IF can be calculated by: 

𝑓𝑘(𝑡) =
1

2𝜋

𝑑[arccos⁡(𝑠(𝑡))]

𝑑𝑡
. (7) 

(7) Remove 𝑃𝐹𝑘(𝑡) from 𝑥(𝑡): 

𝑢𝑘(𝑡) = 𝑥(𝑡) − 𝑃𝐹𝑘(𝑡). (8) 
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(8) Treat 𝑢𝑘(𝑡) as 𝑥(𝑡) and repeat the steps (2)-(7). This iterative separation process will 

continue for 𝑞 times until 𝑢𝑞(𝑡) becomes a monotonic function or contains no more oscillations. 

Finally, several PFs and a residue are progressively produced, and accordingly the original signal 

𝑥(𝑡) can be reconstructed by: 

𝑥(𝑡) =∑ 𝑃𝐹𝑘(𝑡) + 𝑢𝑞(𝑡)
𝑞

𝑘=1
. (9) 

2.2. Deficiency of moving averaging process 

LMD is a self-adaptive signal analysis method and can produce the entire time-frequency 

representation of a non-stationary signal. However, LMD has an inherent deficiency that the 

innermost loop in LMD is time-consuming and the smoothed results are inaccurate, especially for 

processing the complicated signals. There are two key factors leading to this troublesome problem. 

First, the smoothed results of moving averaging will be markedly different if the length of moving 

window is different; second, the moving averaging process needs to be repeated many times. In 

fact, after the local means and magnitudes are got by Eqs. (1) and (2), respectively, the calculation 

process of both local mean and envelope estimate functions can be described as follows [8]: 

(1) Denote all the data points (i.e., the local means or magnitudes) as an initial data set 
{𝑤(𝑖); ⁡𝑖 = 1, 2, … , 𝑁}, where 𝑁 is the number of data points. 

(2) The 𝑖th updated data element is written as: 

𝑤𝑠(𝑖) =
1

2ℎ + 1
[𝑤(𝑖 − ℎ) + 𝑤(𝑖 − ℎ + 1) +⋯+𝑤(𝑖 + ℎ)], (10) 

where 2ℎ + 1 represents the window width (i.e., the length of moving window), and it should be 

an odd number, otherwise minus 1. Under five-point averaging mode, all the updated data 

elements can be given by: 

{
 
 
 
 
 

 
 
 
 
 
𝑤𝑠(1) = 𝑤(1),

𝑤𝑠(2) = (𝑤(1) + 𝑤(2) + 𝑤(3)) 3⁄ ,

𝑤𝑠(3) = (𝑤(1) + 𝑤(2) + 𝑤(3) + 𝑤(4) + 𝑤(5)) 5⁄ ,

𝑤𝑠(4) = (𝑤(2) + 𝑤(3) + 𝑤(4) + 𝑤(5) + 𝑤(6)) 5⁄ ,

⋮
𝑤𝑠(𝑖) = (𝑤(𝑖 − 2) + 𝑤(𝑖 − 1) + 𝑤(𝑖) + 𝑤(𝑖 + 1) + 𝑤(𝑖 + 2)) 5⁄ ,

⋮
𝑤𝑠(𝑁 − 2) = (𝑤(𝑁 − 4) + 𝑤(𝑁 − 3) + 𝑤(𝑁 − 2) + 𝑤(𝑁 − 1) + 𝑤(𝑁)) 5⁄ ,

𝑤𝑠(𝑁 − 1) = (𝑤(𝑁 − 2) + 𝑤(𝑁 − 1) + 𝑤(𝑁)) 3⁄ ,

𝑤𝑠(𝑁) = 𝑤(𝑁).

 (11) 

If any two successive data elements are equal, treat the updated data series  
{𝑤𝑠(𝑖); ⁡𝑖 = 1, 2, … ,𝑁}, as the initial data set {𝑤(𝑖); ⁡𝑖 = 1, 2, … , 𝑁}, and repeat the above moving 

averaging process. This iterative computation process will be stopped until the updated data series 

becomes a smoothly varying continuous function. 

Because the length of the moving window has a great influence on the convergence rate and 

computational accuracy of moving averaging algorithm, it is very significant to obtain an 

appropriate window width. Unfortunately, it is markedly difficult to identify an optimal window 

width for a complicated non-stationary signal, which may produce an unexpected result that LMD 

performs inefficiently and inaccurately in processing this kind of signals, especially in analyzing 

the mechanical vibration signals. On the other hand, in the original LMD method, computing the 
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smoothly varying continuous local mean and envelope estimate functions must depend on the 

moving averaging algorithm. 

3. Improved SLMD method 

Since the process of computing the local mean and envelope estimate functions may result in 

the relatively low efficiency and accuracy to LMD, transforming this computing process should 

be a best way for improving the performance of LMD. On the other hand, cubic spline 

interpolation is a classic and successful computation method, and works very effectively in 

computing the envelope and mean functions in EMD [7]. Considering these two aspects, we 

propose an improvement scheme for LMD, i.e., the cubic spline interpolation, instead of the 

moving averaging process, is applied to compute the local mean function and local magnitude 

function. In this way, the computing process about the two local functions will be absolutely 

transformed. 

