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Abstract. The hydraulic damper has a great sense for impact machine to extend life and improve 

the environmental performance. The objective of this paper is to provide a systematic investigation 

to design or evaluation of a hydraulic damper used in the impact machine. A novel hydraulic 

damper using guiding sleeve to enlarge buffer chamber area is designed and manufactured by 

ingenious tactics. The performance of a prototype hydraulic damper is acquired by the test. A 

nonlinear thermal-hydraulic model for the hydraulic damper is presented by analyzing the internal 

fluid dynamic phenomenon and heat transfer with respect to the prototype. Comparisons between 

test data and simulation result confirm the validity of the thermal-hydraulic model. In the 

meantime, evaluation of the importance of some key factors using the model for designing is 

discussed. It shows the influence of orifice diameter, inner diameter of buffer chamber and setting 

pressure of the relief valve to hydraulic damper characteristics with large flow, which gives a 

theoretical basis to design and optimize hydraulic damper with large flow for impact machine. 

Keywords: hydraulic damper, thermodynamics, numerical analysis, dynamic characteristics. 

1. Introduction 

The impact cylinder with large flow is used commonly in fields of rock drilling, pile driving 

and forging. In working process of impact cylinders, the piston often strikes the cylinder cover 

with high speed, which produces a great impact force [1-3]. In order to avoid the piston strike the 

cylinder cover causing the damage to cylinder and equipment, a hydraulic damper is often set on 

the end of the stroke, so that the piston can stop moving smoothly without rebound. 

At home and abroad, the study on hydraulic damper is mainly focus on vehicle damper. Tan [4] 

analyzed shortcomings of measuring experiment for hydraulic damper, and presented a new 

experiment scheme making damping characteristics for hydraulic damper measured accurately 

and simply; Wang [5] established fluid formula for changeable damping characteristics of two 

commercial railway semi-active hydraulic dampers, and presented damping changeability design; 

Duym [6-7] investigated the problem of heat transfer for hydraulic damper, and proposed 

modelling method using heat transfer; Samantaray [8] established a thermal-hydraulic model for 

a preloaded liquid spring damper shock absorber using bond graph; Jiao [9] developed a 

mathematical model for the hydraulic damper, and analyzed the effects of structure parameters to 

shock waves. However, the object of these studies is hydraulic dampers using in vehicle. Little 

research of a hydraulic damper with large flow to impact machine is done. 

The piston in the impact machine is a high weight component with high speed. In order to 

decrease pressure impact in high speed, the hydraulic damper with large flow used in the impact 

machine often adopts throttle buffer in cylinder combining with the control of the relief valve 

outside the cylinder. In order to acquire the characteristics of the hydraulic damper with large flow 

applied widely in impact machine, the dynamic mathematic model of the hydraulic damper is 

established using fluid dynamics and thermodynamics theory [10] and also the simulation model 

using Simulink. Then, the influence of orifice diameter, inner diameter of buffer chamber and 

setting pressure of the relief valve to hydraulic damper characteristics with large flow is analyzed, 
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which gives a theoretical basis to design and optimize hydraulic damper with large flow for impact 

machine. 

2. Description of the novel hydraulic damper with large flow 

Hydraulic damper with large flow sets on the end of stroke. It is composed by the guide sleeve, 

spring, oil joint, stopper, floating piston, check valve, relief valve and so on, which is shown in 

Fig. 1(a). In order to make damper device produce certain damping force, the buffer chamber area 

should be ensured in a specified range. The guid sleeve makes buffer chamber area break through 

the structure limits. One end of the spring is fixed on an annular slot in the guide sleeve, and the 

other end of the stopper. Two check valves are designed on a floating piston. In the initial status, 

the floating piston contacts with cylinder jacket under a compression force of the spring. Buffer 

chamber connects chamber of rod in the cylinder through two check valves and the relief valve. 

Pressure oil can flow into the buffer chamber through the check valves [11-12]. 

High pressure oil in the buffer chamber can flow into chamber of rod in the cylinder through 

the relief valve or the oil joint. The mechanic model of the hydraulic damper is shown in Fig. 1(b). 

