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Abstract. Stiffness of rubber and metal rubber (MR) changes nonlinearly. Based on hysteretic 

damping theory and energy conservation equations, a unified stiffness model is developed. The 

ring type of isolators made from rubber and metal rubber are studied. The isolator samples are 

tested on the electro-hydraulic loading system, which is fixed by a clamping device. We aim to 

study the deformations under different loading rates, loading forces and other quasi-static loading 

states. The dynamic stiffness affected by the preload and vibration frequency is studied on the 

sonic drilling processing. It can be concluded that the metal rubber isolators deform larger plastic 

than the rubber. The damping, plastic deformation and elastic deformation of the metal rubber and 

rubber material are inversely proportional to the loading rate. The total deformation of the rubber 

is larger than the metal rubber, no matter when the load increases or decreases. The dynamic 

stiffness of the metal rubber isolator is proportional to the vibration frequency. However, the 

dynamic stiffness of the rubber remains the same under different preloads, while decreases when 

the preload increases. 

Keywords: rubber, metal rubber, dynamic stiffness, comparison, sonic vibration drilling. 

1. Introduction 

Rubber is a kind of viscoelastic material, and it has a large loss factor [1] which isolates 

vibration effectively, but it does not apply to corrosion and high temperature [2]. Metal rubber, 

also called wire mesh dampers [3-5], consists of many wire helixes which consume vibration 

energy by relative slip friction. The dry friction damping theory [6-9] is used to study the 

microstructure of metal rubber, while the viscoelastic characteristics are its main feature in the 

macrostructure study [10-12] and some research has been accomplished [3-16]. Some models such 

as small curved beam [9], the theory of energy equality [17-18], and finite element model [19] are 

utilized to study the stiffness characteristics of metal rubber. Complex stiffness method is 

commonly used for damping and loss factor to determine rubber resilient elements to gain further 

characterize [20-22]. He et al [23] studied viscoelastic hollow rubber cylinders using the exact 

three-dimensional theory. By determining the stiffness and phase angle for different preload 

conditions and force amplitudes, which use wattmetric method and discrete Fourier transformation 

for increasing reliability of the data Mu, Jia and Ladislav P applied semi-analytical finite elements 

to study propagating modes in hollow cylindrical pipes, which is used to study the rubber element 

for reduction of vibration from railway wheels. [24-26]. In order to give better estimation of the 

stress response, Ciambella et al. developed a non-linear viscoelastic constitutive model of rubber 

to obtain material parameters [27]. Radial stiffness of finite length of rubber tube is reconstructed 

based on the Fourier-Bessel functions by Hill [28], while its numerical calculation is very 

complicated [29]. Horton [30, 31] optimized the rubber tube by the variant Bessel functions. Other 

articles [19, 32, 33] study the stiffness model by the test date, but there are no any other studies 

comparing the stiffness characteristics between the rubber and metal rubber under sonic vibration 

status whose vibration frequency is 5-200 Hz with heavy cyclic load. It is significantly important 

to compare these two kinds of material when the isolators as select to design the vibration 

equipments. 

To select a proper isolator for the vibration equipment, the unified model of the rubber and 
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metal rubber are developed. The annular isolators made from rubber and metal rubber are designed 

and manufactured with the same structure. The clamp mechanism and inertial exciter are also 

manufactured to test the stiffness under the static and dynamic loading state. We studied the 

influence of different loading rates, loading force on the axial deformation of the isolator in 

quasi-static. Additionally, we researched the dynamic stiffness affected by the preload and 

vibration frequency. 

2. Model of two kinds of material isolator 

2.1. Isolator linear micro-modulus 

The metal rubber isolators (Fig. 1(a)) are made of a ∅0.18 mm wire consisting of 1Cr18Ni9Ti. 

The spiral is bent from the wire and it can be pressed into an annular isolator in the mold [30-31]. 

The relative density of metal rubber isolator sample is 0.6. The outer diameter and inter diameter 

are 70 mm and 34 mm respectively. Its height is 23 mm. With same structure with the mental 

rubbers, the rubber isolators (Fig. 1(b)) are manufactured by drilling and its density is 0.127 kg/m3. 

 
a) Metal rubber isolator 

 
b) Rubber isolator 

Fig. 1. Metal rubber isolator and rubber isolator 

Metal rubber and rubber are both porous. Suppose that the isolator is divided into tiny cubic 

unit characterized by continuous media and anisotropy as Fig. 2. Its bending deflection dominates 

the axial and shear defection. 