3.1. Cubic spline interpolation 

Given an interval [𝑎, 𝑏] composed of 𝑛 ordered disjoint subintervals [𝑥𝑖−1, 𝑥𝑖] with: 

𝑎 = 𝑥0 < 𝑥1 < ⋯ < 𝑥𝑛−1 < 𝑥𝑛 = 𝑏, (12) 

and the corresponding function values 𝑦𝑖 = 𝑓(𝑥𝑖) (𝑖 = 0,1, … , 𝑛) if a function 𝑆(𝑥) satisfies the 

following conditions: 

(1) On each subinterval [𝑥𝑖−1, 𝑥𝑖] (𝑖 = 0,1, … , 𝑛) 𝑆(𝑥) is a cubic polynomial; 

(2) (𝑥𝑖) = 𝑦𝑖 (𝑖 = 0,1, … , 𝑛); 
(3) On the interval [𝑎, 𝑏], if the second derivative of 𝑆(𝑥), 𝑆̈(𝑥), is a continuous function, 𝑆(𝑥) 

is called a cubic spline interpolation of the function 𝑦 = 𝑓(𝑥) on the interval [𝑎, 𝑏]. 
We hypothesize that the second derivative values at each 𝑥𝑖 are 𝑆̈(𝑥𝑖) = 𝑀𝑖 (𝑖 = 0, 1, … , 𝑛), 

where 𝑀𝑖  are 𝑛 + 1 unknown parameters. 𝑆(𝑥) is a piecewise cubic polynomial, so 𝑆̈(x) is a 

piecewise linear function and can be expressed as: 

𝑆̈(𝑥) =
𝑥 − 𝑥𝑖
𝑥𝑖−1 − 𝑥𝑖

𝑀𝑖−1 +
𝑥 − 𝑥𝑖−1
𝑥𝑖 − 𝑥𝑖−1

𝑀𝑖 =
𝑥𝑖 − 𝑥

ℎ𝑖
𝑀𝑖−1 +

𝑥 − 𝑥𝑖−1
ℎ𝑖

𝑀𝑖 , 𝑥𝑖−1 ≤ 𝑥 ≤ 𝑥𝑖 , (13) 

where ℎ𝑖 = 𝑥𝑖 − 𝑥𝑖−1. Since the second derivative 𝑆̈(x) is a continuous function, we can operate 

the quadratic integration on Eq. (13), and obtain: 

𝑆(𝑥) =
(𝑥𝑖 − 𝑥)

3

6ℎ𝑖
𝑀𝑖−1 +

(𝑥 − 𝑥𝑖−1)
3

6ℎ𝑖
𝑀𝑖 + 𝑏𝑖(𝑥𝑖 − 𝑥) + 𝑐𝑖(𝑥 − 𝑥𝑖−1), 𝑥𝑖−1 ≤ 𝑥 ≤ 𝑥𝑖 , (14) 

where 𝑏𝑖  and 𝑐𝑖  are integration constants. According to the interpolation conditions:  

𝑆(𝑥𝑖−1) = 𝑦𝑖−1 and 𝑆(𝑥𝑖) = 𝑦𝑖, we can obtain: 

ℎ𝑖
2

6
𝑀𝑖−1 + 𝑏𝑖ℎ𝑖 = 𝑦𝑖−1; ⁡⁡⁡

ℎ𝑖
2

6
𝑀𝑖 + 𝑐𝑖ℎ𝑖 = 𝑦𝑖 , (15) 

that is: 

𝑏𝑖 = (𝑦𝑖−1 −
ℎ𝑖
2

6
𝑀𝑖−1) ℎ𝑖⁄ ;⁡⁡⁡𝑐𝑖 = (𝑦𝑖 −

ℎ𝑖
2

6
𝑀𝑖) ℎ𝑖⁄ . (16) 

Substituting Eq. (16) into Eq. (14), 𝑆(𝑥) on the subinterval [𝑥𝑖−1, 𝑥𝑖] (𝑖 = 0,1, … , 𝑛), can be 
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expressed as: 

𝑆(𝑥) =
(𝑥𝑖 − 𝑥)

3

6ℎ𝑖
𝑀𝑖−1 +

(𝑥 − 𝑥𝑖−1)
3

6ℎ𝑖
𝑀𝑖 + (𝑦𝑖−1 −

ℎ𝑖
2

6
𝑀𝑖−1)

𝑥𝑖 − 𝑥

ℎ𝑖
 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡+(𝑦𝑖 −
ℎ𝑖
2

6
𝑀𝑖)

𝑥 − 𝑥𝑖−1
ℎ𝑖

, 𝑥𝑖−1 ≤ 𝑥 ≤ 𝑥𝑖 . 

