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Abstract. A single cylinder engine with ability to controlled auto-ignition (CAI) combustion was 

used in order to study cycle-by-cycle combustion variability. The engine was operated in negative 

valve overlap (NVO) mode resulting with an internal gas re-circulation. Direct gasoline injection 

was applied in a single dose during the NVO period. Various intake pressures were applied, 

ranging from atmospheric aspiration to 0.15 MPa boost pressure. The combustion timing was 

examined in terms of 5 % mass fraction burnt (MFB). Experimental results showed that cyclic 

variations of 5 % MFB demonstrate deterministic oscillations under boosted operation. 

Cycle-by-cycle variability was associated with NVO heat release feedback to the main 

combustion process. Moreover intermittent combustion behavior was demonstrated with the use 

of recurrence plots. 

Keywords: controlled auto-ignition, negative valve overlap, cycle-by-cycle variability, 

recurrence plots.  

1. Introduction 

The main advantage of controlled auto-ignition (CAI) combustion systems versus spark 

ignition and Diesel engines is substantial reduction of cylinder-out NOX emission. Additionally 

fast heat release rate allows for increase of thermal efficiency in comparison to spark ignition 

engines.  

In order to obtain the auto-ignition of gasoline or other high octane number fuels, the 

temperature at the end of compression should be elevated above the level attainable in spark 

ignition or Diesel engines. Thus it is necessary to provide additional energy to the in-cylinder 

load. It can be achieved in several ways. In the early experiments on this combustion system 

intake air preheating was widely used, often combined with increased compression ratios. 

However this technique is not applicable in production automotive engines. Application of high 

compression ratio is limited due to the need of switching the engine combustion mode to 

traditional spark ignition at high load operation regime. The most production feasible solution for 

introducing additional energy into the cylinder is internal exhaust gas trapping via a negative 

valve overlap (NVO). In order to trap sufficient amount of exhaust in the cylinder, exhaust valve 

is closed before top dead centre (TDC) in an exhaust stroke and intake valve opening is delayed 

symmetrically.  

Considering specific principles of CAI engine operation, approach to the cyclic variability 

should be verified as well. The amount of trapped residuals and their temperature are main factors 

determining combustion timing [1-3]. Also in-cylinder conditions during intake process affect 

amount of fresh air which enters the cylinder. As a result, thermal balance between trapped 

residuals and intake air determines compression temperature histories in individual cycles.  

Application of fuel injection during the NVO period introduces further complexities into the 

cyclic variability mechanisms. Early NVO injection enables fuel reforming, which is an 

endothermic process and causes drop of in-cylinder temperature. However NVO injection into 

exhaust with some amount of oxygen, produced by lean mixture combustion, can lead to heat 

release during the NVO period, thus increasing in-cylinder temperature. 
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In general CAI engines reveal much lower cycle-by-cycle variability in terms of indicated 

mean effective pressure (IMEP) [4]. However this improvement results from short combustion 

period taking place at almost constant volume. In fact cyclic variations in start of combustion 

(SOC) timing are much higher than in Diesel or spark ignition engines where SOC is forced via 

fuel injection or spark discharge. 

In recent years researchers put their attention to combustion stability in CAI engines. The 

variations between consecutive cycles seem to be a key process which allows for self-regulation 

of in cylinder mixture composition and its thermodynamic properties. 

Daw et al. [5] and Sen et al. [2] demonstrated deterministic patterns of cyclic variations of 

heat release rate in CAI engine. It was assumed that cyclic variations result mainly from nonlinear 

internal EGR feedback. 

Recently Ghazimirsaied and Koch [6] developed an algorithm enabling prediction of 

combustion timing one cycle ahead on the base of peak pressure crank angles from two previous 

cycles. They have also demonstrated peak pressure patterns at engine operation close to misfire 

limit. 

The aim of the present study was analysis of start of combustion timing behaviour under 

constant fuelling and variable air excess ratio conditions. Variable excess ratio was achieved via 

boost application. The experimental engine was operated in the NVO mode and fuel was injected 

directly into the cylinder during exhaust re-compression. Such an experimental scheme enabled 

the authors to study the effects of NVO phenomena on auto-ignition timing in terms of 

cycle-by-cycle variability. 

