
 

 © VIBROENGINEERING. JOURNAL OF VIBROENGINEERING. DECEMBER 2013. VOLUME 15, ISSUE 4. ISSN 1392-8716 1947 

1103. An analytical method for vibro-impact between 

shrouded blades under a multiple-harmonic excitation 

Guofang Nan 
School of Energy and Power Engineering, University of Shanghai for Science and Technology 

Shanghai, China 

E-mail: ngf@usst.edu.cn  

(Received 30 April 2013; accepted 7 September 2013) 

Abstract. The impact vibration between shrouded blades under a multiple-harmonic excitation in 

an aircraft engine is analyzed in this paper to study the influence of parameters on dynamic 

behavior of the system. Aircraft engine blades undergo high vibrations caused by the centrifugal 

forces and gas forces during operation. The blade vibrations lead to high dynamic stress that causes 

high cyclic fatigue failure. In order to reduce the dynamic stress, a common technology is adding 

a shroud to each blade to generate a new damping from impact and friction between the shrouds. 

To investigate the impact vibration, a model composed of springs and a cantilever beam with a 

lumped mass is developed to simulate the cyclic symmetry structure of the shrouded blade in 

aircraft engines. The model is exerted a multiple-harmonic excitation to simulate the centrifugal 

force and the gas force during operation. Adopting multiple-harmonic excitation is closer to reality 

than harmonic excitation. The Euler-Bernoulli beam theory is utilized in deriving the equation of 

motion and the associated boundary conditions. Employing the Galerkin’s method, an 

approximate analytical solution is obtained by using the Fourier series method. Explicit 

expressions are obtained to calculate the responses of the system. Based on the expressions, 

parametric analysis is conducted to study the effect of the gap between shrouds, the mass ratio of 

the shroud to the blade and the stiffness ratio on the responses of the system. The numerical results 

indicate that there is an optimum mass ratio that makes the amplitude of the response lowest; the 

gap between shrouds and the stiffness ratio have effects on the responses and the resonance 

frequencies of the system. The analytical method used here for the approximate analytical solution 

can be extended to study other continuous systems.  

Keywords: aircraft engine, shrouded blade, impact vibration, beam with mass, multiple-harmonic.  

1. Introduction 

In aircraft engines, blades are a major component. Blade failure accounts for most of the 

failures in aircraft engines. Blade failure occurs as a result of high cyclic fatigue caused by high 

dynamic stress. High dynamic stress results from severe blade vibrations when blades rotate at a 

high speed during operation. To reduce the blade vibration, a common technology is to add a 

shroud to each blade, as shown in Fig. 1; this is because shrouds collide with each other during 

operation, generating new damping from impact and friction. Such technology has been widely 

used in aircraft engines and has been proven to be effective in vibration reduction. 

To facilitate the design of the shrouds to achieve optimal vibration reduction, it is essential to 

study dynamic characteristics of the friction and impact between the shrouds. In the past several 

decades, both model construction and solution methods have been developed to analyze the 

dynamic behavior of the shrouded blade. Yang B. D. and C. H. Menq [1] researched on a 3-D 

friction contact model of turbine blade, which consists of three states: the stick, slip and separation 

during a cycle of oscillation. The researchers developed a transition criterion among the three 

states and produced the hysteresis loop to characterize the equivalent damping and stiffness of the 

friction contact. Other friction contact models [2-3] and full cycle model of turbine blades [4] were 

developed to conduct dynamic analysis of the system and much progress was obtained in the 

research work. Choi and Y.-T. Chou [5] developed a pre-twist model of turbine blade with varying 

cross-section, where the shroud is treated as a mass. The researchers proposed the Modified 

Differential Quadrature Method (MDQM) for vibration analysis of the turbo-machinery blades; 
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and the method was demonstrated as an accurate and effective method by comparing with 

analytical solutions. Menq C. H., Chidamparam P. and Griffin J. H. [6] presented an approximate 

method for analyzing the 2-dimensional friction contact and analyzed the influence of friction 

coefficient between interfaces on the vibration characteristic of the system. Many researchers also 

focused on stability [7-9] and mistuning [10-12] of the system and got a lot of achievements. Bo 

Wun Huang [13] studied the effect of the number of blades and distribution of cracks on vibration 

localization in a cracked pre-twisted blade system; the shroud segments between the blades are 

regarded as springs. The research result reveals that the number of the grouped blades and 

distribution of the multi-disordered may markedly affect the localization phenomenon. Dong-Ho 

Rhee and Hyung Hee Cho [14] investigated the effect of the blade position on heat transfer in a 

blade and shroud. The result shows that the heat transfer on the tip and the shroud was significantly 

affected by the blade position because the incoming flow condition is changed. Ibrahim Ata Sever 

[15] carried out experiments via a test rig to validate the numerical models developed for blade 

vibration response predictions at Imperial College. The tests demonstrated that the numerical 

model was able to predict the responses of the blisks for several mistuning patterns when fitted 

with the friction dampers. J. J. Kielb and R. S. Abhari [16] focused on the aerodynamic and 

structural damping in shrouded blades. Corso Padova and Jeffery Barton [17] investigated the 

aeromechanic phenomena for the gas turbine engines by an experiment method and analyzed the 

nonlinear dynamic response. Nan et al. [18] developed a spring-mass model to study the effect of 

the parameters of the system such as the gap between shrouds, contact angle, the friction 

coefficient and the stiffness ratio, on the dynamic characteristics of the shrouded blades. J. J. Chen 

et al. [19] predicted the periodic response of the blades with the nonlinear shroud constraints by 

employing a three-dimensional contact model and analyzed the resonant frequency shift, the 

damping effect and the jump phenomenon caused by the nonlinear shroud constraints. Petrove P. 

et al. [20] developed a friction model for analysis of the bladed disks in the time domain, the model 

allows one to consider time-varying friction contact parameters and anisotropy, and variations of 

the friction are taken into account. S. K. Sinha et al. [21] derived the dynamical equations for a 

rotating radial cantilever blade in a centrifugal force field. The equations include the gyroscopic 

moments and internal material damping in the shaft and the external damping in the bearing. 