(17) 

Subsequently, the first derivative of Eq. (17) can be derived: 

𝑆̇(𝑥) = −
(𝑥𝑖 − 𝑥)

2

2ℎ𝑖
𝑀𝑖−1 +

(𝑥 − 𝑥𝑖−1)
2

2ℎ𝑖
𝑀𝑖 +

𝑦𝑖 − 𝑦𝑖−1
ℎ𝑖

−
𝑀𝑖 −𝑀𝑖−1

6
ℎ𝑖 ,⁡⁡⁡𝑥𝑖−1 ≤ 𝑥 ≤ 𝑥𝑖 . (18) 

Setting 𝑥 = 𝑥𝑖, we can obtain the left derivative of 𝑆(𝑥) at 𝑥𝑖: 

𝑆̇−(𝑥𝑖) =
ℎ𝑖
2
𝑀𝑖 +

𝑦𝑖 − 𝑦𝑖−1
ℎ𝑖

−
𝑀𝑖 −𝑀𝑖−1

6
ℎ𝑖 =

ℎ𝑖
6
𝑀𝑖−1 +

ℎ𝑖
3
𝑀𝑖 +

𝑦𝑖 − 𝑦𝑖−1
ℎ𝑖

. (19) 

Similarly, setting 𝑥 = 𝑥𝑖−1, we can obtain the right derivative of 𝑆(𝑥) at 𝑥𝑖−1: 

𝑆̇+(𝑥𝑖−1) = −
ℎ𝑖
2
𝑀𝑖−1 +

𝑦𝑖 − 𝑦𝑖−1
ℎ𝑖

−
𝑀𝑖 −𝑀𝑖−1

6
ℎ𝑖 = −

ℎ𝑖
3
𝑀𝑖−1 −

ℎ𝑖
6
𝑀𝑖 +

𝑦𝑖 − 𝑦𝑖−1
ℎ𝑖

, (20) 

and then: 

𝑆̇+(𝑥𝑖) = −
ℎ𝑖+1
3
𝑀𝑖 −

ℎ𝑖+1
6
𝑀𝑖+1 +

𝑦𝑖+1 − 𝑦𝑖
ℎ𝑖+1

. (21) 

Furthermore, according to the continuous property of 𝑆̇(𝑥), we obtain: 

𝑆̇−(𝑥𝑖) = 𝑆̇+(𝑥𝑖), 𝑖 = 1, 2, … , 𝑛 − 1. (22) 

Substituting Eqs. (19) and (21) into Eq. (22) gives: 

ℎ𝑖
6
𝑀𝑖−1 +

ℎ𝑖 + ℎ𝑖+1
3

𝑀𝑖 +
ℎ𝑖+1
6
𝑀𝑖+1 =

𝑦𝑖+1 − 𝑦𝑖
ℎ𝑖+1

−
𝑦𝑖 − 𝑦𝑖−1

ℎ𝑖
,⁡⁡⁡⁡𝑖 = 1, 2,… , 𝑛 − 1. (23) 

Multiplying 6 (ℎ𝑖 + ℎ𝑖+1)⁄  to Eq. (23) gives: 

ℎ𝑖
ℎ𝑖 + ℎ𝑖+1

𝑀𝑖−1 + 2𝑀𝑖 +
ℎ𝑖+1

ℎ𝑖 + ℎ𝑖+1
𝑀𝑖+1 =

6

ℎ𝑖 + ℎ𝑖+1
(
𝑦𝑖+1 − 𝑦𝑖
ℎ𝑖+1

−
𝑦𝑖 − 𝑦𝑖−1

ℎ𝑖
). (24) 

Setting: 

𝜇𝑖 =
ℎ𝑖

ℎ𝑖 + ℎ𝑖+1
; ⁡⁡⁡𝜆𝑖 =

ℎ𝑖+1
ℎ𝑖 + ℎ𝑖+1

= 1 − 𝜇𝑖; 

𝑑𝑖 =
6

ℎ𝑖 + ℎ𝑖+1
(
𝑦𝑖+1 − 𝑦𝑖
ℎ𝑖+1

−
𝑦𝑖 − 𝑦𝑖−1

ℎ𝑖
) ,⁡⁡⁡⁡𝑖 = 1, 2, … , 𝑛 − 1. 

 

Eq. (24) can be written as: 

𝜇𝑖𝑀𝑖−1 + 2𝑀𝑖 + 𝜆𝑖𝑀𝑖+1 = 𝑑𝑖 ,⁡⁡⁡⁡𝑖 = 1, 2, … , 𝑛 − 1. (25) 
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Since Eq. (25) contains 𝑛 − 1 equations, the 𝑛 + 1 unknown parameters 𝑀𝑖  (𝑖 = 0, 1, … , 𝑛) 
still cannot be identified. In order to solve Eq. (25), we need to add other two equations. 

Assuming that the first derivative values at endpoints 𝑎 and 𝑏 are 𝑓̇(𝑎) and 𝑓̇(𝑏), which are 

known constants, and setting 𝑦̇0 = 𝑓̇(𝑎) and 𝑦̇𝑛 = 𝑓̇(𝑏), we obtain: 

𝑆̇+(𝑥0) = 𝑦̇0; ⁡⁡ 𝑆̇−(𝑥𝑛) = 𝑦̇𝑛. (26) 

Substituting Eqs. (19) and (21) into Eq. (26) gives: 

−
ℎ1
3
𝑀0 −

ℎ1
6
𝑀1 +

𝑦1 − 𝑦0
ℎ1

= 𝑦̇0 ,⁡⁡⁡⁡
ℎ𝑛
6
𝑀𝑛−1 +

ℎ𝑛
3
𝑀𝑛 +

𝑦𝑛 − 𝑦𝑛−1
ℎ𝑛

= 𝑦̇𝑛, (27) 

i.e.: 

2𝑀0 +𝑀1 = 𝑑0,⁡⁡⁡⁡𝑀𝑛−1 + 2𝑀𝑛 = 𝑑𝑛, (28) 

where: 

𝑑0 =
6

ℎ1
(
𝑦1 − 𝑦0
ℎ1

− 𝑦̇0),⁡⁡⁡⁡𝑑𝑛 =
6

ℎ𝑛
(𝑦̇𝑛 −

𝑦𝑛 − 𝑦𝑛−1
ℎ𝑛

).  