The hydraulic damper absorbs impact energy to avoid the breakage of the cylinder when the piston 

of impact cylinder strikes on floating piston. The floating piston compress the buffer chamber, 

and the increased pressure in buffer chamber flow into tank, which makes the impact energy 

absorbed by orifice in the oil joint. If the pressure in the buffer chamber achieves the set pressure 

of the relief valve, the relief valve is opened to protect the buffer chamber. 

 
1 – dust seal, 2 – cylinder cover, 3 – guide sleeve, 4 – spring,  

5 – stopper, 6 – piston, 7 – cylinder jacket, 8 – oil joint,  

9 – floting piston, 10 – check valve, 11 – relief valve 

a) Structure of hydraulic damper 

 
 

 
b) Mechanical model  

of hydraulic damper 

Fig. 1. Structure and mechanical model of hydraulic damper 

3. Experimental results of the working characteristics of the hydraulic damper 

3.1. Experimental set-up 

The hydraulic damper is set on the end of the impact cylinder of ZCY hydraulic pile hammer, 

and Fig. 2 shows the experimental set-up. The impact cylinder is a single-piston-rod. The upper 

chamber is filled with nitrogen and the lower chamber is connecting to a hydraulic control system. 

In the initial condition, the volume of the chamber is ��, �� = 0.06 m3, the nitrogen pressure in 

the chamber is �� , �� =1.7 MPa. In the test, impact velocity is measured indirectly through 

pressure measurement of nitrogen chamber [13]. The pressure and temperature in the hydraulic 

damper are acquired through the temperature and pressure integrated sensor. 
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Fig. 2. Experimental set-up for dynamic testing 

 
a) Pressure in nitrogen chamber 

 
b) Impact velocity of hammer 

 
c) Pressure in hydraulic damper 

 
d) Temperature in hydraulic damper 

Fig. 3. Test results of performances for hydraulic damper 
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3.2. Performance of the hydraulic damper 

In the dynamic test, the pressure of hydraulic system is set to 21 MPa, which can ensure the 

working of the hammer. The measurement is started by making hydraulic pile hammer working 

without pile, which causes the hydraulic damper to absorb the impact energy. Fig. 3 illustrates the 

performance of the hydraulic damper. The max terminate velocity of the impact cylinder is almost 

to 5.73 m/s. The impact cylinder stroke on the hydraulic damper at 2.176 s, and the max pressure 

in the hydraulic damper reached to 33.7 MPa. The pressure in the hydraulic damper began to 

decline at about 2.196 s in the end of the cushion process. In this process, the highest temperature 

of oil in the damper reached to 34.65 ºC increased nearly 1 ºC. Therefore, the hydraulic damper 

to complete the process of energy absorption takes about 20 ms, far less than the working cycle of 

a pile hammer, which can meet the requirements of pile hammer to buffer mechanism. The change 

of temperature in the damper is very big, which would decline the performance of the damper. In 

analysis of performance for the hydraulic damper, it is necessary to consider the influence of 

temperature based on thermodynamics. In Fig. 3, all graphs are contaminated with noise. The 

source of noise may be the sensors and the measurement system, or the structure itself. In the static 

tests, the system pressure is set to 5 MPa which can not make the hammer move upward, the 

signals of pressure and temperature collected are held on constant values. However, there is a 

vibration of the structure in the working process of impact, which makes the connecting leads 

vibrate. The vibration of the leads results in the variation of the junction resistance of terminal, 

which make the noise which appeared in the collection. Hence, the noise is mainly caused by the 

structural vibration. 

4. Thermal-hydraulic modelling of the hydraulic damper with large flow 

4.1. Mathematics model of the hydraulic damper with large flow 

(1) Thermal-hydraulic model for buffer chamber 

The mass of liquid in the chamber is given by: 

� = ���, (1)

where � is the mass of liquid in the chamber, kg; � is the fluid density, kg/m3; and ��  is the 

volume of the chamber, m3. 

Considering the effect of temperature, the differential of buffer chamber pressure is given as 

Eq. (2): 

��� =
1� �����	��


�� − � �����	�� ����, (2)

where �� is the buffer chamber pressure, Pa; �� is the temperature of the buffer chamber, K. 