Mathias Legrand et al. [22] researched on a specific interaction due to radial rub between a bladed 

disk and surrounding casting. The blade of the tuned assembly is represented by a rigid body and 

the stiffening due to centrifugal force is neglected as well as gyroscopic effects. Equations are 

developed and solved by harmonic balance method. Ha Seong Lim et al. [23] carried out modal 

analysis of a rotating multi-packet blade system. Blades are modeled as cantilever beam and the 

shroud are treated as springs. However, the model does not describe the separation and impact 

between blades. Paolo Bisegna et al. [24] researched on the vibration localization phenomenon in 

disordered structure based on a model which is composed of a pendulum equipped with springs. 

Some expressions are got to show how the feature of the mistuned structure depends on the 

physical parameters. However, the model does not present the interaction between shrouds as well 

as reference [23]. Shiming Chu et al. [25] studied the impact vibration and nonlinear behavior of 

shrouded blade with asymmetric gaps under wake flow excitations. The Frobenius method is 

employed to determine the dynamic frequencies. However, the shroud is treated as rigid body and 

the influence of the mass of the shroud and on the vibration is not investigated. 

Although much research has been done on the dynamic behavior of the shrouded blade systems, 

most studies focused only on the friction between shrouds with relation to the friction contact 

performances. The impact vibration between the shrouds has not been studied by an analytical 

method in the published articles. The mass of shroud is often neglected and the effect of the shroud 

mass on the dynamic characteristics is not considered. This paper will address the lack of the 

research in the impact vibration between shrouds and the effect of shroud mass on the dynamic 

characteristics of the system by a rigorous analytical method.  

To investigate the impact vibration, a model composed of springs and a cantilever beam 
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carrying a mass is developed to simulate the cyclic symmetry structure of the shrouded blade in 

aircraft engines. Few researchers treated the shroud of the blade system as a lumped mass with 

which the model is closer to the reality. The shrouded blades undergo centrifugal forces and the 

gas excitation during operation. Consequently, a multiple-harmonic excitation is exerted on the 

model to simulate the centrifugal forces and the gas excitations. The Euler-Bernoulli beam theory 

is used in deriving the equation of motion and the associated boundary conditions. Employing the 

Galerkin’s method, an approximate analytical solution is obtained by using the Fourier series 

method. Explicit expressions are obtained to calculate the responses of the shrouded blade system. 

Based on the expressions, parametric analysis is performed to study the effect of the stiffness ratio, 

the mass ratio and the gap between shrouds on the steady-state responses of the system.  

 
Fig. 1. Schematic view of the shrouded blades of aero-engines 

2. Modeling and Equations of Motion 

To study the impact vibration of a shrouded blade, a model comprised of springs and a 

cantilever beam with a concentrated mass is developed to simulate the shrouded blade with 

rectangle shroud. For simplicity, the blade is approximated as a cantilever beam, and the shroud 

is equivalent to an added mass 𝑚. The stiffening due to centrifugal forces is neglected as well as 

gyroscopic effects. The shrouds impact each other if the system is subjected to a 

multiple-harmonic excitation which is large enough. The coordinate system is defined in 

accordance with the radial (𝑥), transverse (𝑦) (i.e. tangential direction) and axial (𝑧) directions, as 

shown in Fig. 2. Accordingly, the shrouded blades have vibrations in the radial, transverse and 

axial directions. The axial vibration is neglected because it is almost equal to zero for the blade 

with a rectangle shroud. 

Model is built and shown in Fig. 2; it shows a cantilever beam with a tip mass 𝑚, representing 

the blade and the shroud. The shrouded blades undergo the centrifugal force and the gas excitation 

during operation. Therefore, a multiple-harmonic excitation is exerted on the model to simulate 

the centrifugal force and the gas excitation. When the model is subjected to a displacement 

excitation cos𝜔𝑡 + sin2𝜔𝑡, the mass vibrates and collides with the adjacent springs on both sides 

of the mass. The beam is regarded as an Euler-Bernoulli beam. The center of the added mass 𝑚 

coincides with the attachment point of the beam centerline and the tip mass. Parameters 𝜌, 𝐴, 𝑘, 

𝐸𝐼, 𝑘1, 𝑙, 𝛿 and 𝑚 stand for the mass density of the beam, the cross-sectional area, the stiffness of 

the beam (𝑘 =
3𝐸𝐼

𝑙3
), the flexural rigidity of the beam, the impact stiffness between shrouds, the 

length of beam, the gap between shrouds and the added mass. 𝑢(𝑥, 𝑡) and 𝑣(𝑥, 𝑡) represent the 

radial displacement and the transverse displacement of the beam, respectively; 𝑣𝑎 and 𝑣𝑟  denote 

the absolute displacement and the relative displacement of the beam in the transverse direction, 

respectively. 