Combining Eqs. (25) and (28) results in: 

{

2𝑀0 +𝑀1 = 𝑑0, ⁡
𝜇𝑖𝑀𝑖−1 + 2𝑀𝑖 + 𝜆𝑖𝑀𝑖+1 = 𝑑𝑖 , 𝑖 = 1, 2, … , 𝑛 − 1,
𝑀𝑛−1 + 2𝑀𝑛 = 𝑑𝑛, ⁡

 (29) 

and Eq. (29) can be further expressed as: 

[
 
 
 
 
 
 
 
 
 
2 1 ⁡ ⁡ ⁡ ⁡

⁡𝜇1 2 𝜆1 ⁡ ⁡ ⁡

⁡ 𝜇2 2 𝜆2 ⁡ ⁡

⁡ ⁡ ⋱ ⋱ ⋱ ⁡

⁡ ⁡ ⁡ 𝜇𝑛−1 2 𝜆𝑛−1

⁡ ⁡ ⁡ ⁡ 1 2 ]
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
𝑀0

𝑀1

𝑀2

⋮

𝑀𝑛−1

𝑀𝑛 ]
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
𝑑0

𝑑1

𝑑2

⋮

𝑑𝑛−1

𝑑𝑛 ]
 
 
 
 
 
 
 
 
 

. (30) 

Solving Eq. (30) by the pursuit method based on LU decomposition, and then substituting the 

obtained 𝑀𝑖 (𝑖 = 0, 1, … , 𝑛) into Eq. (17), a cubic spline interpolation can be produced. 

Compared with the moving averaging process, the cubic spline interpolation needs to be 

performed only once in the process of computing local mean and envelope estimate functions, 

while the moving averaging process needs to be repeated many times to achieve the smoothing 

objective. Moreover, cubic spline interpolation possesses low interpolation error and excellent 

convergence property. Therefore, cubic spline interpolation consumes less time and obtains more 

accurate local mean and envelope estimate functions than moving averaging process. 

3.2. Improved scheme for computing local mean and envelope estimate functions 

In order to overcome the weakness of the LMD method, a new SLMD method is developed in 

this part. On the basis of the analyses given in subsections 2.2 and 3.1, the moving averaging 
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process in the original LMD algorithm is replaced with the following procedures to produce local 

mean and envelope estimate functions. 

(1) After all extrema of the signal are identified, respectively connect all the local maxima and 

minima with two different cubic spline lines to form the upper envelope 𝐸𝑢(𝑡) and lower envelope 

𝐸𝑙(𝑡). 
(2) The local mean function 𝑚(𝑡) and local envelope estimate function 𝑎(𝑡) can be given by: 

𝑚(𝑡) =
𝐸𝑢(𝑡) + 𝐸𝑙(𝑡)

2
,⁡⁡⁡⁡𝑎(𝑡) =

|𝐸𝑢(𝑡) − 𝐸𝑙(𝑡)|

2
. (31) 

(3) Continue the rest of the procedures in the original LMD algorithm. 

In fact, the above improvements only substitute the cubic spline interpolation for the moving 

averaging process, but it avoids a lowly efficient iterative computation process. Although some 

boundary distortions, overshoots and undershoots exist in the envelope estimate functions [5], 

overshoot and undershoot phenomena will be greatly weakened due to the arithmetic means 

computed by Eq. (31). As for the boundary distortions, a signal extending technique based on self-

adaptive waveform matching is proposed to eliminate this problem. 

3.3. Signal extending based on self-adaptive waveform matching 

Signal extending is a very effective scheme for overcoming the boundary distortion in the 

process of signal processing and analysis [18, 19]. There are several signal extending methods, 

but a most suitable extending method needs to be specified according to the characteristics of the 

vibration signal. Usually, the vibration of a running rotor is a quasi-periodic oscillation behavior 

[20], so the similar waveforms are bound to arise in the entire vibration signal. Based on this 

characteristic, a self-adaptive signal extending method is developed to process the raw vibration 

signal. Here, only left extending is mainly described because of the same principle for right 

extending, and the left extending process can be depicted as follows [21, 22]: 

(1) Suppose a given signal (𝑡) (𝑡 = 1, 2, … , 𝐿), where 𝐿 is the number of sampled points. 

(2) Identify all the local extrema of 𝑥(𝑡) , which are denoted by 𝑛𝑖  (𝑖 = 1, 2, … , 𝑇) . The 

corresponding time series of these extrema in 𝑥(𝑡) is denoted by 𝑡𝑖 (𝑖 = 1, 2, … , 𝑇) and the data 

points between 𝑥(1) and 𝑛2 are named characteristic waveform (denoted by 𝑝(𝑡)), in which the 

number of data points is denoted by 𝑘. 