Using the definition of the isothermal bulk modulus � and cubical expansion coefficient, we 

can get: 

���
��� = � ������ 	

��

,

�� = −
1� � �����	�� .

 (3)

Combining Eq. (2) gives: 
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��. = � � 1��� ��. − ���. � + ����. �, (4)

where �. � is the rate of pressure in the buffer chamber, Pa/s; �.  is the rate of liquid density in the 

buffer chamber, kg/(m3s); ��.  is the rate of temperature in the buffer chamber, K/s. 

Using the flow continuity equation, we can get: 

�. = ∑�. �� − ∑�. ��	, (5)

where �.  is the rate of liquid mass in buffer chamber, kg/s; �. �� is the rate of liquid mass flowing 

into buffer chamber, kg/s; �. ��	 is the rate of liquid mass flowing out of buffer chamber, kg/s. 

Combing Eq. (4), the rate of pressure in the buffer chamber is given as follows: 

��. = � � 1��� (∑�. �� − ∑�. ��	 − ���)
.

.

+ ����. �. (6)

The liquid model in buffer chamber is shown in Fig. 4. The kinetic and potential energy for 

one-dimensional flow of fluid is very little, which can be ignored. Therefore, the corresponding 

ordinary differential equation for fluid energy in buffer chamber is: 

�. −�. = �. + ∑�. ��	ℎ��	 − ∑�. ��ℎ��, (7)

where � is the heat flowing into liquid in buffer chamber from outside, J; � is the liquid energy 

in buffer chamber, J; � is the work except for the work required to push mass into and out of the 

buffer chamber, J; ℎ�� is the enthalpy on inlet of buffer chamber, J/kg; ℎ��	 is the enthalpy on 

outlet of buffer chamber, J/kg; the dot over a symbol is used to indicate time rate of change. 

 
Fig. 4. Liquid model in buffer chamber 

The liquid energy in buffer chamber is calculated by: 

� = ��, (8)

where � is the mass of liquid in buffer chamber, kg; � is the special internal energy, J/kg. 

The enthalpy is defined as: 

ℎ = � +
��, (9)

where ℎ is liquid enthalpy, J/kg; � is the liquid pressure, Pa; � is the liquid density, kg/m3. 

Since the liquids in cushion do not change phase, the specific enthalpy can be expressed as a 

function of temperature �� and pressure ��, that is ℎ = ℎ(�� , ��). So the time derivative of ℎ can 

be expressed as: 
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ℎ
.

= � �ℎ���	�� ��. + � �ℎ���	�� ��. . (10)

The first term in Eq. (10) is recognized as the specific heat at constant pressure ��: 

�� = � �ℎ���	��. (11)

Combining Eq. (2), Eq. (3) and Eq. (10), gives: 

� �ℎ���	�� =
1� �1 − ����. (12)

Combining Eq. (7) gives: 

�. = �����. −
1��������. + ℎ�. − ���.  , (13)

where �.� is the rate of volume in the buffer chamber, m3/s; �.  is the rate of liquid mass in the 

buffer chamber, kg/s. 

Combining Eq. (5) and Eq. (7) gives: 

�. =
1����∑�. ���ℎ�� − ℎ� + ∑�. ��	�ℎ��	 − ℎ� + �. −�. − ���.� +

1�������. �, (14)

where �. = �. 
 +�. � = �. 
 + ���. , �
 is shaft work, and �� is boundary work, and the dot over 

a symbol is used to indicate time rate of change. 

Therefore, we can get: 

�. =
1����∑�. ���ℎ�� − ℎ� + ∑�. ��	�ℎ��	 − ℎ� + �. −�


.

+
1�������. �. (15)

Since the enthalpy on inlet and outlet of the buffer chamber is the same [14-16], the Eq. (15) 

can be simplified as follows: 

�. =
1����∑�. ���ℎ�� − ℎ� + �. −�


.