For the cantilever beam with a tip mass, the kinetic energy is: 
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𝑇𝑘 = ∫ 𝑇𝑑𝑥
𝑙

0

+ 𝑇𝑚 = ∫ [
1

2
𝜌𝐴(𝑢𝑡

2 + 𝑣𝑡
2)] 𝑑𝑥

𝑙

0

+
1

2
𝑚(𝑟𝑚̇ ∙ 𝑟𝑚̇), (1) 

where 𝑟𝑚  denotes the displacement at the free end of the beam, and 𝑢𝑡̇ , 𝑣𝑡̇ , 𝑟𝑚̇  denote the 

derivatives of 𝑢𝑡 , 𝑣𝑡 , 𝑟𝑚  with respect to 𝑡, respectively. The potential energy of the beam is: 

𝑈𝑠 = ∫ 𝑈𝑑𝑥
𝑙

𝑜

= ∫ [
1

2
𝐸𝐴 (𝑢𝑥 +

1

2
𝑣𝑥
2)
2

+
1

2
𝐸𝐼𝑢𝑥𝑥

2] 𝑑𝑥,
𝑙

𝑜

 (2) 

where 𝑢𝑥  represents the derivatives of 𝑢 with respect to 𝑥. Using the Hamilton's principle: 

∫ [∫ 𝛿(𝑇 − 𝑈) + 𝛿𝑇𝑚

𝑙

0

] 𝑑𝑡
𝑡2

𝑡1

= 0. (3) 

 
Fig. 2. Analytical model of shrouded blade 

The governing equations in the radial and transverse directions are: 

𝑢: − 𝜌𝐴𝑢𝑡𝑡 + 𝐸𝐴(𝑢𝑥𝑥 + 𝑣𝑥𝑣𝑥𝑥) = 0, (4) 

𝑣: − 𝜌𝐴𝑣𝑡𝑡 + 𝐸𝐴 (𝑢𝑥𝑥𝑣𝑥 +
3

2
𝑣𝑥
2𝑣𝑥𝑥 + 𝑢𝑥𝑣𝑥𝑥) − 𝐸𝐼𝑣𝑥𝑥𝑥𝑥 = 0. (5) 

In comparison with the radial and axial vibrations, the transverse vibration (𝑣-direction) is the 

focus here because it is the dominant vibration for the blade with a rectangle shroud. The 

governing equation of the beam for the absolute displacement in the transverse direction can be 

simplified by neglecting 𝑢𝑥𝑥 and 𝑣𝑥𝑥  as follows: 

𝜌𝐴
𝜕2𝑣𝑎
𝜕𝑡2

+ 𝐸𝐼
𝜕4𝑣𝑎
𝜕𝑥4

= 0. (6) 

The relationship between the absolute displacement and the relative displacement is: 
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𝑣𝑎(𝑥, 𝑡) = 𝑣𝑟(𝑥, 𝑡) + cos𝜔𝑡 + sin2𝜔𝑡. (7) 

Substituting Equation (7) into (6) leads to the governing equation of the beam for the relative 

displacement in the transverse direction: 

𝜕2𝑣𝑟
𝜕𝑡2

+
𝐸𝐼

𝜌𝐴

𝜕4𝑣𝑟
𝜕𝑥4

= 𝜔2cos𝜔𝑡 + 4𝜔2sin2𝜔𝑡. (8) 

The corresponding boundary conditions are: 

𝑣𝑟(0, 𝑡) = 0, (9) 
𝜕𝑣𝑟
𝜕𝑥

(0, 𝑡) = 0, (10) 

𝜕2𝑣𝑟
𝜕𝑥2

(𝑙, 𝑡) = 0, (11) 

𝐸𝐼
𝜕3𝑣𝑟
𝜕𝑥3

(𝑙, 𝑡) = 𝑚 [
𝜕2𝑣𝑟
𝜕𝑡2

(𝑙, 𝑡)−𝜔2cos𝜔𝑡 − 4𝜔2sin2𝜔𝑡] + 𝑓(𝑣𝑙 , 𝑣𝑙̇). (12) 

The restoring force of the spring is represented as: 

𝑓(𝑣𝑙 , 𝑣𝑙̇) = {

𝑘(𝑣𝑙 − 𝛿), 𝛿 < 𝑣𝑙 < 𝑣𝑚𝑎𝑥 ,
0, −𝛿 < 𝑣𝑙 < 𝛿,

𝑘(𝑣𝑙 + 𝛿), −𝑣𝑚𝑎𝑥 < 𝑣𝑙 < −𝛿,
 (13) 

where 𝑣𝑙  is the relative displacement of the beam at the free end (𝑥 = 𝑙). 

3. Solutions 

Fourier series method is adopted to solve the equation of motion with the boundary conditions. 

The solution can be assumed as a series in terms of an undetermined shape function with a given 

corresponding weighting coefficients. The shape function has four coefficients to be determined. 

However, the boundary conditions consist of a restoring force of the springs, which is 

piecewise-linear because of the gap 𝛿 between shrouds. It is difficult to determine directly the 

solution of the equation of motion. In this article, the restoring force of the spring is assumed to 

be a periodic function and it can be written as the form of Fourier series. Therefore, the governing 

equations of the beam with a mass can be solved by using the Fourier series method.  