(3) Find out the time interval [(𝑡𝑖 − 𝑡1) + 1, 𝑡𝑖 + (𝑘 − 𝑡1)]  (𝑖 = 2, 3, … , 𝑇 − 1)  of each 

matching waveform (denoted by 𝑝𝑖(𝑡)) in 𝑥(𝑡)  via the rest of extrema with the same local 

characteristic as 𝑛1 one by one, and compute the corresponding waveform matching error: 

𝑤𝑚𝑒(𝑖) =∑ [𝑝(𝑡) − 𝑝𝑖(𝑡)]
2

𝑘

𝑡=1
,⁡⁡⁡𝑖 = 2, 3, … , 𝑇 − 1, (32) 

where 𝑖 represents the sequence number of the extrema. 

(4) The minimal waveform matching error is denoted by: 

𝑤𝑚𝑒(1) = min⁡{𝑤𝑚𝑒(𝑖),⁡⁡⁡⁡𝑖 = 2, 3, … , 𝑇 − 1}, (33) 

and the extremum point with the same local characteristic as 𝑛1 in this matching waveform is 

denoted by 𝑛𝑒. The data points between 𝑛1 and 𝑛𝑒 are copied and put on the left of 𝑛1. Thus, left 

extending of the sampled vibration signal is accomplished. In this way, right extending also can 

be implemented after the left extended signal is reversed. Finally, reversing the right extended 

signal results in a boundary extended signal with the normal sequence. 

When subsections 3.2 and 3.3 are orderly combined, an improved SLMD method is formed 

and its flowchart is shown in Fig. 1. It is well known that the LMD algorithm has a three-layer 
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cyclic structure, while it can be clearly seen that the improved SLMD algorithm is only with a 

two-layer cyclic structure, so improved SLMD is relatively simple. For convenience, improved 

SLMD is stilled named SLMD in the following texts. 

 
Fig. 1. Flowchart of the improved YSLMD algorithm 

4. Simulation and comparative study 

To verify the performance of the SLMD method, a comparative study on LMD and SLMD 

was performed via a simulative signal, which is defined as: 

𝑥(𝑡) = 𝑥1(𝑡) + 𝑥2(𝑡) = [1 + 0.5 sin(10𝜋𝑡)]cos[100𝜋𝑡 + 2 sin(14𝜋𝑡)] + sin(20𝜋𝑡). (34) 

The waveforms of 𝑥(𝑡) and its two components in time domain are shown in Fig. 2. There, 

Fig. 2 distinctly shows that 𝑥(𝑡) has the irregularly varying frequency and amplitude, so 𝑥(𝑡) is 

actually a non-stationary signal. To compare LMD and SLMD, we use them to decompose this 

signal, respectively, and the decomposed results are shown in Fig. 3. The obvious distinctions 

between the PF components and the real components cannot be easily found, but some tiny errors 

and differences should exist between them. In order to reveal these hidden errors and differences, 

a further research on the decomposed results needs to be done. Subsequently, four different aspects 

about the performance of LMD and SLMD are compared, and the results of the comparative study 

are displayed as follows. 
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Fig. 2. A simulative signal and its two components 

4.1. Iteration number and time consumption 

Since the cyclic moving averaging process is replaced with the relatively simple cubic spline 

interpolation, the iteration number and time consumption of decomposing the given signal 𝑥(𝑡) 
via SLMD should be different from those via LMD. And therefore, their respective iteration 

number and time consumption are compared in this part. 

 
(a) 

 
(b) 

Fig. 3. Decomposed results of the simulative signal: a) via LMD; b) via SLMD 

Although SLMD is different from LMD in a few computation steps, both they decompose 

𝑥(𝑡) into two PFs and a residue, and we can hardly find, only by visual observation, any obvious 

differences between the two decomposed results shown in Fig. 3. However, when 𝑥(𝑡)  was 

decomposed using LMD and SLMD, respectively, we could perceive the difference that the 

running time of LMD is obviously longer than that of SLMD. The actual iteration number and 

time consumption of decomposing 𝑥(𝑡) via the two methods are shown in Table 1. 

From Table 1, it can be seen that the iteration number of computing the PFs and the time 

consumption of operating the whole decomposition process of SLMD are less and shorter than 

those of LMD, respectively. These results indicate that SLMD actually decrease the iteration 

number and running time of the decomposition process, which demonstrates that the 

improvements of SLMD really plays an important role in improving the efficiency of computing 
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the local mean and envelope estimate functions. 

Table 1. Comparison of decomposition efficiency 

Algorithm 
Iteration number 

Time consumption (s) 
𝑃𝐹1 𝑃𝐹2 

LMD 5 2 5.9362 

SLMD 3 1 2.1597 

4.2. Errors of each PF and residue 

Two sets of similar decomposed results respectively shown in Figs. 3(a), (b) are compared and 

investigated in this part. For each 𝑃𝐹𝑖(𝑡), we subtract it from its corresponding real component 

𝑥𝑖(𝑡) to form a component error: 

𝑒𝑖(𝑡) = 𝑥𝑖(𝑡) − 𝑃𝐹𝑖(𝑡). (35) 

Consequently, four different error curves can be produced via Eq. (35). They are classified 

into two groups and shown in Fig. 4. The results obviously show that there actually are some 

errors between the PFs and their corresponding real components. Moreover, compared with LMD, 

SLMD only produces relatively small errors. In other words, each PF derived by SLMD is more 

accurate than that derived by LMD. As for the two residues, nothing has been done to them and 

they are shown in Fig. 5. It can be seen that the residue produced by SLMD is closer to a zero 

vector than that produced by LMD. 