+
1�������. �. (16)

(2) Model of relief valve and throttle hole 

According to flow continuity equation, the flux through the relief valve ��� is calculated by: 

��� = �0, �� < ��
	 ,

����� 2� (�� − ��), �� ≥ ��
	 ,
 (17)

where ��� is the flow coefficient of the relief valve; �� is the flow area of the relief valve, m2; � 

is the liquid density, kg/m3; ��  is the pressure in the buffer chamber, Pa; ��  is the return oil 

pressure, Pa. 

The waste energy through the relief valve can be calculated as follows by the energy equation: 
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�. � = ��� − ������, (18)

where �. � is waste power through relief valve, W; �� is the pressure in the buffer chamber, Pa; �� 

is the return oil pressure, Pa; ��� is the flux through the relief valve, m3/s. 

The flux ��� flowing through throttle hole with thin-wall is calculated by: 

��� = ��� !
4
����  2� (�� − ��), (19)

where ��� is the flow coefficient of throttle hole; ��� is diameter of throttle hole, m; � is the liquid 

density, kg/m3; �� is the pressure in the buffer chamber, Pa; �� is the return oil pressure, Pa. 

According to energy equation, the waste energy through throttle hole is given by: 

�. �� = ��� − ������, (20)

where �. �� is waste power through throttle hole, W; �� is the pressure in the buffer chamber, Pa; �� is the return oil pressure, Pa; ��� is the flux through throttle hole, m3/s. 

(3) Model of floating piston movement 

The mass of hammer is so greater than the floating piston that the mass of floating piston can 

be ignored. The movement equation of floating piston according to Newton’s second law is given 

by: 

��".. = ��# − �� !
4
�$�

� − ���� − %��"� + "�, (21)

where ��  is mass of pile hammer, kg; "  is the displacement of floating piston, m; ��  is the 

pressure in buffer chamber, Pa; $� is the inner diameter of buffer chamber, m; �� is the diameter 

of piston rod, m; %� is the stiffness of spring in buffer chamber, N/m; "� is the initial compressor 

in buffer chamber, m. 

(4) Thermal-hydraulic model of the damper 

The initial liquid volume is expressed as: 

��� =
!
4
�$�

� − ����&� , (22)

where ���  is the initial volume of buffer chamber, m3; $�  is the inner diameter of the buffer 

chamber, m; �� is the diameter of the piston rod, m; &� is the length of buffer chamber, m. 

Combining Eq. (21), the liquid volume �� of buffer chamber at any time is given by: 

�� = ��� −
!
4
�$�

� − ����", (23)

where ��� is the initial volume of buffer chamber, m3; $� is the inner diameter of buffer chamber, 

m; �� is the diameter of the piston rod, m; " is the displacement of floating piston, m. 

The floating piston moving downward makes the liquid in buffer chamber flow out. The flux �� flowing out in theory is given by: 

�� =
!
4

($�
� − ���)". , (24)

where $� is the inner diameter of buffer chamber, m; �� is the diameter of the piston rod, m; " is 
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the displacement of floating piston, m. 

The flux �� flowing out in practice is given by: 

�� = ��� + ���, (25)

where �� is the flux flowing out of the buffer chamber, m3/s; ��� is the flux flowing out of buffer 

chamber through relief valve, m3/s; ��� is the flux flowing out of buffer chamber through throttle 

hole, m3/s. 

For analyzing simple, the four variables of ', (, ) and � are defined as follows: 

���
��
���
�' =

���� ��� − ���,
( =

������ ,

) =
1���� ��. � +�. ���,

� =
����������� ,

 (26)

where � is isothermal bulk modulus, Pa; �� is cubic expansion coefficient, K-1; �� is the liquid 

volume of buffer chamber at any time, m3; �� is the flux flowing out of buffer chamber in theory, 

m3/s; �� is the flux flowing out of buffer chamber in practice, m3/s; � is the liquid density, kg/m3; �. �� is waste power through throttle hole, W; �. � is waste power through relief valve, W; �� is 

specific heat at constant pressure, J/(kg∙K); �� is the temperature at any time, K. 

Combining Eq. (26) with Eq. (16), gives: 

*�. � = ' + (�.�,�.� = ) + ��. �.
 (27)

The mathematic models of hydraulic damper with large flow are described by Eq. (17) to 

Eq. (27). 