2. Experimental apparatus and measurement equipment 

The main parameters of a single-cylinder research engine are presented in Table 1. The engine 

was installed on a test bed utilizing a direct current dynamometer. The engine was equipped with 

fully variable valve train with independent regulation of valve lifts and timings. Regulation of 

valve lifts was achieved with the use of hydraulic mechanism. Fully variable valve train allowed 

the authors to obtain internal EGR via the NVO technique. 

Table 1. Research engine specifications 

Parameter Value 

Displaced volume 498.5 cm3 

Bore 84 mm 

Stroke 90 mm 

Compression ratio 11.7 

No. of valves  2 

Intake cam profile  9.4 mm, 235 °CA 

Intake valve lift 2.4–9.4 mm 

Exhaust cam profile 9.2 mm, 235 °CA 

Exhaust valve lift 2.2–9.2 mm 

Fuel injector Solenoid actuated, swirl type 

Supercharger  Electrically driven vane compressor 

Fuel was applied into the cylinder with the use of a single-stream swirl-type injector with fuel 

stream angle of approximately 70°. Injector was inclined by 38° in relation to the cylinder axis 

tangentially to the swirl generated by the shape of the intake port. Combustion chamber design 

and injector characteristics were extensively described in reference [7]. Intake pressure was 

elevated with the use of a vane compressor driven by electric motor. Fuel consumption was 

measured via a fuel balance. Indicated pressure was measured using piezoelectric transducer of 
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type GH 12D from AVL cooperating with charge amplifier from the same manufacturer. 

3. Experimental conditions and procedure 

The examinations were carried out at constant rotational speed of 1500 rev/min and wide open 

throttle. The engine was fuelled with gasoline (95 research octane number) from a single batch. 

Fuel pressure, measured in the fuel rail, was set to 10 MPa. Valves lifts were reduced to 3.6 mm 

for inlet valve and 2.9 mm for exhaust valve in order to realize NVO. Valves timings were 

constant and specified in Table 2, where 0 °CA was at top dead centre during NVO. 

Table 2. Experimental engine configuration 

Parameter Value 

IVO 85 °CA 

IVC 215 °CA 

Intake valve lift 3.6 mm 

EVO 516 °CA 

EVC 635 °CA 

Exhaust valve lift 2.9 mm 

NVO 190 °CA 

Mass of fuel 13 mg 

Injection timing 40 °CA BTDC 

The intake pressure was varied form atmospheric level to 0.15 MPa at constant fuel dose equal 

13 mg. Fuel was injected during exhaust compression, where start of injection was set to 40 °CA 

before TDC. 

Analysis of the results was based on the measured indicated pressure. At each engine 

operation point pressure was recorded for 100 consecutive cycles with constant crank angle 

resolution of 0.1 °CA. The values which characterized combustion process in crank angle domain 

were derived from heat release rate curves calculated using the first thermodynamic law: 

���  =
�

� − 1
��� +

1

� − 1
���, (1)

where � and � are crankshaft resolved in-cylinder pressure and volume respectively. Specific 

heats ratio (�) was calculated as a function of volume averaged in-cylinder temperature, which 

was derived from the ideal gas equation of state: 

� =
��
�� , (2)

where �  is entire in-cylinder mass including aspirated fresh air, retained exhaust and fuel. 

Crankshaft resolved gas constant (�)  was calculated considering instantaneous in-cylinder 

air-exhaust-fuel mixture composition. The mass of trapped residuals was calculated using the 

ideal gas equation of state based on the in-cylinder pressure, volume above the piston and exhaust 

temperature measured close to the exhaust valve. 

On the basis of cumulated heat released in the combustion chamber, mass fraction burnt (MFB) 

was estimated. A crank angle position at 5 % of MFB was used to refer the start of combustion.  