 
(a) 

 
(b) 

Fig. 4. Errors of the two sets of PFs: a) 𝑒1(𝑡); b) 𝑒2(𝑡) 

 
Fig. 5. Two residue 𝑢2(𝑡) 
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In fact, since SLMD can produce more accurate PFs than LMD and the residue is equal to the 

original signal subtracting the corresponding PFs, the residue resulting from SLMD should be 

smaller than that resulting from LMD. Table 2 shows the integrals of the absolute errors and 

residues produced by LMD and SLMD, respectively. Each integral value is computed by: 

𝑒𝑖𝑛𝑡(𝑡) = ∫ |𝑒(𝑡)|
𝑇

0

𝑑𝑡, (36) 

where 𝑒(𝑡) represents the errors 𝑒1(𝑡), 𝑒2(𝑡) and the residue 𝑢2(𝑡). From Table 2, we can see that 

the integral values of three error functions (including the residue) resulting from SLMD are 

obviously smaller than those resulting from LMD. These results indicate that SLMD can more 

accurately decompose the non-stationary signal than LMD. 

Table 2. Comparison of decomposition efficiency 

Algorithm 𝑒1(𝑡) 𝑒2(𝑡) 𝑢2(𝑡) 
LMD 0.0644 0.0674 0.0231 

SLMD 0.0058 0.0080 0.0064 

4.3. Accuracy of IF and IA 

IF and IA are the important features of a non-stationary signal, and they can be obtained along 

with LMD and SLMD processes. Fig. 6 shows the IF of 𝑃𝐹1(𝑡) and Fig. 7 shows the IA of 𝑃𝐹1(𝑡); 
here, 𝑃𝐹1(𝑡) represents two different PF components derived by LMD and SLMD, respectively. 

 
(a) 

 
(b) 

Fig. 6. IF of 𝑃𝐹1(𝑡) 

 
(a) 

 
(b) 

Fig. 7. IA of 𝑃𝐹1(𝑡) 
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The two IF curves are both distorted in the whole range, but the distortions of IF in Fig. 6(a) 

is much severer than that in Fig. 6(b). This phenomenon illustrates that IF actually becomes more 

accurate because of the improvements in SLMD. Moreover, the two IA curves plotted in Fig. 7 

show that the IA computed by LMD also suffers from some obvious distortions, while the IA 

computed by SLMD is very accurate and there is almost no distortion in the whole range. This 

result indicates that the SLMD method actually improves the accuracy of IA. Through comparing 

the two IFs and IAs, respectively, we find that SLMD actually can produce more accurate 

instantaneous characteristics of a non-stationary signal than LMD. 

4.4. Energy error 

In accordance with the basic principle of signal decomposition, any signal 𝑥(𝑡)  can be 

expressed as: 

𝑥(𝑡) =∑ 𝛼𝑘(𝑡)𝑔𝑘(𝑡)
𝑞

𝑘=1
, (37) 

where 𝛼𝑘(𝑡) is the coefficient, and 𝑔𝑘(𝑡) is the basic function. So, the energy of 𝑥(𝑡) can be 

determined by: 

𝐸𝑥 = ∫ |𝑥(𝑡)|2𝑑𝑡
∞

−∞

= ∫ [∑ 𝛼𝑘(𝑡)𝑔𝑘(𝑡)
𝑞

𝑘=1
]
2

𝑑𝑡
∞

−∞

. (38) 

If 𝑔𝑘(𝑡) (𝑘 = 1,2, … , 𝑞) is an orthogonal basis set, the energy 𝐸𝑥 can be written as: 

𝐸𝑥 =∑ ∫ [𝛼𝑘(𝑡)𝑔𝑘(𝑡)]
2𝑑𝑡

∞

−∞

𝑞

𝑘=1
= 𝐸1 + 𝐸2 +⋯+ 𝐸𝑞 =∑ 𝐸𝑘

𝑞

𝑘=1
. (39) 

On the other hand, respective PFs derived by LMD and SLMD are almost orthogonal to each 

other, i.e., any two different PFs satisfy the following condition [23]: 

〈𝑃𝐹𝑖 , 𝑃𝐹𝑗〉 ≈ 0,⁡⁡⁡⁡𝑖 ≠ 𝑗, (40) 

where 〈∙,∙〉  represents the inner product operator. Therefore, each component 𝛼𝑘(𝑡)𝑔𝑘(𝑡)  is 

essentially a PF, i.e.: 

𝛼𝑘(𝑡)𝑔𝑘(𝑡) = 𝑃𝐹𝑘(𝑡). (41) 

Substituting Eq. (41) into Eq. (39) gives: 

𝐸𝑥 =∑ ∫ [𝑃𝐹𝑘(𝑡)]
2𝑑𝑡

∞

−∞

𝑞

𝑘=1
=∑ 𝐸𝑘

𝑞

𝑘=1
. (42) 