 
Fig. 2. Three-dimensional structure of isolator and its deformation 

Suppose that 𝑎 is the side length and 𝑟 is the radius of beam. When the force 𝐹 is exerted at 

the middle of the beam without lateral bending, the maximum deflection of clamped-clamped 

beam can be expressed as Eq. (1): 
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{
 
 

 
 𝛿 =

𝐹𝑎3

48𝐸𝐼
,

𝐹 = 𝜎𝑎2,

𝐼 =
𝜋𝑟2

4
,

 (1) 

where 𝐸 represents elastic modulus, 𝐼 is sectional inertia moment for beam, 𝜎 is stress of the beam. 

Bases on the assumption that each unit has equal mass, the relationship between the two kinds 

of mass calculation method can be expressed as Eq. (2): 

𝜌𝑎3𝑛 = 12𝜌𝑖𝜋𝑥𝑟
2𝑎𝑛, (2) 

where 𝜌 is the isolator density, 𝜌𝑖 is the imaginary density of the tiny cubic unit side (to metal 

rubber is the density of metal material ), and 𝑛 is the number of the tiny cubic unit. 

The stress-strain of the isolator under compression force can be refered to Eq. (3): 

{
 
 

 
 𝜀 = 2

𝛿

𝑎
,

𝜎 =
𝐹

𝑆
,

𝜀 =
𝑋

𝑎
,

 (3) 

where 𝜀  is the strain of the isolator, 𝑆 represents the compression area, and 𝑋 is the original 

thickness change of ithe isolator. 

When considering Eq. (1)-(3), 𝐾 is the shape factor, the approximate linearization formula 

between stress and strain for the microstructure can be linearly expressed as Eq. (4): 

𝐹 = (
𝐸𝑆𝜌2

24𝜋𝜌𝑖𝑎
) ∙ 𝑋 = 𝐾 ∙ 𝑋. (4) 

The results above show that the stiffness is proportional to elastic modulus, forced area, and 

isolator density but inversely to metal density and unit length. A less unit length will lead to a 

better stiffness. Rubber performs better than metal rubber in terms of uniformity. When 

compressed, the dry sliding friction will be generated between the tiny cubic units, and the 

stiffness changes nonlinearly due to distinct parameters. 

2.2. Isolator nonlinear micro-modulus 

Both rubber isolator and metal rubber isolator have a symmetry hysteresis [28]. When the 

isolator undergoes a load outside, the restoring force (𝐹) will be generated. There are two parts of 

it: one is the elastic force (𝐹𝑘) linear with the deformation of isolator (𝑥), the other is the damping 

force (𝐹𝑐), related to vibration amplitude (𝐴), loading rate, loading frequency (𝜔), deformation 

[34] and shape factor (𝐾). It is specifically described as follows: 

𝐹 = 𝐹𝑘(𝑥, 𝑥,̇ 𝐾, 𝐴, 𝜔) + 𝐹𝑐(𝑥, 𝑥,̇ 𝐾, 𝐴,𝜔). (5) 

The deformation of isolator affects the elastic force most. However, the damping force of the 

isolator (�̇�), the vibration rate affects most. Elastic force and damping force are expanded on the 

basis of the deformation of isolator and the vibration rate of isolator (�̇�). In terms of the mutual 

coupling between these factors, the secondary causes are ignored. As a result, elastic force and 
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damping force can be expressed separately as follows: 

{
 
 

 
 
𝐹𝑘(𝑥, 𝑥,̇ 𝐾, 𝐴, 𝜔) = ∑ 𝐾2𝑖−1(𝐾, 𝐴, 𝜔) ∙ 𝑥

(2𝑖−1)

(𝑗+1) 2⁄

𝑖=1

,

𝐹𝑐(𝑥, 𝑥,̇ 𝐾, 𝐴, 𝜔) = ∑ 𝐶2𝑖−1(𝐾, 𝐴,𝜔) ∙ |�̇�|
(2𝑖−1)

(𝑗+1) 2⁄

𝑖=1

,

 (6) 

where 𝐾2𝑖−1(𝐾, 𝐴, 𝜔) is the coefficient of stiffness, 𝐶2𝑖−1(𝐾, 𝐴, 𝜔) is the coefficient of damping, 

and 𝑗 is the cardinal number which can decide the fitting accuracy. 