Assuming the solution for Equation (6) as: 

𝑣𝑎(𝑥, 𝑡) = ∑(𝐴𝑛 cosh 𝜆𝑛𝑥+𝐵𝑛 sinh 𝜆𝑛𝑥 +𝐶𝑛 cos 𝜆𝑛𝑥 +𝐷𝑛 sin 𝜆𝑛𝑥) ∙ cos 𝑛𝜔𝑡.

∞

𝑛=1

 (14) 

According to Equation (7), the relative displacement is: 

𝑣𝑟(𝑥, 𝑡) = ∑(𝐴𝑛 cosh 𝜆𝑛𝑥 + 𝐵𝑛 sinh 𝜆𝑛𝑥 +𝐶𝑛 cos 𝜆𝑛𝑥 +𝐷𝑛 sin 𝜆𝑛𝑥) ∙ cos 𝑛𝜔𝑡

∞

𝑛=1

 

               −cos𝜔𝑡 − sin2𝜔𝑡, 

(15) 

where: 
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𝜆𝑛
4 =

𝜌𝐴𝜔𝑛
2

𝐸𝐼
 . (16) 

Equation (13) can be rewritten as followings due to the piecewise-linear characteristics: 

𝑓(𝑣𝑙 , 𝑣𝑙̇) =

{
  
 

  
 
𝑘(𝑣𝑙 − 𝛿), 𝛿 < 𝑣𝑙 < 𝑣𝑚𝑎𝑥 , 𝑣𝑙̇ > 0,

𝑘(𝑣𝑙 − 𝛿), 𝛿 < 𝑣𝑙 < 𝑣𝑚𝑎𝑥 , 𝑣𝑙̇ ≤ 0,
0, −𝛿 < 𝑣𝑙 < 𝛿, 𝑣𝑙̇ ≤ 0,

𝑘(𝑣𝑙 + 𝛿), −𝑣𝑚𝑎𝑥 < 𝑣𝑙 < −𝛿, 𝑣𝑙̇ ≤ 0,

𝑘(𝑣𝑙 + 𝛿), −𝑣𝑚𝑎𝑥 < 𝑣𝑙 < −𝛿, 𝑣𝑙̇ ≥ 0,
0, −𝛿 < 𝑣𝑙 < 𝛿, 𝑣𝑙̇ ≥  0,

 (17) 

where 𝑣𝑚𝑎𝑥 represents the maximum displacement of the beam at the free end. 

The restoring force 𝑓(𝑣𝑙 , 𝑣𝑙̇) can be denoted as 𝑔(𝜃) with the period 2𝜋 and a phase lag angle 

∅; and a new angle 𝜃 is defined as: 

𝜃 = 𝜔𝑡 − ∅. (18) 

And then 𝑓(𝑣𝑙 , 𝑣𝑙̇) is denoted as the form of 𝜃: 

𝑔(𝜃) = 𝑓(𝑣𝑙 , 𝑣𝑙̇) =

{
  
 

  
 
𝑘(𝑣𝑙 − 𝛿), −𝜃1 < 𝜃 < 0, (𝑆1)

𝑘(𝑣𝑙 − 𝛿), 0 < 𝜃 < 𝜃1, (𝑆2)

0, 𝜃1 < 𝜃 < 𝜋 − 𝜃1, (𝑆3)

𝑘(𝑣𝑙 + 𝛿), 𝜋 − 𝜃1 < 𝜃 < 𝜋, (𝑆4)

𝑘(𝑣𝑙 + 𝛿), 𝜋 < 𝜃 < 𝜋 + 𝜃1, (𝑆5)

0, 𝜋 + 𝜃1 < 𝜃 < 2𝜋 − 𝜃1, (𝑆6)

 (19) 

where 𝑆1, 𝑆2, … , 𝑆6 denote six motion states: state 1 (𝑆1) that is from the right critical position, 

i.e. between without impact and with impact, to the right maximum displacement position; state 2 

(𝑆2) that is from the right maximum displacement position to the right critical position; state 3 

(𝑆3) when the beam with tip mass vibrates left and has no impact with spring; state 4 (𝑆4) that is 

from left critical position to the left maximum displacement position; state 5 (𝑆5) that is from left 

maximum displacement position to left critical position; state 6 (𝑆6) when the beam with tip mass 

vibrates right and has no impact. 

Switching over the motion states from one to another among six states is as follows: 

𝑆6 → 𝑆1:            𝜃 = −𝜃1,   𝑣𝑙 = 𝛿, (20) 

𝑆1 → 𝑆2:            𝜃 = 0,    𝑣𝑙 = 𝑣𝑚𝑎𝑥 ,   𝑣𝑙̇ = 0, (21) 

𝑆2 → 𝑆3:            𝜃 = 𝜃1,   𝑣𝑙 = 𝛿, (22) 

𝑆3 → 𝑆4:            𝜃 = 𝜋 − 𝜃1,   𝑣𝑙 = −𝛿, (23) 

𝑆4 → 𝑆5:            𝜃 = 𝜋,    𝑣𝑙 = −𝑣𝑚𝑎𝑥 ,   𝑣𝑙̇ = 0,   (24) 

𝑆5 → 𝑆6:            𝜃 = 𝜋 + 𝜃1,   𝑣𝑙 = −𝛿, (25) 

𝑔(𝜃) is given by means of the Fourier series expansion: 

𝑔(𝜃) = ∑ (𝑎𝑛cos𝑛𝜃 + 𝑏𝑛sin𝑛𝜃).