It should be noted that the residue 𝑢𝑞(𝑡)  is neglected in Eq. (42). Generally, the better 

orthogonality a group of PFs possess, the smaller the error existing in Eq. (42) becomes. In other 

words, the error between two sides of the approximately equal sign “≈” in Eq. (42) can reflect the 

performance of LMD and SLMD to some extent. In fact, when a non-stationary signal is 

decomposed by any method, the signal energy computed via the decomposed components will 

change more or less. Therefore, the energies of the three groups of signal sets are calculated 

through Eq. (42), respectively. For clarity and convenience, the energy of the original signal is 

denoted by 𝐸0, and the energies of the PFs derived by LMD and SLMD are denoted by 𝐸1 and 𝐸2, 

respectively. The three computed energy values are shown in Table 3. From Table 3, it can be 
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easily found that the value of 𝐸0 is the largest and the value of 𝐸1 is the smallest. Although 𝐸1 and 

𝐸2 are not equal to 𝐸0, both they are very close to 𝐸0. However, the energy error between 𝐸1 and 

𝐸0 is 0.0872, while the energy error between 𝐸2 and 𝐸0 is only 0.0100. The result indicates that 

the PFs derived by SLMD make the error in Eq. (42) smaller than those derived by LMD, which 

verifies that SLMD actually can produce more accurate PFs than LMD. 

Table 3. Comparison of the signal energies 

Energy notation Energy value 

E0 1.0643 

E1 0.9771 

E2 1.0543 

It is clearly demonstrated through the above comparative study in four aspects that SLMD 

actually outperforms LMD in computational accuracy and efficiency. The improvements of 

SLMD play an important role in computing the local envelope and mean functions, and 

consequently, the derived PFs, IA and IF all become more accurate. SLMD not only reduces the 

running time of decomposing a signal, but also makes the instantaneous characteristics of a 

no-stationary signal more accurate. Therefore, SLMD indeed has a more powerful ability in 

processing the complicated non-stationary signal than LMD. 

5. Experimental verification 

Rotor-bearing system is the most important component of rotating machinery. The vibration 

signals acquired from it usually show the highly non-stationary characteristics, but meanwhile this 

kind of signal always carries abundant operating state information about rotating machinery. 

Therefore, analyzing the vibration signal is a very effective scheme for machine fault diagnosis 

and feature extraction [20]. To verify the performance of SLMD, a vibration experiment was 

performed on a rotor-bearing test rig with slight rub-impact fault. Fig. 8 shows a photograph of 

the rotor-bearing rig, and a rubbing stick marked on the graph is used to trigger the rub-impact 

fault. In this experiment, the rotor runs at 2800 rpm, the sampling frequency is 5000 Hz and 3000 

data points are acquired for a sample signal. 

 
Fig. 8. A photograph of the experimental rotor-bearing rig 

Fig. 9 shows the time domain waveform and Fourier spectrum of a sample signal. There, it can 

be seen that the fault vibration signal and its spectrum are very complicated. The complex 

spectrum indicates that the fault features can hardly be found from a complicated vibration signal 

only via the Fourier transform, so the signal needs to be processed via other methods. 

Subsequently, the SLMD method is used to process this signal, and the decomposed result is 

shown in Fig. 10. Obviously, the vibration signal is decomposed into six PF components from 

high to low frequency and a residue. 
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Fig. 9. The sampled vibration signal and its spectrum 

 
Fig. 10. The decomposed results of the vibration signal via SLMD 

It can be found that PF1 contains the high-frequency and impulse components which should 

be some random and system noises. These noises heavily distort the pure vibration signal, and 

therefore, the waveform and spectrum shown in Fig. 9 are so complicated. Along with the 

decomposition process, IA and IF of each PF are also derived and shown in Fig. 11. The dynamic 
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characteristics of the rotor can be obtained via the comprehensive analysis of the IF spectra in 

Fig. 11. 

From Fig. 11(b), we can find that IF2 fluctuate sharply and the mean of IF2 is about 260 Hz, 

so PF2 is mainly the high-order vibration harmonics. Because the fault information contained in 

high-order harmonic components is quite limited, very few fault features can be extracted from 

PF2 component. However, the rest of PFs (i.e., PF3-PF6) are useful components which contain 

the important fault information. Although four irregularly varying IFs reveal that the rotor runs 

under an unsteady condition, the averages of IF3, IF5 and IF6 are equal to 93.3 Hz, 23.5 Hz and 

15.2 Hz. On the other hand, the fundamental harmonic (i.e., rotating frequency) of the rotor is 

about 46.6 Hz (1X), so 93.3 Hz, 23.5 Hz and 15.2 Hz correspond to the second harmonic 2X, the 

fractional harmonics X/2 and X/3, and these harmonic components are just the rub-impact fault 

symptoms [9]. According to these analyses, we can easily recognize that PF3, PF4, PF5 and PF6 

correspond to the 2X, 1X, X/2 and X/3, respectively. On the basis of above analyses, a purified 

vibration signal is reconstructed using the useful PFs (PF3-PF6) through Eq. (9). The 

reconstructed vibration signal and its Fourier spectrum are shown in Fig. 12. 

It can be easily seen that compared with Fig. 9, Fig. 12 clearly illustrates the fundamental 

harmonic component (1X), the fractional and second harmonic components (X/3, X/2 and 2X). 

The results shown in Figs. 11 and 12 indicate that SLMD not only can obtain the instantaneous 

characteristics of the vibration signal, but also can successfully extract the X/3, X/2 and 2X 

components which are generated by the rub-impact fault. 