4.2. Simulation model of hydraulic damp with large flow 

The thermal-hydraulic model of hydraulic flow with large flow is complexity. The subsystem 

package is used to decrease the complexity. According to Eq. (26) the variables ', (, ) and � are 

packaged. The simulation model of a hydraulic damper using these sub models is established as 

Fig. 5 shown. In Fig. 5, block ���  and ���  are the packaged sub models of the pressure and 

temperature changing for buffer chamber, respectively, which are established according to 

Eq. (27). Block ��� is the packaged sub model of the throttle hole, which is created according to 

Eq. (19) and Eq. (20). Block ���  is the packaged sub model of the relief valve, which is 

established according to Eq. (17) and Eq. (18). Block piston movement is the packaged sub model 

of floating piston movement created according to Eq. (21). 

4.3. Comparison between the experimental results and simulation 

The characteristics of the hydraulic damper with large flow are analyzed by solving the 

simulation model using ODE45 differential equation solver with the relative tolerance setting to 

0.0001, which adopts a variable step Runge-Kutta method in four or five order. According to the 

test, the relative parameters of the simulation are shown as Table 1, and the simulation results of 
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performance are shown in Fig. 6. 

 
Fig. 5. Simulation model of hydraulic damper with large flow 

Table 1. Computational parameters of the hydraulic damper 

Parameter Symbol Value Parameter Symbol Value 

Flow coefficient of  

relief valve 
��� 0.82 

Flow coefficient of  

throttle hole 
��� 0.8 

Diameter of throttle hole / m ��� 5×10-3 Density of oil / kg∙m-3 � 872 

Initial pressure of  

buffer chamber / Pa 
��� 1.3×107 

Set pressure of  

relief valve / Pa 
����� 2.5×107 

Flow area for  

relief valve / m2 
�� 7.2×10-3 

Inner diameter of  

buffer chamber / m 
�� 0.36 

Isothermal bulk  

modulus / Pa 
�	 7×108 

Cubical expansion  

coefficient / K-1 
	
 6.5×10-4 

Special heat of oil / J∙Kg-1∙K-1 �
 7949.6 Initial temperature / ºC 
�� 33 

Initial compress of spring / m �� 0.1 Spring stiffness / N∙m-1 �� 2×104 

Mass of pile hammer / kg � 7000 Diameter of rod / m �� 0.15 

Impact velocity / ms-1 �� 5.73 Return oil pressure / Pa �� 1×106 

 

 
a) Pressure in hydraulic damper 

 
b) Temperature in hydraulic damper 

Fig. 6. Simulation results of the performance for hydraulic damper 
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The hydraulic damper takes about 20.6 ms to complete the process of energy absorption, which 

is 0.6 ms longer than the test results with the relative error of 3 %. In the process, the highest 

temperature in the hydraulic damper reached to 34.04 ºC, which is 1.04 ºC higher than the initial 

temperature. There is a difference in the initial time of energy absorption that is caused by the 

moving time for the cylinder to strike the damper. The numerical simulation can simulate the 

actual performance of the hydraulic damper in approximate by contrasting the experimental results 

and the numerical simulation, which verified the correctness of the thermal-hydraulic model. 

5. Evaluation of some key factors by using the thermal-hydraulic model 

5.1. Throttle hole diameter 

Changing the value of throttle hole diameter ��� , the curves of velocity, displacement, 

acceleration of floating piston and pressure for buffer chamber are acquired as Fig. 7(a-d) shown, 

respectively. With the throttle hole diameter increasing, the required time of floating piston 

velocity reduced to 0 is basically the same, approximately 20.6-20.7 ms, and the working stroke 

is basically the same too, about 124.2 mm; the mutation time of floating piston acceleration moves 

up, and the floating piston velocity increased at this time. Therefore change of the throttle hole 

diameter has little effects on working time and stroke; the time for buffer chamber pressure 

increased to the setting pressure of relief valve increase with the increase of the throttle hole 

diameter, and also the damping effect of throttle hole. In other words, the working scope with soft 

characteristic increased with the throttle hole diameter increasing. 