4. Experimental results 

Figure 1 presents in-cylinder pressure and calculated temperature at two boost conditions, i.e. 
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aspiration under ambient pressure and at boost pressure of 0.14 MPa. Pressure and temperature 

curves for the highest applied boost pressure could not be presented due to cycle-by-cycle 

variability for these conditions. 

At the naturally aspirated operation stoichiometric mixture during the main combustion was 

achieved. As a result only limited quantity of oxygen was trapped during the NVO period. Fuel 

injection into soichiometric residuals resulted in drop of peak NVO temperature, as shown in 

Fig. 1a. The drop of temperature was an effect of fuel vaporization and steam reforming process. 

Contrarily, at boost pressure of 0.14 MPa an increase of exhaust-fuel mixture temperature after 

fuel injection can be observed (Fig. 1b). In this case air excess ratio was 1.4, thus there was 

oxygen availability during the NVO period. As a result heat release took place, which affected 

temperature during fresh air intake and, in consequence, compression temperature.  

 
Fig. 1. In cylinder pressure and temperature at ambient:  

(a) intake pressure and (b) 0.14 MPa boost pressure 

In order to depict how boost pressure and resulting air excess ratio affect cycle-by-cycle 

variability in auto-ignition timing data series of 5 % MFB were presented in Fig. 2. Figure 3 

shows return maps for 5 % MFB to better exhibit correlations between consecutive cycles. In the 

case of atmospheric intake relatively high cycle-by-cycle variability can be observed. It is 

plausible that at atmospheric aspiration intake air mass is more variable than at boosted cases, 

even without excessive NVO heat release. At lower boost pressures auto-ignition exhibited very 

low level of cyclic variability. Standard deviation of 5 % MFB at boost pressure of 0.11 MPa was 

only 0.9 °CA. However increase of intake pressure resulted in an increase of cyclic variability. 

For intake pressure of 0.14 MPa oscillations of auto-ignition timing can be observed, however 

they are attenuated after some number of cycles. In the case of boost pressure of 0.15 MPa early 

and late auto-ignition angles appeared alternatively. In this case heat release during the NVO in 

consecutive cycles alternated between low and high values. As a result, auto-ignition followed 

by NVO was correlated with heat release during this event. The effect of NVO work on the 

subsequent main event auto-ignition angle was shown in Fig. 4. A plausible conclusion could be 

drawn that variability in NVO heat release resulted from variations in oxygen availability during 

the NVO period. High NVO heat release caused drop in intake air quantity, thus higher 

temperature accelerated auto-ignition. Also such a cycle was characterized by lower main event 

air excess and resulting higher combustion temperature. As a result higher exhaust temperature 

reduced mass of trapped residuals in the following cycle, additionally containing less oxygen. 

The straight forward consequence was higher volumetric efficiency of the next cycle, lower 

temperature and later auto-ignition.  
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Fig. 2. Data series of crank angle at 5 % of MFB for different boost pressures indicated in the figures 

  
Fig. 3. Return map of crank angle at 5 % of MFB  

for different boost pressures 

Fig. 4. Crank angle at 5 % of MFB versus NVO 

indicated work for different boost pressures 

5. Recurrence analysis  

Recurrence plots analysis, introduced in 1987 by Eckmann et al. [8] is a simple and useful 

method based on the Takens embedding theorem [9], often utilized for examining short time 

series. This approach reconstructs multidimensional phase space from single dimensional time 



1025. COMBUSTION TIMING VARIABILITY IN A LIGHT BOOSTED CONTROLLED AUTO-IGNITION ENGINE WITH DIRECT FUEL INJECTION.  

JACEK HUNICZ, MICHAL GECA, ANDRZEJ RYSAK, GRZEGORZ LITAK, PAWEL KORDOS 

1098  VIBROENGINEERING. JOURNAL OF VIBROENGINEERING. SEPTEMBER 2013. VOLUME 15, ISSUE 3. ISSN 1392-8716  

series. Considering 	-length time series in the form: 


��, ��, . . . , ���, (3)

we get 	 − (� − 1)
 length time series of vectors: 

�����, ����, . . . , �����, (4)

where: 

���� = ���, ����, . . . , �����	�
��. (5)

In our analysis we extend one dimensional time series into two dimensional phase space 

placing dimension � = 2 and time delay 
 = 1. Recurrence plots are graphical representation of 

� × � matrices ���, calculated using the Heaviside function �, as: 

��� = ��� − ����� − ������, (6)

�  is a threshold value. Recurrence plots figures assign ”black” points to � , �  for which  

��� =  1 and “white” points otherwise. Indexes �  and �  number time steps of the series. 