All above diagrams and corresponding analyses can reveal that the rub-impact fault actually 

exists in the experimental rotor-bearing system, which proves that SLMD is suitable to process 

the vibration signal resulting from a rotating machine. 

 
(a) 

 
(b) 

Fig. 11. a) IA and b) IF of each PF in Fig. 10, and the average of useful IFs (dashed line) 

To further validate the effectiveness of SLMD, LMD is used to decompose the same vibration 

signal for a comparative study. The decomposed results produced by LMD are shown in Fig. 13. 

Comparing the two groups of PFs plotted in Figs. 10 and 13, we can easily derive these results: 

1) both SLMD and LMD can decompose the vibration signal into six PFs and a residue; and 

2) each PF produced by SLMD is very similar to the homologous PF produced by LMD. However, 
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there are some small differences between the two sets of PFs. The periodic oscillations in the PF3, 

PF4 and PF5 produced by SLMD are more obvious than those produced by LMD. 

 
Fig. 12. The vibration signal reconstructed with useful PFs in Fig. 10 and its spectrum 

 
Fig. 13. The decomposed results of the vibration signal via LMD. 

In addition, the IAs and IFs of the all PFs derived by LMD are also illustrated in Fig. 14, 

respectively. Comparing Figs. 11 and 14, we can find that the IAs and IFs of the four useful PFs 
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produced by SLMD and LMD, respectively, are obviously different. There are two reasons for 

this. First, due to the strong noises in the raw vibration signal, SLMD and LMD will be affected 

at different degrees. Second, compared with LMD, SLMD can produce relatively accurate local 

mean and envelope estimate functions in the process of signal decomposition. Although the two 

groups of IAs and IFs are different, the averages of the four IFs (dashed lines) in Fig. 11 are almost 

equal to those in Fig. 14. In other words, the rub-impact fault features (i.e., the second harmonic 

2X, the fractional harmonics X/3 and X/2) can be correctly extracted by SLMD and LMD, 

respectively, but SLMD produces more accurate PFs and corresponding IFs. 

Furthermore, Fig. 15 displays the reconstructed vibration signal and its Fourier spectrum as 

Fig. 12 shows. We can find that the characteristic frequencies of rub-impact fault (the X/3, X/2 

and 2X components) in Fig. 15 are nearly as clear as that in Fig. 12, but the noise components also 

become relatively obvious, which makes the low-frequency characteristics not very clear. All 

these results indicate that SLMD and LMD produce two similar decomposed results, but SLMD 

can separate out more accurate PFs from the non-stationary vibration signal. Therefore, the 

comparative study verifies that SLMD can more accurately extract the significant fault features 

from the mechanical vibration signal than LMD. 

And lastly, the iteration number of forming each PF component and the time consumption of 

decomposing the mechanical vibration signal via LMD and SLMD algorithms, respectively, are 

also shown in Table 4. 

It can be clearly seen that in the process of decomposing the vibration signal, the iteration 

number of computing each PF is smaller via SLMD than via LMD; the time consumption of 

deriving six PFs is also much shorter via SLMD than via LMD. These results indicate that SLMD 

can obviously decrease the iteration number and time consumption of the decomposition process 

of the mechanical vibration signal, which demonstrates that cubic spline interpolation and signal 

extending based on self-adaptive waveform matching technique commonly promote the 

performance of SLMD and really play a very useful role in improving the efficiency and accuracy 

of SLMD. Therefore, through this experimental verification, it is proved that the improvements to 

LMD are quite successful and consequently results in a more effective method, SLMD, for 

analyzing the complicated non-stationary signals. 

 
(a) 

 
(b) 

Fig. 14. a) IA and b) IF of each PF in Fig. 13, and the average of useful IFs (dashed line) 
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Fig. 15. The vibration signal reconstructed with useful PFs in Fig. 13 and its spectrum 

Table 4. Comparison of decomposition efficiency 

Algorithm 
Iteration number 

Time consumption (s) 
𝑃𝐹1 𝑃𝐹2 𝑃𝐹3 𝑃𝐹4 𝑃𝐹5 𝑃𝐹6 

LMD 5 12 22 27 6 3 71.3 

SLMD 4 8 13 15 6 2 39.2 

6. Conclusions 

As a novel time-frequency analysis method for processing the non-stationary signal in recent 

years, LMD has been increasingly studied in machine fault diagnosis. However, LMD is not 

always efficient and accurate, especially for processing mechanical vibration signal. In this paper, 

we propose a new scheme to improve the LMD algorithm. According to the new scheme, cubic 

spline interpolation and self-adaptive waveform matching techniques are combined and integrated 

into LMD to form an improved SLMD method, which can decrease the time consumption and 

improve the computational accuracy. Then, the comparative studies through a simulative signal 

and an experimental vibration signal are presented, respectively. Simulative results show that 

SLMD actually outperforms LMD in computational efficiency and accuracy; experimental results 

show that fault features of a rotating machine with slight rub-impact can be more accurately and 

efficiently extracted from the vibration signal via SLMD. These results prove that the 

improvements to LMD are very successful and SLMD is actually quite suitable for non-stationary 

signal analysis and vibration signal analysis of rotating machinery. 
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