Expand the above equation to the second classes, so the total stifness coefficient (𝐾∗ ) is 

calculated as Eq. (7): 

𝐾∗ =
𝐾1(𝐾, 𝐴,𝜔) ∙ 𝑥 + 𝐾2(𝐾, 𝐴,𝜔) ∙ 𝑥

2 + 𝐶1(𝐾, 𝐴, 𝜔) ∙ |�̇�| + 𝐶1(𝐾, 𝐴, 𝜔) ∙ |�̇�|
2

𝑥
. (7) 

When absorbing energy from the external load, the shape of isolator will be changed. The 

energy theory is performed in two ways. One part is absorbed in a way of elastic deformation and 

then transformed into potential energy [35]. The other part is consumed by the inner sliding 

friction of the wire in isolator and transformed into heat [36]. Based on the principle of the virtual 

work, the energy of the external load (𝑊) is equal to the sum of the heat consumed by damping 

energy (𝐶) and deformation energy (𝑈). The formula is as follows: 

𝑈 + 𝐶 = 𝑊. (8) 

The shearing modulus of elasticity is ignored under axial loading, while the modulus of 

elasticity mainly undergoes tension and compression. The deformation energy of the isolator is as 

follows: 

𝑈 = ∫
𝑀2(𝑠)

2𝐸′ ∙ 𝐼′
𝑑𝑠

𝑙

0

, (9) 

where 𝑀(𝑠) is the moment of the isolator under axial loading, and 𝐼′ is the inertia of the annulus 

isolator. 𝐸′ is the modulus of elasticity which is relaxed with the material of isolator, including 

the modulus of rubber (𝐸𝑥) and the modulus of metal rubber (𝐸𝑗). The modulus of metal rubber is 

determined by modulus of metal wire (𝐸), diameter of metal wire (𝑑), pitch of the spiral (ℎ), 

diameter of spiral (𝑑ℎ) [6]. Formula of modulus of metal rubber is as follows: 

𝐸𝑗 =
3𝐸ℎ𝑑4

8𝑑ℎ
5 . (10) 

Two force sensors are installed at the top and the bottom of the isolator to measure the damping 

force. The pressure difference of the two force sensors is equal to the damping force (𝑓𝑐). The 

damping energy can be calculated as the product of the damping force and axial deformation: 

𝐶 = 𝑓𝑐 ∙ 𝑥. (11) 

The value measured by the top sensor is the restoring force (𝐹). The energy of the external 

load can be calculated as the restoring force and axial deformation without any radial 

deformation (Eq. (12)): 
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𝑊 =
1

2
∙ 𝐹 ∙ 𝑥. (12) 

The Eq. (1)-(12) are models of the stiffness of the isolators. The damping force and the elastic 

force can be fitted by the test data. 

3. Quasi-loading test 

3.1. Quasi-static loading test plant 

The change of dynamic stiffness is nonlinear, and it is related to many factors [37]. To study 

the stiffness, rock tri-axial test plant (TAW-2000) is used to conduct the axial quasi-static loading 

experiment of the annulus isolator characteristics (Fig. 3). A clamping device fixed on the annulus 

isolator is designed. 

 
Fig. 3. Experiment principle schematic. 

1 – loading cylinder, 2 – displacement sensor, 3 – force sensor,  

4 – clamping device, 5 – annulus isolator, 6 – base 

The isolator is fixed inside the clamping device (4). It is composed of piston, core rod and 

cylinder with high stiffness [38]. The axial force excited by the rock tri-axial test plant impacts 

the piston and the isolator. Two force sensors (3, 7) are installed to measure the loading and 

isolation force. The deformation of isolator is measured by the displacement sensor (2). The 

loading force can be adjusted by hydraulic pressure. However, the loading rate is subject to the 

flow of hydraulic oil in loading cylinder (1). A relief valve is set on the hydraulic circuit to prevent 

from abnormally high hydraulic pressure. 

In order to study the stiffness under different loading rates and loading forces, the two loading 

stages include loading and unloading. When the loading conditions are the same, the differences 

between the rubber isolator and metal isolator are found by platform test. 

3.2. Quasi-static loading test 

3.2.1. Point loading test 

In order to eliminate hysteretic effect, the point loading test is performed in the isolator. The 

maximum loading force is 250 kN ± 5 kN. 

Fig. 4 plots the isolator deformations under the point loading (1and 3) and unloading (2 and 
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4). Under the equal loading, the deformation of the metal rubber is larger. When the load 

disappears, the plastic deformation of metal rubber is 4.2 mm, compared with zero of the rubber. 
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Fig. 4. Deformation of isolator under point loading test 

3.2.2. Continuous loading test 

Continuous loading test can reflect the hysteretic effect on the isolator material. The stiffness 

under different loading rates is tested at different loading times. Fig. 5 displays the isolator 

deformations under the different continuous loading rates. The curves (1) and (2) in Fig. 5 are the 

axial deformations of the metal rubbers with the loading rates of 12.5 kN/min and 25 KN/min. 
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Fig. 5. Deformation of metal rubber and rubber under continuous loading 

Fig. 5 presents the rubber. The result shows that the deformation of the metal rubber is bigger 

than the rubber. In terms of the loading rate, it is inverse proportional to the deformation of metal 

rubber. However, it has no relation to the rubber. 