∞

𝑛=1,3,5…

 (26) 

Neglecting the terms of orders higher than one: 
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𝑔(𝜃) = 𝑎1cos𝜃 + 𝑏1sin𝜃. (27) 

Using Equations (15) and (9), the coefficient 𝐶𝑛 is obtained: 

𝐶1 = −𝐴1 +
cos𝜔𝑡 + sin3𝜔𝑡

cos𝜔𝑡
,   (𝑛 = 1),   𝐶𝑛 = −𝐴𝑛,   (𝑛 = 2, 3, 4, … ). (28) 

Using Equations (15) and (10), the coefficient 𝐷𝑛 is obtained: 

𝐷𝑛 = −𝐵𝑛 ,   (𝑛 = 1, 2, 3, … ).  (29) 

Substituting Equations (28) and (29) into Equation (15): 

𝑣𝑟(𝑥, 𝜃) = ∑[𝐴𝑛(cosh𝜆𝑛𝑥 − cos𝜆𝑛𝑥) + 𝐵𝑛(sinh𝜆𝑛𝑥 − sin𝜆𝑛𝑥)]

∞

𝑛=1

 

                 ∙ cos 𝑛(𝜃 + ∅) + (
cos𝜔𝑡 + sin2𝜔𝑡

cos𝜔𝑡
cos𝜆1𝑥 − 1) cos(𝜃 + ∅) − sin2(𝜃 + ∅). 

(30) 

Substituting Equation (30) into boundary condition Equations (11) leads to equations in the 

form of 𝐴 and 𝐵: 

(cosh𝜆1𝑙 + cos𝜆1𝑙)𝐴1 + (sinh𝜆1𝑙 + sin𝜆1𝑙)𝐵1

=
cos(𝜃 + ∅) + sin2(𝜃 + ∅)

cos(𝜃 + ∅)
cos𝜆1𝑙,   (𝑛 = 1), 

(cosh𝜆𝑛𝑙 + cos𝜆𝑛𝑙)𝐴𝑛 + (sinh𝜆𝑛𝑙 + sin𝜆𝑛𝑙)𝐵𝑛 = 0,   (𝑛 = 2, 3, 4, … ). 

(31) 

Substituting Equations (27) and (30) into boundary condition Equation (12) yields another 

equation in the form of 𝐴 and 𝐵: 

[(sinh𝜆1𝑙 − sin𝜆1𝑙) +
(cosh𝜆1𝑙 − cos𝜆1𝑙)(𝑚𝜔

2)

𝐸𝐼𝜆1
3 ] 𝐴1

+ [(cosh𝜆1𝑙 + cos𝜆1𝑙) +
(sinh𝜆1𝑙 − sin𝜆1𝑙)(𝑚𝜔

2)

𝐸𝐼𝜆1
3 ] 𝐵1

=
𝑎1cos𝜃 + 𝑏1sin𝜃

𝐸𝐼𝜆1
3 cos(𝜃 + ∅)

−
sin𝜆1𝑙 ∙ (cos(𝜃 + ∅) + sin2(𝜃 + ∅))

cos(𝜃 + ∅)

−
𝑚𝜔2

𝐸𝐼𝜆1
3

cos𝜆1𝑙 ∙ (cos(𝜃 + ∅) + 4sin2(𝜃 + ∅))

cos(𝜃 + ∅)
. 

(32) 

Applying Equations (31) and (32), the coefficients 𝐴1 and 𝐵1 can be derived as:  

𝐴1 =
𝑎1cos𝜃 + 𝑏1sin𝜃

∆1𝐸𝐼𝜆1
3cos(𝜃 + ∅)

− ∆5𝑓 − ∆6, (33) 

𝐵1 = −∆4
𝑎1cos𝜃 + 𝑏1sin𝜃

∆1𝐸𝐼𝜆1
3cos(𝜃 + ∅)

+ ∆7𝑓 + ∆8, (34) 

where: 

𝑓 =
sin2(𝜃 + ∅)

cos(𝜃 + ∅)
, (35) 
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∆1= [(sinh𝜆1𝑙 − sin𝜆1𝑙) +
(cosh𝜆1𝑙 − cos𝜆1𝑙)(𝑚𝜔

2)

𝐸𝐼𝜆1
3 ]

+ [(cosh𝜆1𝑙 + cos𝜆1𝑙) +
(sinh𝜆1𝑙 − sin𝜆1𝑙)(𝑚𝜔

2)

𝐸𝐼𝜆1
3 ] (−∆4), 

(36) 

∆2= [(cosh𝜆1𝑙 + cos𝜆1𝑙) +
(sinh𝜆1𝑙 − sin𝜆1𝑙)(𝑚𝜔

2)

𝐸𝐼𝜆1
3 ] ∙ ∆3, (37) 

∆3=
cos𝜆1𝑙

(sinh 𝜆1𝑙 + sin𝜆1𝑙)
, (38) 

∆4=
(cosh𝜆1𝑙 + cos𝜆1𝑙)

(sinh 𝜆1𝑙 + sin𝜆1𝑙)
, (39) 