 
(a) Velocity of floating piston 

 
(b) Displacement of floating piston 

 
(c) Acceleration of floating piston 

  
(d) Pressure for buffer chamber 

Fig. 7. Effect of throttle hole diameter ��� 
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5.2. Inner diameter of buffer chamber 

Changing the value for the inner diameter of the buffer chamber $�, the curves of velocity, 

displacement, acceleration of floating piston and pressure for buffer chamber are acquired as 

Fig. 8(a-d) shown, respectively. With the inner diameter increasing, the working time of cushion 

reduces from 21.7 ms to 10.3 ms; the working stoke of cushion reduces from 130.69 mm to 

55.81 mm; the maximum impact acceleration of the cushion increases from 28.6 to 86.4 times of 

gravity acceleration; the buffer chamber pressure of the cushion increases from 25.7 MPa to 

48.7 MPa. Inner diameter has great effects to characteristic of the hydraulic damper. With the 

inner diameter increasing, the working time and stroke of cushion are reduced. However, the 

increased inner diameter makes buffer chamber pressure increased too, which may cause breakage 

of the seal for buffer chamber. Therefore, inner diameter should be chosen the maximum value 

under the permission pressure of buffer chamber. 

  
(a) Velocity of floating piston 

 
(b) Displacement of floating piston 

 
(c) Acceleration of floating piston 

   
(d) Pressure for buffer chamber 

Fig. 8. Effect of inner diameter �� 

5.3. Setting pressure of the relief valve 

Changing the setting pressure of the relief valve, the curves of velocity, displacement, 

acceleration of floating piston and pressure for buffer chamber are acquired as Fig. 9(a-d) shown, 

respectively. With the set pressure increasing, the working time of cushion reduces from 26.8 ms 

to 20.6 ms; the working stroke of cushion reduces from 140.2 mm to 124.2 mm; the maximum 

pressure fluctuation reduces from 17 MPa to 1.2 MPa. The maximum impact acceleration of the 

cushion reduces from 38.8 to 28.5 times of gravity acceleration when the set pressure increases 



1036. THERMAL-HYDRAULIC MODELLING AND ANALYSIS OF HYDRAULIC DAMPER FOR IMPACT CYLINDER WITH LARGE FLOW.  

Y. GUO, C. P. LIU, B. W. LUO 

  VIBROENGINEERING. JOURNAL OF VIBROENGINEERING. SEPTEMBER 2013. VOLUME 15, ISSUE 3. ISSN 1392-8716 1219 

from 16 MPa to 22 MPa, and increases to 30.4 times of gravity acceleration when the set pressure 

increases from 22 MPa to 25 MPa. Therefore, the setting pressure of the relief valve also has a 

great effect to characteristic of hydraulic damper. With the setting pressure increasing, the working 

time and stroke, and the pressure fluctuation reduces. The maximum impact acceleration reaches 

the minimum when the set pressure is 22 MPa. 

  
(a) Velocity of floating piston 

 
(b) Displacement of floating piston 

 
(c) Acceleration of floating piston 

  
(d) Pressure for buffer chamber 

Fig. 9. Effect of setting pressure ����� 

6. Conclusions 

Basing on analyzing structure and working principle of a hydraulic damper with large flow, 

considering the effects of temper, a thermal-hydraulic model for the hydraulic damper has been 

proposed using thermodynamics and fluid dynamics theory. The effects of some parameters to 

characteristics of the hydraulic damper with large flow have been simulated, and the results are 

shown as follows: 

(1) Change of the throttle hole diameter has little effects on working time and stroke. The time 

for buffer chamber pressure increased to the setting pressure of the relief valve can be extended 

by increasing the throttle hole diameter, and also the working scope with soft characteristic. 

(2) The inner diameter has great effects to characteristic of the hydraulic damper. With the 

inner diameter increasing, the working time and stroke of cushion are reduced. However, the 

increased inner diameter makes buffer chamber pressure increased, which may cause breakage of 

the seal for buffer chamber. 

(3) The setting pressure of the relief valve also has great effect to characteristic of hydraulic 

damper. With the set pressure increasing, the working time and stroke, as well as the pressure 
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fluctuation reduce.  
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