3.3. Dynamic characteristic test 

Sonic drilling is driven by vibration (5-200 Hz) transmitted from the top driver by two balance 

rollers [39-40], which ensures the vibrations transmitted vertically down to the bit. By matching 

the natural resonance of the drill string, the frequency reaches a maximum penetration rate 
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(Fig. 6(a)). In terms of the string, it is vibrated by a hydraulic drill head at an adjustable frequency 

[41, 42]. The oscillator is equipped with two eccentric counter-rotating balance weights, or rollers, 

which are timed to direct full vibration at 0º and 180º. However, a damper and a spring system in 

the top driver isolate vibration from the rest of the machine [43]. In order to test and verify the 

vibration isolation effect, (Fig. 6(b)), four accelerometers were attached to the housings of the two 

counter-rotating unbalanced rotors. Two others were attached to a part of the machine isolated 

from the drilling effect. Average acceleration value data was collected to calculate the excitation 

force and attenuated vibration force. 

 
a) Model of sonic drilling 

 
b) Field test 

Fig. 6. Model and test sketch of sonic vibration drilling 

The sonic vibration frequency ranges from 5 to 200 Hz and isolator deformation ranges from 

0 to 6 mm. The frequencies of 20, 100 and 200 Hz were selected as the frequency points when the 

preload is 3 KN. These three frequencies simulate the isolation characteristics of start-up, typical 

operating point and limit work status respectively. The vibration force changing with the 

displacement of the rubber isolator and metal rubber isolator are shown in Fig. 7. It shows that 

with the increase of the vibration frequency, the area enclosed by the hysteresis curve of the rubber 

and the metal rubber isolators increase dramatically. The curve areas of rubber are generally less 

than the metal rubber. It indicates that the damping force of the rubber is smaller. 
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Fig. 7. Measurement of forces with displacement for preload of 3 KN 
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Fig. 8 displays another influence law between vibration force and displacement under different 

preloads at fixed frequency. The preloads of 0 KN, 1 KN and 3 KN were selected when the 

frequency is 100 Hz. The preloads of the both will be reduced to zero after a period of vibrating 

because of plastic deformations. The isolation characteristics of the three preload data represent 

the complete loose phase, normal operation phase and initial phase respectively. The results show 

that the area enclosed by the hysteretic curve of the metal rubber is proportional to the preload 

while independent to the rubber. 
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Fig. 8. Measurement of forces with displacement for vibration frequency of 100 Hz 

4. Stiffness characteristics analysis 

Fig. 9 and Fig. 10 represents dynamic stiffness under different vibration frequencies and 

preloads respectively. We can conclude that the maximum stiffness of the rubber isolator and the 

metal rubber isolator simultaneous reach 0 mm. The dynamic stiffness of two kinds of isolators 

increase as the frequency rises. The dynamic stiffness of the rubber isolators change little under 

different preloads, while the stiffness of the metal rubber decreases slightly as the preload 

increases. 
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Fig. 9. Dynamic stiffness under different vibration frequency 
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Fig. 10. Dynamic stiffness under different preload 

5. Conclusion 

The aim of this paper is to find the difference between the rubber and the metal rubber 

respectively for sonic driller. The dynamic stiffness and the damping are theoretically and 

practically related to loading rate, preload, structural properties. The stiffness and the damping 

change nonlinearly with the external load. According to the micro-model, the stiffness is 

proportional to isolator density, elastic modulus, and uniformity. In theory, the diameter of the 

wire influences stiffness indirectly. However, a homogeneous isolator can be easily developed 

when the diameter is thinner. In order to obtain an isolator with better stiffness, it is recommended 

that: 

(1) The annular isolators of the rubber and the metal rubber are prepared by different methods. 

The based structure parameters of the isolators are measured. Micro-strain model is induced on 

the basis of the assumption of the micro-cube. The models of the rubber and the metal rubber 

isolators are built and analyzed on the basis of conservation of energy. The results also show that 

the isolator stiffness is influenced by both its own properties and external load. 

(2) The experimental schemes to study the annular isolators under quasi-static loading are 

designed. The stiffness characteristics test under different loading rates, loading forces and other 

loading states have been accomplished. The test shows that the metal rubber has great plastic 

deformation under loading while the rubber does not. This is resulted from a bad uniformity. The 

damping of the rubber and the metal rubber decrease at the same time because of the slip resulted 

from friction. If the loading rate is over exerted, there will be no time for the unit to deform, which 

leads to the damping property decrease. The total deformation of the metal rubber isolator is 

smaller than the rubber isolator. 

(3) The dynamic stiffness of the metal rubber isolator is closely proportional to vibration 

frequency. Because of the uniformity, the dynamic stiffness of the rubber is maintaining stability 

under different preloads, while the stiffness of the metal rubber decreases with the increase of the 

preload. It is bigger cumulative deflection that leads to the calculation error in stiffness. 
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