∆5=
sin𝜆1𝑙

∆1
+
4𝑚𝜔2cos𝜆1𝑙

∆1𝐸𝐼𝜆1
3 +

∆2
∆1
, (40) 

∆6=
sin𝜆1𝑙

∆1
+
𝑚𝜔2cos𝜆1𝑙

∆1𝐸𝐼𝜆1
3 +

∆2
∆1
, (41) 

∆7= ∆3 + ∆4∆5, (42) 

∆8= ∆3 + ∆4∆6. (43) 

By using equation (35), (38) and (39), the displacement at the position 𝑥 from the clamped end 

is represented as: 

𝑣𝑟(𝑥, 𝜃)

=

[
 
 
 
 (

𝑎1cos𝜃 + 𝑏1sin𝜃

∆1𝐸𝐼𝜆1
3cos(𝜃 + ∅)

− ∆5𝑓 − ∆6) (cosh𝜆1𝑥 − cos𝜆1𝑥) +

(−∆4
𝑎1cos𝜃 + 𝑏1sin𝜃

∆1𝐸𝐼𝜆1
3cos(𝜃 + ∅)

+ ∆7𝑓 + ∆8) (sinh𝜆1𝑥 − sin𝜆1𝑥)
]
 
 
 
 

∙ cos(𝜃 + ∅)

+ (
cos𝜔𝑡 + sin2𝜔𝑡

cos𝜔𝑡
cos𝜆1𝑥 − 1) cos(𝜃 + ∅) − sin2(𝜃 + ∅). 

(44) 

Accordingly, let 𝑥 = 𝑙, the displacement at the free end of the beam is obtained: 

𝑣𝑟(𝑙, 𝜃) = 𝑎1∆9cos𝜃 + 𝑏1∆9sin𝜃 + ∆10sin2(𝜃 + ∅) + ∆11 cos(𝜃 + ∅), (45) 

where: 

∆9=
(cosh𝜆1𝑙 − cos𝜆1𝑙) − ∆4(sinh𝜆1𝑙 − sin𝜆1𝑙)

∆1𝐸𝐼𝜆1
3 , (46) 

∆10= −∆5(cosh𝜆1𝑙 − cos𝜆1𝑙) + ∆7(sinh𝜆1𝑙 − sin𝜆1𝑙), (47) 

∆11= −∆6(cosh𝜆1𝑙 − cos𝜆1𝑙) + ∆8(sinh𝜆1𝑙 − sin𝜆1𝑙). (48) 

From equations (25)-(27) and (50), the following equations are obtained: 

𝑎1∆9cos𝜃1 − 𝑏1∆9sin𝜃1 − ∆10sin2(𝜃1 − ∅) + ∆11 cos(𝜃1 − ∅) = 𝛿, (49) 

𝑎1∆9cos𝜃1 + 𝑏1∆9sin𝜃1 + ∆10sin2(𝜃1 + ∅) + ∆11 cos(𝜃1 + ∅) = 𝛿, (50) 

𝑎1∆9 + ∆10sin2∅ + ∆11 cos ∅ = 𝑣𝑚𝑎𝑥 , (51) 

𝑏1∆9𝜔 + 2∆10𝜔cos2∅ − ∆11𝜔sin ∅ = 0. (52) 

Applying equation (51), let the maximum amplitude of the beam at the free end be 𝐴𝑚: 
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𝐴𝑚 = 𝑎1∆9 + ∆10sin2∅ + ∆11 cos ∅ = 𝑣𝑚𝑎𝑥 =
𝛿

cos𝜃1
. (53) 

Using equation (53): 

sin∅ = −
∆11
2 + ∆11√32∆10

2 + ∆11
2

8∆10∆11
 , (54) 

cos∅ = √−
∆11
2 −  16∆10

2 + ∆11√32∆10
2 + ∆11

2

32∆10
2  , (55) 

𝑏1 =
∆11 sin ∅ − 3∆10cos3∅

∆9
 . (56) 

Equation (14) can be nondimensionalized as:  

𝑔(𝜃)

𝑘𝐴
= 𝑥1 cos 𝜃 + 𝑦1 sin 𝜃 =

{
 
 

 
 
𝑘1
𝑘
(cos 𝜃 − cos 𝜃1), −𝜃1 < 𝜃 < 𝜃1,

0, 𝜃1 < 𝜃 < 𝜋 − 𝜃1,
𝑘1
𝑘
(cos 𝜃 + cos 𝜃1), 𝜋 − 𝜃1 < 𝜃 < 𝜋 + 𝜃1,

0, 𝜋 + 𝜃1 < 𝜃 < 2𝜋 − 𝜃1,

 (57) 

where: 

𝑥1 =
𝑎1
𝑘𝐴𝑚

,   𝑦1 =
𝑏1
𝑘𝐴𝑚

 . (58) 

Multiplying both sides of Equations (57) by cos𝜃  and sin𝜃  respectively, and integrating 

through the whole period of 2𝜋, the nondimensional coefficient 𝑥1 and 𝑦1 are obtained as follows: 

𝑥1 =
1

𝜋

𝑘1
𝑘
(𝜃1 − sin𝜃1cos𝜃1),   𝑦1 = 0. (59) 

The nondimensional amplitude at the free end of the beam is: 

𝛤 =
𝐴𝑚
𝛿
=
∆10sin2∅ + ∆11 cos∅

𝛿(1 − 𝑘𝑥1∆9)
=

𝑢𝑝

𝛿(1 − 𝑘𝑥1∆9)
,   (60) 

where: 