Recurrence plot analysis is described in detail in Marwan et al. review article [10]. 

 
Fig. 5. Recurrence rate �� versus the threshold � for various boost pressures indicated in the figure.  

Note that this plot can differentiate various cases with different boost pressure 

For all the data we calculated recurrence plots for several values of threshold parameter � 

changing from 0.24 to 2.4 with step 0.24. � is measured in units of standard deviation of pressure 

variation. Despite low number of data points in analyzed data series, recurrence plots differ one 

from the other comparing figures obtained for the same � value (different series) and for different 

� (the same series).   

In the next figures recurrence plots are shown as obtained for each time series for the same 

parameter � = 0.72. Square-like and other characteristic shapes are visible on the plots indicating 

intermittencies existing in the investigated data series. For every recurrence plot coefficient �� 

was calculated according to the formula: 
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�� = � ���

�,�(�
�)

=
	�� − �
�(� − 1)

 , (7)

where 	�� denotes total number of black points in the recurrence plot. Dependencies ��(�) for 

all data series are plotted in Fig.  6.  

  

  

  
Fig. 6. Examples of recurrence plots for different boost pressure for the chosen threshold value (Fig. 5) 

As it can be seen, all curves are similar in shape and values. However in the selected regions 

the particular curves are shifted. This effect was investigated earlier in technical systems [11, 12] 

and suggested as a criterion for fault identification, reflected by process instabilities or 

intermittent behavior. The largest differences are at the � = 0.72 value, marked by the vertical 
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line, as shown in Fig. 5.  

Application of boost strongly influences cycle-to-cycle combustion variability, making more 

effective negative correlation of successive cycles (see Fig. 2). By increasing boost pressure we 

observe the transition from fairly stochastic distribution (Fig. 6, boost pressure of 0.10 and 

0.11 MPa) to more deterministic features (Fig. 6, boost pressure of 0.14 and 0.15 MPa). Namely, 

in the last two cases the intermittency between two different combustion process evolutions with 

early and late auto-ignition angles is exhibited.  

The observed variations in combustion process results from internal EGR feedback. In general 

high EGR rate deteriorates cycle-by-cycle stability due to mixture dilution and imperfect mixing 

of fresh air with residuals [13-22]. In the case of CAI engine cycle, internal EGR can be treated 

as a carrier of close loop relationships between consecutive cycles. The profound mechanism of 

cyclic variability consists of heat release process during the NVO period, thus boosts application 

and resulting increase of air excess ratio enhances deterministic behaviours. 

Similar features under different conditions were studied for spark ignition engines, including 

natural gas and gasoline, and Diesel engines [19, 23-24]. Interestingly, intermittency 

distinguishes homogeneous charge compression ignition engines from spark ignition or Diesel 

engines [5]. A deterministic destabilization of a combustion process which could be detected by 

the recurrence rate parameter �� (Fig. 5) should be studied deeper, as it can be a key factor 

deteriorating combustion stability. It should be noted that elimination of cyclic variability in 

combustion engines could increase thermal efficiency up to 10 % [14]. 

6. Conclusions 

We studied the cycle-by-cycle variations in boosted CAI engine in terms of auto-ignition 

timing variations for variable boost pressure. We observed that the evolution of auto-ignition 

dynamics reflects deterministic destabilization of the combustion process. The recurrences results 

show interesting formation of intermittency with increasing boost pressure. This means that two 

or more competing schema of combustion could be present in that system. 

However, to fully describe the variability mechanism we should go to other standard nonlinear 

methods sensitive to nonstationarities and switching dynamics responses as wavelets and 

multifractals [2]. 
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