𝑢𝑝 = 2∆10sin∅ cos ∅ + ∆11 cos ∅, (61) 

𝑥 = 𝑥3𝑙,  𝛺 =
𝜔

𝜔1
,   𝑘 =

3𝐸𝐼

𝑙3
,   𝜆1

4 =
𝜌𝐴𝜔1

2

𝐸𝐼
 . (62) 

4. Numerical Results and Discussion 

Based on the expressions derived in Section 3, the numerical calculations are conducted in this 

section. The influence of such parameters as the gap between shrouds 𝛿, the mass ratio of the 

added mass to the beam mass 
𝑚

𝑚𝑏
 and the stiffness ratio 

𝑘1

𝑘
 on the dynamic responses at the free 

end of the beam is investigated in this section. 
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Fig. 3 shows a time history signal of the beam with a tip mass at the position (𝑥 = 𝑙) under 

the following parameters: the gap between shrouds 𝛿 = 0.001 m, the ratio of the added mass to 

the beam mass 
𝑚

𝑚𝑏
= 30 % (𝑚𝑏 denotes the mass of the beam, 𝑚𝑏 = 𝜌𝐴𝑙), the stiffness ratio, i.e. 

the spring stiffness divided by the beam stiffness 
𝑘1

𝑘
= 1, the length of the beam 𝑙 = 0.2 m, Young's 

modulus 𝐸 = 210 GPa, the second moment of inertia 𝐼 =  4.5×10-11 m4, the density of the beam 

𝜌 = 7800 kg/m3 and the frequency of excitation 𝜔 = 325. The dashed line in the figure denotes 

the critical condition between with impact and without impact. There is no impact between the 

two dashed lines and there are impacts when the displacement is above 1 or below –1. It can be 

seen from Fig. 3 that there is a double frequency as a result of the multiple-harmonic excitation. 

 
Fig. 3. Time history of the beam at the free end 

4.1. Gap Between Shrouds 

Fig. 4 shows how the nondimensional amplitude 𝛤 at the free end of the beam changes with 

the various frequency ratios 𝛺 under the different values of the gap between shrouds 𝛿: 0.1 mm, 

0.3 mm, 0.5 mm, 1.0 mm, 2.5 mm. Other parameters of the system are chosen as: the length of 

the beam 𝑙 = 0.2 m , Young's modulus 𝐸 = 210 GPa , the second moment of inertia  

𝐼 = 4.5×10-11m4, the density of the beam 𝜌 = 7800 kg m3⁄ , the stiffness ratio 
𝑘1

𝑘
= 1, the mass 

ratio 
𝑚

𝑚𝑏
= 0.3. It can be seen from Fig. 4 that the nondimensional amplitude 𝛤 is getting smaller 

as the gap between shrouds 𝛿 increases around the range from 0.1 mm to 2.5 mm when the other 

parameters are fixed. However, the relation between the gap and the amplitude is not linear. For 

the shrouded blades, the contact force which is approximated to the spring force is actually the 

constraint force. Different gaps lead to different moments when the constraint forces exert the 

shrouded blade; and lead to different contact states, especially the vibration shape for shrouded 

blade. Therefore, the relation (as seen in Fig. 4) between the gaps and the amplitudes emerges. In 

addition, the resonance frequency remains constant for the various gaps. It is reasonable to the 

fact that the gaps, i.e. one kind of the initial states, do not change the natural characteristics. The 

research on the influence of the gap gives an approach to analyze quantitatively responses and 

design the gap of the blade system. 
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Fig. 4. The influence of the gaps between shrouds on the response 

4.2. Mass Ratio 

 
Fig. 5. The influence of the mass ratio on the responses 

Fig. 5 shows how the nondimensional amplitude 𝛤 at the free end of the beam varies with the 

frequency ratios 𝛺 under the different values of the mass ratio 
𝑚

𝑚𝑏
: 0.1, 0.3, 0.5, 0.7, 1.2. Other 

parameters of the system are chosen as: the length of the beam 𝑙 = 0.2 m, Young's modulus  

𝐸 = 210 GPa , the second moment of inertia 𝐼 = 4.5×10-11m4 , the density of the beam  

𝜌 = 7800 kg m3⁄ , the stiffness ratio 
𝑘1

𝑘
= 1. It can be seen from Fig. 5 that the nondimensional 

amplitude 𝛤  is getting smaller as the mass ratio 
𝑚

𝑚𝑏
 increases from 0.1 to 0.3 when the other 

parameters are fixed; and then the amplitude 𝛤 increases as the mass ratio 
𝑚

𝑚𝑏
 increases from 0.3 

to 0.5. Finally, the amplitude 𝛤  decreases as the mass ratio 
𝑚

𝑚𝑏
 increases from 0.5 to 1.2. It 
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indicates that the mass of the shroud affects the dynamic characteristic of the shrouded blade 

system; and how to affect is much complicated. In this article, the mass of the shroud is regarded 

as a tip mass and it is related to the boundary condition. Different mass ratios lead to different 

boundary conditions and then lead to different vibration amplitudes. There are two values of  
𝑚

𝑚𝑏
= 0.3 and 1.2 when smaller amplitudes of vibration can be got. Because the mass of shroud is 

bigger than the blade when 
𝑚

𝑚𝑏
= 1.2, it is unavailable to adopt this value for an optimal shroud. 

Accordingly, there is an optimal value of 
𝑚

𝑚𝑏
=  0.3 for a best effect of vibration reduction. 

Moreover, the resonance frequency decreases as the mass ratio 
𝑚

𝑚𝑏
 increases. It is in accordance 

with the fact that the natural frequency is related to the mass and stiffness of the system. For the 

shrouded blade system, changing shroud means changing the mass of the system. Consequently, 

the resonance frequency is changed. The research on the influence of the mass ratio is essential to 

reduce vibrations and design shrouds. 

4.3. Stiffness Ratio 

 
Fig. 6. The influence of the stiffness ratio on the responses 

Fig. 6 shows how the nondimensional amplitude 𝛤 at the free end of the beam changes with 

the various frequency ratios 𝛺 under the different values of the stiffness ratio 
𝑘1

𝑘
: 0.2, 0.6, 1.0, 1.4, 

1.8. Other parameters of the system are chosen as: the length of the beam 𝑙 = 0.2 m, Young's 

modulus 𝐸 = 210 GPa, the second moment of inertia 𝐼 = 4.5 ×10-11m4, the density of the beam 

𝜌 = 7800 kg m3⁄ , the mass ratio 
𝑚

𝑚𝑏
= 0.3. It can be seen from Fig. 6 that the nondimensional 

amplitude 𝛤 is becoming smaller as the stiffness ratio 
𝑘1

𝑘
 increases around the range from 0.2 to 

1.8 when the other parameters are fixed. Increasing stiffness ratio 
𝑘1

𝑘
 means 1) increasing 𝑘1 only, 

2) decreasing 𝑘 only or 3) increasing the ratio value of 𝑘1 to 𝑘. For the situation 1) increasing 𝑘1 

means increasing the constraint force of the system, which restricts the vibration of system; for 

the situation 2) decreasing 𝑘 leads to decreasing the natural frequency of the system, vibration 

characteristics of the impact is changed; the situation 3) is similar to the situation 2). When the 
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stiffness ratio increases from 0.2 to 0.6, the amplitudes decrease sharply and then decrease 

moderately when the stiffness increases from 0.6 to 1.8. It is not appropriate choice that the 

stiffness ratio 
𝑘1

𝑘
= 0.2 is selected as the parameter of design, because of the bad effect of vibration 

reduction. In addition, the resonance frequency increases as the stiffness ratio 
𝑘1

𝑘
 increases. 

Increasing the stiffness ratio is actually to increase the relative stiffness of the system. Therefore, 

the resonance frequency increases. The research on the influence of the stiffness ratio gives an 

approach to analyze quantitatively responses and design the stiffness of the blade system. 

5. Conclusions 

The impact vibration of the shrouded blades for aircraft engines under a multiple-harmonic 

excitation is studied and the parametric analysis of the shrouded blade system is conducted to 

investigate the influence of the stiffness, the mass ratio and the gap between shrouds on the steady-

state responses of the system. An analytical model composed of springs and a cantilever beam 

carrying a lumped mass is developed to simulate the cyclic symmetry structure of the shrouded 

blade system. The model is exerted multiple-harmonic excitation forces to study the centrifugal 

force and the gas force during operation. The Euler-Bernoulli beam theory is utilized in deriving 

the equation of motion and the associated boundary conditions. An impact cycle is divided into 

six states to analyze the transition from one state to another state. An approximate analytical 

solution is obtained by using the Fourier series method. The major conclusions that can be drawn 

from this research work are given as follows: 

(1) The gap between shrouded blades in aircraft engines has significant influence on the 

dynamic behavior of the system. The amplitude of vibration for the shrouded blades is becoming 

smaller as the gap increases around certain range; and the relation between gap and amplitude is 

not linear. The gap affects amplitude of the shrouded blade system by changing the contact 

moment. The resonance frequency remains constant for the various gaps. This research on the 

influence of the gap gives an approach to analyze quantitatively responses and the research gives 

a direction to design the gap of the system. 

(2) The influence of the mass ratio of the shroud to the blade on the amplitude of the vibration 

is much complicated. The mass ratio affects the dynamic characteristics by changing the boundary 

conditions. There is an optimal value of the mass ratio 
𝑚

𝑚𝑏 
= 0.3 to get a best effect of vibration 

reduction. The resonance frequency decreases as the mass ratio increases. The research on the 

influence of the mass ratio is essential to design the damper mass and to get a good damping effect.  

(3) The ratio of the impact stiffness to the blade stiffness has important effect on the dynamic 

characteristics of the system. The amplitude of the vibration for the system decreases as the 

stiffness ratio 
𝑘1

𝑘
 increases. The three situations of increasing stiffness ratio are discussed and the 

causes of the amplitude change are analyzed. The resonance frequency increases as the stiffness 

ratio increases. The research on the influence of the stiffness ratio presents a method to analyze 

quantitatively response and resonance frequency for designing the stiffness of the shrouded blade 

system. 

(4) The parameters of the shrouded blade system: the gap between shrouds, the ratio value of 

the impact stiffness to the blade stiffness and the mass ratio of the shroud to the blade all affect 

the effect of vibration reduction. It is necessary to consider the parameters overall and adopt a 

prudent design of the parameter for the shrouded blade system. The approach used in this paper 

for the approximate analytical solution can be extended to study other continuous systems. 
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